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Abstract

Why do large language models sometimes output factual inaccuracies and exhibit
erroneous reasoning? The brittleness of these models, particularly when executing
long chains of reasoning, currently seems to be an inevitable price to pay for
their advanced capabilities of coherently synthesizing knowledge, pragmatics, and
abstract thought. Towards making sense of this fundamentally unsolved problem,
this work identifies and analyzes the phenomenon of attention glitches, in which
the Transformer architecture’s inductive biases intermittently fail to capture robust
reasoning. To isolate the issue, we introduce flip-flop language modeling (FFLM),
a parametric family of synthetic benchmarks designed to probe the extrapolative
behavior of neural language models. This simple generative task requires a model to
copy binary symbols over long-range dependencies, ignoring the tokens in between.
We find that Transformer FFLMs suffer from a long tail of sporadic reasoning
errors, some of which we can eliminate using various regularization techniques.
Our preliminary mechanistic analyses show why the remaining errors may be very
difficult to diagnose and resolve. We hypothesize that attention glitches account
for (some of) the closed-domain hallucinations in natural LLMs.

1 Introduction

Recent advancements in scale have yielded large language models (LLMs) with extraordinary profi-
ciency in nuanced reasoning with factual knowledge. Despite these achievements, LLMs are known to
produce incorrect outputs, often referred to colloquially as “hallucinations” or “distractions” (Ji et al.,
2023). Generally, hallucinations refer to the phenomenon that a model’s outputs are syntactically
and grammatically accurate but factually incorrect. There are various types of hallucinations, and the
focus of this work is the “closed-domain” variety (Saparov and He, 2022; OpenAI, 2023), where the
model predictions contain factually incorrect or made-up information according to a given context,
regardless of their correctness in the real world.

Perhaps surprisingly, such hallucinations can be observed even on simple algorithmic reasoning tasks.
As a warmup, consider the queries shown in Figure 1 (and Appendix B.1), where we prompt LLMs
to solve addition problems of various lengths. The responses simultaneously illustrate the following:

1. Nontrivial algorithmic generalization: In cases where the models succeed, it is unlikely that these
exact numerical sequences appeared in the training data. To correctly output the first digit of
the answer, the LLM must resolve a long dependency chain which generally depends on every
digit in the input. Somewhere within these networks’ internal representations, implementations
of addition algorithms have emerged.
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User:  What is 8493 + 2357?
GPT-3.5: 10850

GPT-4: 10850
✓
✓

User:  What is 84935834 + 23572898?
GPT-3.5: 108008732

GPT-4: 108508732
×
✓

8 4 9 3 5 8 3 4 + 2 3 5 7 2 8 9 8 =

4 9 3 5 8 3 4 + 2 3 5 7 2 8 9 8 = 1

Inside the Transformer: a (glitchy) learned adder

User:  What is 9991999919909993 + 6109199190990097?
GPT-3.5: 16111199190810090

GPT-4: 16101199100890090 ×
×

Answer: 16101199110900090

Figure 1: Cherry-picked integer addition prompts, showing how state-of-the-art LLMs can generalize
non-trivially on algorithmic sequences, but sporadic reasoning errors persist. The first digit of the
correct answer depends on every input; thus, an autoregressive model must propagate a “carry” bit
across these long-range dependencies in a single pass. This (and many other algorithmic reasoning
capabilities) can be implemented by a Transformer model using internal flip-flops.

2. Sporadic errors (“hallucinations”): These internal algorithms can be brittle and unreliable,
especially when processing long inferential chains. Their failures can be subtle and unpredictable.

In this work, we consider the task of processing the flip-flop language, a minimal unit of sequential
computation which consists of memory operations on a single bit (see Definition 1) and underlies
virtually all1 syntactic parsing and algorithmic reasoning capabilities (including implementing adders,
and far more). A flip-flop language modeling (FFLM) task is defined on sequences of write,
read, and ignore instructions: write sets the memory state to a certain value which is later
retrieved by read, while ignoring any contents in between. We find that when trained to complete
flip-flop sequences, the Transformer architecture exhibits a long tail of reasoning errors (incorrect
read retrievals), unlike previous-generation recurrent models such as the LSTM (Hochreiter and
Schmidhuber, 1997). We coin the term attention glitch for this phenomenon, and hypothesize that
this captures a systematic failure mode of Transformer-based LLMs when internally manifesting long
chains of algorithmic reasoning.

Our contributions are as follows:

• FFLM: a minimalistic long-range dependency benchmark. We propose flip-flop language
modeling, a parametric family of synthetic benchmarks for autoregressive sequence modeling,
designed to isolate and probe reasoning errors like those demonstrated in Figure 1. We view
FFLM as a robust complement to the Long Range Arena (Tay et al., 2020) and some of the tests
in BIG-Bench (Srivastava et al., 2022), and recommend measuring glitch rates as a “stress test”
for architectural innovations in sequence modeling.2

• Main empirical result: attention attends glitchily. We find that while Transformer models can
appear to learn flip-flop languages perfectly on held-out samples from the training distribution,
they make a long tail of unpredictable reasoning errors (attention glitches), on both long-range
and short-range dependencies. We evaluate various direct and indirect mitigations, including
commonly-used regularization techniques and attention-sharpening regularizers — a plug-
and-play way to sparsify self-attention architectures. We find that attention sharpening reduces
reasoning errors by an order of magnitude, but none of our attempts were successful in driving
the number of errors to exactly 0. Meanwhile, recurrent models work perfectly.3

• Preliminary mechanistic analyses. We provide some theoretical and empirical explorations
which account for some of the internal mechanisms for attention glitches, and why they are so
difficult to eliminate completely.

1.1 Related work

The challenge of learning long-range dependencies is a long-standing one in the statistical modeling
of sequences (Samorodnitsky et al., 2007). The Transformer architecture (Vaswani et al., 2017),
a paradigm-shifting sequence model, enables the scalable learning of a feedforward hierarchy of

1More precisely, whenever the desired algorithm needs to “store memory” (i.e. contains a non-invertible
state transformation); see Section 3.2.

2To get started, see our data release: https://huggingface.co/datasets/synthseq/flipflop.
3It could be the case that recurrent models may fail at extremely long dependencies (Khandelwal et al., 2018).
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meaningful long-range dependencies. Yet, factual errors over long contexts persist in these models;
this is the subject of many careful studies in deep NLP (Khandelwal et al., 2018; Tay et al., 2020;
Guo et al., 2022; Ji et al., 2023).

The sporadic non-factual outputs of LLMs have been popularly called “hallucinations”, especially
when there is an expectation that producing a correct answer is disproportionately “easy”. Popular
approaches for improving robustness to such errors include chain-of-thought generation (explicitly
outputting intermediate reasoning steps) (Nye et al., 2021; Wei et al., 2022b) and enforcing self-
consistency (Wang et al., 2022). In the emerging taxonomy of LLM pathologies (Saparov and
He, 2022; Ji et al., 2023), the hallucinations studied in this work are of the closed-domain variety,
under a deterministic notion of factuality (namely, consistency with flip-flop transitions) which is
unambiguously reflected by the training data. We provide further discussion on the connections to
natural LLM hallcuinations in Section 6 and Appendix A.4.

Long-range dependency and reasoning benchmarks. Many datasets and benchmarks have been
designed to isolate qualitative issues in langauge modeling (Tay et al., 2020; Wu et al., 2021; Zhang
et al., 2021, 2022; Saparov and He, 2022; Shi et al., 2023; van der Poel et al., 2023; Eldan and Li,
2023). Aside from being focused on the “smallest” and “purest” compositional unit of sequential
reasoning (see Section 3.2), FFLM is distinguished by a few factors:

• “L∞” objective: Unlike usual benchmarks, we consider any model with less than 100% accuracy
as exhibiting a reasoning error. Aside from the motivation of completely eliminating hallucina-
tions, we argue that this stringent notion of correctness is needed to avoid error amplification
when flip-flops are embedded in more complex networks; see Appendix A.1 and Liu et al. (2023).

• Parametric, procedurally generated, and generalizable: Our empirical study precisely quanti-
fies long-tail errors via a large number of replicates over the randomness of both model initializa-
tion and data generation. This methodology is easily adapted and rescaled (by adjusting T,p,
and other difficulty knobs) to probe language models of any size.

We provide an expanded discussion of related literature in Appendix A.2.

2 Background and notation

Modern language models are powered by sequence-to-sequence (seq2seq) neural networks fθ :
RT×d → RT×d, which transduce sequences of vectors according to internal computations determined
by the inputs as well as trainable parameters θ. When equipped with mappings to and from symbolic
tokens (an “embedding layer” E : [M ] → Rd (here, M ∈ N is the vocabulary size) and classification
layer W : Rd → ∆([M ]), shared across positions), W ◦ f ◦ E : [M ]T → ∆([M ])T can represent
an autoregressive generative model of a joint distribution over tokens x1:T ∈ [M ]T , where the output
at the t-th position gives the estimated next-symbol probabilities P̂r[xt+1 = · |x1:t]. The overarching
challenge of statistical language modeling is to fit complex distributions such as natural language;
recurrent (Elman, 1990; Hochreiter and Schmidhuber, 1997; Wu et al., 2016) and self-attention-
based (Vaswani et al., 2017) architectures have shown remarkable capabilities in fitting the seq2seq
functions necessary for fluent linguistic parsing and reasoning.

Recurrent inductive biases, attention, and length generalization. To correctly process uniform
(i.e. fixed-description-length) algorithmic computations on arbitrarily long sequences, it is natural to
embed recurrences within a seq2seq network. Imitating the recurrent nature of the Turing machine,
one can hope for RNNs to learn representations of the desired looped computations (Sutskever et al.,
2013; Graves et al., 2014; Linzen et al., 2016). However, the key innovation in the Transformer
architecture is a non-recurrent self-attention module.4 Various works have noted that Transformers
and RNNs learn qualitatively different solutions, discussing potential ways to reconcile these
nuanced discrepancies (Dehghani et al., 2018; Abnar et al., 2020; Liu et al., 2023).

4We define self-attention in Appendix C. For in-depth breakdowns of the architectural components of
Transformers, see (Vaswani et al., 2017; Phuong and Hutter, 2022; Edelman et al., 2022).
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  assert x ==
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Figure 2: Elementary objects and examples associated with flip-flop languages. (a) the 2-state
flip-flop machine (elided transitions are self-loops). (2) A 4-state automaton which processes flip-flop
languages (implying the existence of a small RNN). (c) Simple examples of sequential prediction
tasks which require processing a flip-flop language.

3 Flip-flop automata and the FFLM task

3.1 Definitions

For any even number T ≥ 4, we define a flip-flop string as a sequence of symbols {w, r, i, 0, 1}T ,
which have the semantics of instructions (write, read, ignore) and data (one bit). A valid flip-flop
string consists of alternating pairs of instructions and data (e.g. “w 0 i 1 i 0 r 0”), for which
every symbol following a r instruction must be equal to the symbol following the most recent w;
thus, “w 0 i 1 w 1 r 0” is not a legal flip-flop string. These sequences can be viewed as correct
execution transcripts of a program which can (perhaps occasionally) write to a single bit of memory,
and always correctly reads its contents. All sequences are required to begin with w and end with r.

There are many possible choices of (probabilistic) flip-flop languages, which are distributions over
valid flip-flop strings. We define a canonical family of them: let FFL(T,p) be the distribution over
length-T flip-flop strings, parameterized by p = (pw, pr, pi) ∈ ∆({w, r, i}), such that:

(i) The first instruction x1 is always w, and the last instruction xT−1 is always r.
(ii) The other instructions are drawn i.i.d. according to (pw, pr, pi) with pi = 1− pw − pr.

(iii) The nondeterministic data symbols (paired with w or i) are drawn i.i.d. and uniformly.

We are interested in whether language models can learn a flip-flop language from samples, which
we define as processing the read operations perfectly. Two variants of the autoregressive language
modeling task can be defined on this distribution:

• Generative (“noisy”) mode: Estimate the conditional next-token distribution Pr[xt+1|x1:t], for
each t = 1, . . . , T − 1. In this mode, the sequences can be treated as drop-in replacements
for natural text in GPT-style training. Generative FFLMs can be evaluated by checking their
completions on prefix “prompts” (e.g. “... w 0 i 1 i 1 i [?]”).

• Deterministic (“clean”) mode: Predict only the continuations which are deterministic: correctly
output xt+1 only for the prefixes x1:t such that xt = r. At the cost of a slight departure from
vanilla language modeling, this setting isolates the long-range memory task. It is similar to
the non-autoregressive flip-flop monoid simulation problem discussed in Liu et al. (2023), with
limited supervision. 5

These tasks naturally embed the capability of simulating the flip-flop, a machine which memorizes a
single bit (see Figure 2a,b for closely related variants).6 It is easy to see that recurrent networks and

5We observe similar behaviors across these two settings (see Appendix B.2), but we report results on the
“clean” setting in this paper. Predicting the non-deterministic tokens is irrelevant to the memory task at hand.

6A further discussion of the rationale for this specific manifestation of flip-flop sequence processing is
deferred to Appendix A.3.
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2-layer Transformers (see Proposition 2) can both represent FFLM parsers. The question of whether
they do, especially from less-than-ideal data, turns out to be extremely subtle, and is the subject of
the remainder of this paper.

3.2 Why focus on the flip-flop?

The most immediate rationale for this synthetic benchmark is that flip-flop simulation (maintaining
memory in a sequence) is a direct necessity in many reasoning settings (see Figure 2c). It is a
special (depth-1) case of Dyck language processing (Chomsky and Schützenberger, 1959; Yao et al.,
2021; Zhao et al., 2023), which is necessary for parsing recursive grammars. It also captures certain
structures in code or language tasks, such as tracking semantic changes (Miceli-Barone et al., 2023)
or ignoring irrelevant contexts in general (Tafjord et al., 2020; Ho et al., 2020; Shi et al., 2023). The
BIG-Bench suite of reasoning benchmarks (Srivastava et al., 2022) contains many tasks which require
maintaining a discrete state over a sequence of transitions. Thus, more than a toy model, flip-flop
languages are embedded verbatim within many sequence processing tasks. We offer some additional
perspectives below.

Algebraic properties and expressive power. Flip-flops are the computational building blocks of
memory. The flip-flop monoid F (Definition 1), an algebraic encoding of a flip-flop’s dynamics,
is the smallest monoid whose operation is both non-commutative and non-invertible. F plays an
essential role in the Krohn-Rhodes theory of automata and semigroups (Rhodes et al., 2010), whose
central structure theorem (Krohn and Rhodes, 1965; Zeiger, 1967; Eilenberg, 1974) implies that a
constant-depth cascade of parallel flip-flops simulates all group-free finite-state automata. Thus, in a
rigorous sense, the robust learning of flip-flops is not only a necessary condition for reasoning, but a
sufficient condition for a wide class of algorithmic capabilities.

Intended functionality of attention. One can also appeal to the origin of attention mechanisms
(Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017): attention was specifically designed
to attend to7 (i.e. selectively retrieve and copy) data over long-range dependencies. Indeed, it is easy
to verify that a single attention head can perform the required lookup (see Proposition 2). It is thus
logical to ask how well a purely attention-based architecture performs this elementary operation.

4 Attention glitches: a long tail of errors for Transformer FFLMs

In our main set of synthetic experiments, we train neural language models to generate strings from
the flip-flop language FFL(T = 512,p = (0.1, 0.1, 0.8)) (for short, FFL(pi = 0.8)), 8 and probe
whether the networks robustly learn the language. Although every valid flip-flop string is supported
in this distribution, some sequences are far rarer than others; we measure tail behavior via probes
of extrapolation, defined here as out-of-distribution evaluations which amplify the probabilities of
the rare sequences. To create these “challenging” sequences, we sample > 3× 105 sequences from
FFL(0.98) (containing unusually many “sparse” sequences with mostly ignore instructions), as well
as FFL(0.1) (many “dense” sequences). Training and evaluating the read accuracies of Transformer
models of various sizes, as well as a recurrent LSTM model, we find the following (see Figure 3):

(R1) Transformers exhibit a long, irregular tail of errors. Such errors occur on both sparse and
dense sequences. Further, a model’s out-of-distribution test error varies significantly between
random seeds (initializations as well as stochastic minibatches), and even between iterates
within the same training run.

(R2) LSTMs extrapolate perfectly. In stark contrast, with 20 times fewer training samples and
iterations, a 1-layer recurrent model achieves 100% accuracy, on 100 out of 100 runs.

Data release. For reproducibility, we publish this synthetic data at https://huggingface.co/
datasets/synthseq/flipflop: 16M FFL(0.8) training sequences, 16K FFL(0.8) in-distribution

7What this formally entails for representation and generalization is a topic of recent theoretical inquiry
(Edelman et al., 2022; Wei et al., 2022a).

8In the remaining of the paper, we will use FFL(pi) as a shorthand, with T = 512 and pw = pr = 1−pi
2

.
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Figure 3: Top: Training curves of recurrent (left) vs. Transformer (center) architectures on FFLM,
with best-so-far evaluation errors highlighted for clarity. Transformers fail to extrapolate robustly
to the long tail of long-range dependencies, even on this extremely simple task of remembering one
bit. The bolded box contains our chosen 6-layer 19M-parameter canonical baseline model. We find
that the ability to complete flip-flop language prompts emerges in natural language models, but is
not robust (right). Bottom: examples from the sparser FFL(0.98) and denser FFL(0.1) distributions,
causing distinct (long-range and short-range) failure modes for the baseline Transformer model.

test sequences, 160K sparse o.o.d. sequences from FFL(0.98), and 4K FFL(0.1)) dense o.o.d. se-
quences from FFL(0.98). Our data pipelines can be replicated exactly by taking the appropriate prefix
slices of these datasets.

As a counterpart to these findings, we observe similar anomalies in real LLMs, when prompted to
complete natural textual embeddings (Figure 2, top right) of flip-flop tasks:

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly. Beyond
a certain scale, natural language models can learn to process (natural embeddings of) flip-flop
languages from in-context demonstrations. However, this emergent capability is not robust:
there exist rare read errors, whose probabilities amplify as the sequence length T grows. We
provide details for the few-shot evaluation protocol in Appendix B.2.1.

4.1 Multiplicity of mechanisms for attention glitches

What failure mechanisms account for these reasoning errors, which occur for both short- and long-
range dependencies? The model capability is not a concern as discussed earlier (see Proposition 2).
In this section, we discuss how Transformer self-attention modules, when tasked with representing
flip-flops, can exhibit multiple (perhaps mutually entangled) failure mechanisms. The accompanying
propositions are proven in Appendices C.2 and C.3.

An insufficient explanation: implicit n-gram models. As a warmup, consider a language model
P̂r[xt+1|x≤t] which only depends on the n most recent tokens in the context. Then, if n ≪ 1

1−p ,

the bulk of P̂r’s predictions on FFL(pi = p) can be no more accurate than random guessing. This
recovers one qualitative trend (degradation of accuracy with dependency length) observed in the
experiments. However, this cannot fully explain our findings: it fails to account for the incorrect
predictions on dense sequences. Furthermore, the Transformers’ outputs on FFL(0.98) are mostly
correct; their accuracies on very long-range dependencies are nontrivial, despite not being perfect.
There must therefore be subtler explanations for these errors.

Lipschitz limitations of soft attention. Moving to finer-grained failure mechanisms, a known
(Hahn, 2020; Chiang and Cholak, 2022) drawback of soft attention is that its softmax operation can
be “too soft”—for any weight matrices with fixed norms, the attention gets “diluted” across positions
as the sequence length T increases, and can fail to perform an intended “hard selection” operation.
We provide a formal statement and proof (Proposition 3) in Appendix C.2.
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Difficulty of non-commutative tiebreaking. Can we simply robustify soft attention by replacing it
with hard attention? We present a brief analysis which suggests that even hard attention can be brittle.
In a stylized setting (one-layer models with linear position encodings), we show that self-attention can
confidently attend to the wrong index, unless the weight matrices precisely satisfy an orthogonality
condition (Proposition 4). This suggests the existence of spurious local optima, which we do not
attempt to prove end-to-end; however, we provide supporting empirical evidence in the experiments
in Appendix C.3.

5 Mitigations for attention glitches

In this section, we investigate various approaches towards eliminating the long tail of reasoning errors
exhibited by Transformer FFLMs. We select the 19M-parameter model (which has L = 6 layers,
d = 512 embedding dimensions, and H = 8 heads) from Section 4 as a canonical baseline, and
conduct precise evaluations of various direct and indirect interventions.

5.1 Effects of training data and scale

Ideal solution: improving data coverage. Prior work has made clear that data significantly impacts
the performance (Schuhmann et al., 2022; Eldan and Li, 2023). Hence, we begin by examining what
is perhaps the most obvious solution: removing the need for out-of-distribution extrapolation, by
training directly on more diverse examples. Indeed, we verify that this works near-perfectly:

(R4) Training on rare sequences works best, by a wide margin. By training on a uniform mixture
of FFL distributions with pi = {0.9, 0.98, 0.1}, the baseline architecture reliably converges
to solutions with significantly fewer errors on each of these 3 distributions (teal violins in
Figure 4). In 6 out of 25 runs, we did not detect a single error.

This should not be surprising, in light of the realizability of flip-flops by self-attention (and, more
generally, the existence of shortcuts functionally identical to RNNs (Liu et al., 2023)), and corrobo-
rates similar conclusions from (Zhang et al., 2021). We also find that weaker improvements emerge
by straightforwardly increasing scale parameters in the model and training pipelines:

(R5) Resource scaling (in-distribution data, training steps, network size) helps. However, the
improvements are orders of magnitude smaller than those in (R4), and we observe tradeoffs
between sparse- and dense-sequence extrapolation; see the blue violins in Figure 4.

Another class of direct solutions is to externalize the chain of thought (CoT): train (or finetune, or
prompt) the model to explicitly output the intermediate reasoning steps (Nye et al., 2021; Wei et al.,
2022b). We do not investigate this strategy in this paper, and note that prior work has provided
sufficient evidence to affirm its efficacy in inducing the robust learning of recurrences on long
synthetic sequences (Anil et al., 2022; Zhou et al., 2022; Liu et al., 2023). Even when applying CoT
in practice, we believe attention glitches may still occur, as flip-flops operations may be embedded
within a single indivisible reasoning step. Thus, the focus of this work is to isolate and mitigate this
intrinsic architectural issue. We provide additional references and discussion in Appendix A.2.

5.2 Indirect algorithmic controls: a bag of regularization tricks

The interventions listed in Section 5.1 are all potentially practical, and may shed light on how closed-
domain LLM hallucinations will diminish with data quality, scale, and improved inference strategies.
However, it is not always feasible to implement these fixes under resource constraints (especially
data). We next investigate an orthogonal design space, of how to robustify the internal memory
mechanisms of neural sequence models. Note that the exceptionally strong extrapolative performance
of the LSTM provides a “skyline”, showing the possibility of far more robust architectures than the
Transformer (in the flip-flop setting, with this restricted set of considerations).

Standard regularization heuristics. There is a large array of not-fully-understood algorithmic
tricks for “smoothing” the behavior of LLMs. We test the extrapolative behavior of models trained
with weight decay and dropout (at the attention, feedforward, and embedding layers), as well as a
host of algorithmic choices known to modulate generalization (batch sizes, learning rates, optimizer
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Figure 4: A long tail of flip-flop errors for 10,625 Transformer models. Left: Out-of-distribution
evaluations for all models; some algorithmic choices help substantially (note the logarithmic axes),
but nothing we tried, aside from training on o.o.d. data, could fully eliminate attention glitches.
Right: Effects of individual architectural and algorithmic choices on both types of extrapolation
(sparse and dense sequences). Some configurations reduce attention glitch rates by orders of magni-
tude. Horizontal marks denote {min, 25%, median, 75%, max} test errors on >3× 105 predictions,
over 25 replicates (500 for the baseline model). Dots at the bottom indicate runs with 0 error.

hyperparameters, position embeddings, activation functions). Due to the extreme variability noted in
(R1), we quantify effects on extrapolation by training and evaluating at least 25 replicates for each
choice under consideration.

Attention sharpening: a non-standard regularization technique. Inspired by the “diluted hard
attention” calculation in Section 4.1, and the fact that the attention heads of trained models do not
attend sharply (see Figure 5), we train Transformer models with attention-sharpening regularizers:9
during training, for attention weights α ∈ ∆([T ]), adding differentiable loss terms which encourage
sparsity (e.g. the mixture’s entropy H(α), or negative p-norms −∥α∥2, −∥α∥∞).

(R6) Many algorithmic choices influence extrapolative behaviors. We find that some architectural
variants and regularization tricks have orders-of-magnitude effects on the out-of-distribution
performance of Transformers; see the purple, brown, red, and gold violins in Figure 4 (right).
Our strongest improvements on sparse sequences are obtained by large (0.5) embedding dropout
and attention-sharpening losses; on dense sequences, non-trainable position embeddings are
the most helpful.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely. The
scatter plot in Figure 4 (left) gives an overview of our entire search over architectures and
hyperparameters, showing (dense-sequence error, sparse-sequence error) pairs for every model
we trained. We found it extremely difficult to find a setting that reliably produces Transformer
models with simultaneous improvements over the baseline on sparse and dense sequences.
Recall that it is trivial to do so with an LSTM model.

5.3 Preliminary mechanistic study of the trained networks

In this section, we move to a simpler setting to gain finer-grained understanding of how sparsity
regularization affects the learned solutions. Specifically, we look at the task of simulating the flip-flip
automaton (Definition 1), whose inputs consist of {σ0, σ1,⊥} as two types of write and 1 no-op.
This task (elaborated in Appendix A.1) can be solved by a 1-layer Transformer with a single attention
head which attends sparsely on the most recent write position. It also serves as a building block for
more complex tasks (Liu et al., 2023), hence observations from this simple setup can potentially be
useful in broader contexts.

9While less popular, such losses have been used to sparsify dependencies in similar contexts (Zhang et al.,
2018; Sukhbaatar et al., 2021).
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(a) (b)

(c)

(d)

Figure 5: Causal attention patterns for flip-flop simulation (Definition 1); orange dots / blue diamonds
mark the positions of write tokens σ0 / σ1. (a),(b) are subselected respectively from a regular (non-
sparse) and a sparse multi-layer model (details in Appendix B.5). (c), (d) are from two 1-layer 1-head
models. The attention pattern highlighted by the purple box in (b) coincides with the “ideal” attention
pattern in (c). However, sparse models can be wrong, as shown in (d) (error marked in red).

Figure 5 shows examples of attention patterns on the flip-flop simulation task, subselected from
6-layer 8-head models trained with and without attention-sharpening regularization. It is evident that
the attention patterns of the sparse model are less complex and easier to interpret compared to those
of the un-regularized model. For example, we can identify one head in the sparse model that exactly
coincide with the attention pattern10 that an “ideal” 1-layer 1-head model implements (Figure 5c).

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist.
As mentioned in (R7), attention-sharpening regularization cannot fully eliminate the sporadic
errors, which are partially induced by the complexity and redundancy of attention patterns.
Moreover, sharpened attention can induce additional failure modes, such as confidently attend-
ing to incorrect write positions. An example is demonstrated in Figure 5d, where the attention
focuses on an initial write, likely caused by the fact that earlier positions are overemphasized
due to the use of causal attention masks. Another example occurs in length generalization,
where the attention is correct at positions earlier in the sequence, but starts to confidently focus
on wrong positions as it moves towards later positions (Proposition 4).

In a similar spirit to concurrent work on generating Dyck languages (Wen et al., 2023) (a more complex
capability which also requires parallel simulation of memory registers), these glitchy solutions point
to a concrete obstruction to mechanistic interpretability. Due to factors such as overparameterization,
spurious solutions, and the opaqueness of optimization dynamics, learned neural implementations
of algorithms generally do not coincide with “ideal”, “minimal”, or “natural” theoretical
constructions. Details for these experiments and further discussion are provided in Appendix B.5.

6 Conclusion and future challenges

We have introduced flip-flop language modeling (FFLM), a synthetic benchmark for probing the
fine-grained extrapolative behavior of neural sequence models, based on a one-bit memory operation
which forms a fundamental building block of algorithmic reasoning. Despite being able to realize
this operation trivially, Transformer models do not extrapolate robustly: they exhibit a long tail of
sporadic reasoning errors, which we call attention glitches. Through extensive controlled experiments,
we find that many algorithmic mitigations can reduce the frequency of attention glitches, but only
recurrence and training on longer-tailed data work perfectly. FFLM provides a concrete and
minimalistic setting in which Transformers are far inferior to recurrent sequence models, with respect
to multiple criteria (efficiency, stability, and extrapolation).

10While it is well-known that attention patterns can be misleading at times (Jain and Wallace, 2019; Bolukbasi
et al., 2021; Meister et al., 2021), they do provide upper bounds on the magnitude of the dependency among
tokens. These upper bounds are particularly useful in the case of (1-)sparse attention: a (near) zero attention
weight signifies the absence of dependency, which greatly reduces the set of possible solutions implemented.
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What does this entail about hallucinations in natural LLMs? The motivating issue for this
work is the phenomenon of “closed-domain hallucinations” in non-synthetic LLMs (e.g. the errors
demonstrated in Figure 1). We hypothesize that attention glitches occur in the internal algorithmic
representations of Transformer models of natural language, and that they account for (a non-negligible
portion of) the reasoning errors encountered in practice. To our knowledge, this is the first attempt
to attribute model hallucinations to a systematic architectural flaw in the Transformer. However,
confirming or refuting this hypothesis is far outside the scope of this paper; the opaque indirections
and lack of adequate controls on the training data present significant methodological challenges.
Even precisely articulating this hypothesis leaves degrees of freedom which are difficult to resolve;
see the discussion in Appendix A.4. We therefore leave these topics for future work.

Paths to hallucination-free Transformers? Our findings suggest that in the near term, there
are many mutually-compatible approaches for reducing the frequency of attention glitches: data
(particularly with high diversity), scale, and various forms of regularization. Yet, the strikingly
outsized benefit of replacing the Transformer with an LSTM network suggests that architectural
innovations towards the same ends are well worth examining. Obtaining a practical best-of-both-
worlds architecture is a grand open challenge, for which new recurrent designs (Katharopoulos et al.,
2020; Dao et al., 2022; Peng et al., 2023; Anonymous, 2023) show great promise. Note that we do
not make the claim that recurrent architectures are the only ones which can extrapolate robustly.11

Broader impacts and limitations. This work is inherently foundational, and focuses on precise
measurements of generalization in an idealized setting; see Appendix A.4 for a discussion of the
limitations this entails. By introducing methodologies to isolate, measure, and control the long tail of
reasoning errors in neural sequence models, we hope that this work will contribute to the systematic
and principled discovery of LLM pipelines with improved factual reliability. Such improvements may
result in unintended downstream consequences, such as higher-fluency malicious content generation.
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A Deferred background and discussion

A.1 Flip-flop terminology and history

The flip-flop automaton12 is a two-state machine which remembers a single bit of memory, and
enables retrieval of this bit. More precisely, the flip-flop automaton (illustrated in Figure 2(a)) is
defined as:
Definition 1 (Flip-flop automaton). A flip-flop automaton A = {Q,Σ, δ} is defined with state space
Q = {0, 1}, input alphabet Σ = {σ0, σ1,⊥}, and transition function δ : Q× Σ → Q where

δ(q, σ0) = 0,

δ(q, σ1) = 1,

δ(q,⊥) = q;

∀q ∈ {0, 1}.

The semantics of the input symbols can be intuitively be identified with “write 0”, “write 1”, and “do
nothing”. This mathematical object is named after a type of electronic circuit which can store a single
bit of state information (Eccles and Jordan, 1918, 1919); such physical constructions appear ubiqui-
tously in electrical engineering as the building blocks of memory. The task of interest in Section 5.3
is simulating the flip-flop automaton: the model takes as input a sequence of σ1, σ2, · · · , σT ∈ Σ,
and learns to output the corresponding states qt ∈ Q for each t ∈ [T ] after processing inputs σ1:t.

Naturally associated with the flip-flop automaton is its transformation monoid, the closure13 of its
state transformations δ( · , σ) : Q → Q under function composition. Identifying each symbol with
its state transformation map, we can compute the multiplication table of this monoid (f ◦ g for every
pair of transformations f, g):

g = σ0 g = σ1 g = ⊥
f = σ0 σ0 σ0 σ0

f = σ1 σ1 σ1 σ1

f = ⊥ σ0 σ1 ⊥

This algebraic object is called the flip-flop monoid F . Its binary operation ◦ is clearly (1) non-
invertible (intuitively: the history of the bit cannot be recovered after a “memory write”) and (2)
non-commutative (the order of “write” operations matters); it also has (3) an identity element ⊥
(which does nothing to the memory bit). By enumeration of smaller objects, it can be seen that F
is the smallest monoid (in terms of order |F|, or fewest number of automaton states |Q|) which has
properties (1)-(3).

The flip-flop monoid plays a special role in the algebraic theory of automata (Rhodes et al., 2010): flip-
flops can be cascaded to represent more complex functions. In particular, the celebrated Krohn-Rhodes
theorem (Krohn and Rhodes, 1965) gives a “prime decomposition” theorem for all finite semigroups
(associative binary operations), representing them as alternating wreath products of flip-flop monoids
and finite simple groups. Further developments (Zeiger, 1967; Eilenberg, 1974) have interpreted this
theorem as a structural reparameterization of any finite-state automaton into a feedforward hierarchy
of simple “atomic” machines (namely, flip-flops and permutation semiautomata). Basic quantitative
questions (e.g. “which functions of n variables can L layers of poly(n) flip-flops represent?”) have
proven to be extremely hard to resolve; these are studied by the theories of Krohn-Rhodes complexity
and circuit complexity.

It was noted by Barrington and Thérien (1988) that these reparameterizations of finite-state automata
entail the existence of parallel algorithms (i.e. shallow, polynomial-sized circuits) for sequentially
executing finite-state recurrences (thus, processing formal languages) on sequences of length T .
More recently, Liu et al. (2023) establish implications for shallow Transformer neural networks: they
show that they can size-efficiently (with depth O(log T ) and parameter count Θ(T ); sometimes both

12Sometimes, a distinction is made between a semiautomaton (Q,Σ, δ) and an automaton, which is a
semiautomaton equipped with a (not necessarily invertible) mapping from states to output symbols. We do not
make such a distinction; we equip a semiautomaton with the output function which simply emits the state q, and
use “automaton” to refer to this dynamical system.

13In this case, the closure is the same as the generator set: no functions distinct from σ0, σ1,⊥ can be obtained
by composing these three functions. This is not true for a general automaton.
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improvable to O(1)) realize these parallel algorithms, and that standard gradient-based training can
empirically learn ≪ T -layer solutions on a variety of “hard” automata (e.g. composing a sequence of
T 5-element permutations; multiplying T unit quaternions). Here, the role of the flip-flop monoid
is essential: it provides a natural way to think about the role of a single self-attention head in a
hierarchy of indirections, in order to learn a depth-constrained parallel implementation of a sequential
algorithm.

A.2 Additional related work

Relevant challenges in NLP: hallucinations and long-range dependencies. The empirical lit-
erature is rife with corroborations that neural language models have trouble with robustly fitting
long-range memory and multi-step reasoning (Khandelwal et al., 2018; Sun et al., 2021; Sukhbaatar
et al., 2021; Malkin et al., 2022; Saparov and He, 2022; Orvieto et al., 2023; Creswell et al., 2023).
Such failures can result in “hallucinations”: incorrect outputs which either directly contradict factual
input in the context, or contain information absent in the context (Ji et al., 2023).

Hallucination can be attributed to various factors, such as the noisiness in data sources (Dhingra
et al., 2019; Dziri et al., 2022), imperfect encoding/decoding (Parikh et al., 2020; Tian et al., 2019),
or the discrepancy in training and evaluation setups (He et al., 2019). In particular, the most related
to our paper are the characteristics inherent to the model itself. For example, prior work has found
that Transformers tend to be biased towards information covered during training (Petroni et al.,
2019; Longpre et al., 2021), a potential cause to their poor out-of-distribution performance, and may
over-commit to their earlier errors (Zhang et al., 2023)

In terms of mitigation, various “external” methods (i.e. ones which do not modify the internal
representations of the neural network) have been proposed to address some of the above factors, or
post-processing model generations (Dziri et al., 2021; Chen et al., 2021), possibly utilizing several
forward passes (Wang et al., 2022; Zheng et al., 2023). Another line of work that have gained much
popularity and success is to incorporate explicit memory mechanisms, which we discuss next.

Explicit memory mechanisms in Transformers. Prior work has shown that augmenting the neural
network with memory modules or knowledge base helps improve the performance on long-range
texts (Khandelwal et al., 2019; Wu et al., 2022; Bertsch et al., 2023). An approach particularly
effective for large-scale Transformers is to ask the model to output immediate reasoning steps to a
“scratchpad” which the model subsequently processes (Nye et al., 2021; Wei et al., 2022b; Zhou et al.,
2022; Anil et al., 2022; Shao et al., 2023), similar to writing to and reading from a memory tape. A
particular way to interact with the scratchpad is to interlace every other token with an annotation
of “as a reminder, this is the state” (Liu et al., 2023; Lanchantin et al., 2023), so that there are no
more explicit long-range dependencies. However, this strategy is the same as the recurrent solution
implementable by RNNs, and it does not always exist, especially when attention glitches occur in an
internal component of the model.

Transformers and algorithmic tasks. Compared to real-world language datasets, synthetic tasks
provide a cleaner and more controlled setup for probing the abilities and limitations of Transformers.
Specific to algorithmic reasoning, Liu et al. (2023) puts a unifying perspective on the ability of small
Transformers to succeed at tasks corresponding to algorithmic primitives. Specific tasks of interest
include modular prefix sums (Hahn, 2020; Anil et al., 2022), adders (Nogueira et al., 2021; Nanda
and Lieberum, 2022; Lee et al., 2023), regular languages (Bhattamishra et al., 2020; van der Poel
et al., 2023), hierarchical languages (Yao et al., 2021; Zhao et al., 2023), and following a chain of
entailment Zhang et al. (2022).

Comparison with Transformers Learn Shortcuts to Automata. Liu et al. (2023) study the parallel
circuits efficiently realizable by low-depth Transformers. The authors identify shortcut solutions,
which exactly replicate length-T recurrent computations (“chains of algorithmic reasoning”) in the
absence of recurrence, with very few (O(log T ); sometimes O(1)) layers. Their results contain a
general structure theorem of representability, and preliminary positive empirics for generalization
and optimization, demonstrating that Transformers can learn these shallow solutions via gradient-
based training on samples. In contrast, the present work is a fine-grained study of the issue of
generalization. Our main empirical contributions are a minimally sufficient setup (FFLM) and a
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set of large-scale14 controlled experiments, towards providing reasonable scientific foundations for
addressing the unpredictable reasoning errors of LLMs.

A.3 Why this flip-flop language?

Liu et al. (2023) (as well as our mechanistic interpretability experiments) use a purer instantiation
of flip-flop sequence processing, in which the sequence-to-sequence network is tasked with non-
autoregressive transduction: given the sequence of input symbols σ1, . . . , σT , output the sequence
of states q1, . . . , qT . This is most natural when studying the Transformer architecture’s algebraic
representations in their most isolated form.

Our autoregressive sequence modeling setting is a slight departure from this setting; we discuss its
properties and rationale below.

• The autoregressive setting “type-checks” exactly with standard state-of-the-art autoregressive
(a.k.a. causal, forward, or next-token-prediction) language modeling. This makes it more
convenient and intuitive as a plug-and-play benchmark.

• The cost is a layer of indirection: the model needs to associate “instruction” tokens with their
adjacent “data” tokens. This is a natural challenge for representation learning, and is certainly
a necessary cursor for robust extrapolation on natural sequences that embed similar tasks (like
those considered in Figure 2c). It is straightforward to remove this challenge: simply tokenize at
a coarser granularity (i.e. treat (instruction, data) pair as a distinct vocabulary item).

• The multi-symbol (and variable-length-symbol, etc.) generalizations of the binary flip-flop
language are more parsimonious. If there are n instead of 2 tokens, this language can be
encoded with n+ 3 commands. Without the decoupling of “instruction” tokens from “data”, the
vocabulary size would scale suboptimally with n. In Figure 12, we provide a quick demonstration
that attention glitches persist in the presence of larger vocabularies.

• The conclusions do not change: in smaller-scale experiments, we observe the same extrapolation
failures between the autoregressive and non-autoregressive task formulations.

A.4 Attention glitches in natural LLMs

In this section, we expand on the brief discussion from Section 6. At a high level, we hypothesize
that attention glitches cause (some) closed-domain hallucinations in Transformer models of more
complex languages. However, due to the fact that neural networks’ internal representations evade
simplistic mechanistic characterization, it is a significant challenge to formulate a rigorous, testable
version of this hypothesis. We discuss the subtleties below.

First, we discuss a more general notion of attention glitches, of which the flip-flop errors considered
in this papers are a special case. We define attention glitches as failures of trained attention-based
networks to implement a hard retrieval functionality perfectly. To formalize this notion, there are
several inherent ambiguities—namely, the notions of “hard retrieval” and “perfectly”, as well as
the granularity of “subnetwork” at which an attention glitch can be defined non-vacuously. The
FFLM reasoning errors considered in this work provide a minimal and concrete resolution of these
ambiguities. We discuss each of these points below:

• Hard retrieval: To succeed at FFLM, a network’s internal representations must correctly imple-
ment the functionality of retrieving a single bit (from a sequence of bits, encoded unambiguously
by the network), selected via the criterion of “most recent write position”. This can be expanded
into a richer functional formulation of hard attention, by generalizing the set of possible retrieved
contents (a discrete set of larger cardinality, or, even more generally, a continuous set), as well as
more complex selection criteria (e.g. “least recent position”).

• Ground truth: Of course, to define “errors” or “hallucinations” in reasoning, there must be
a well-defined ideal functionality. For FFLM, the notion of “closed-domain” reasoning and
hallucinations is evident: the ideal behavior is for a model’s outputs to coincide with that of
the flip-flop machine on all input sequences. This straightforwardly generalizes to all formal
languages, where the model is expected to correctly produce the deterministic outputs of automata

14∼104 19M-parameter Transformers were trained in the making of this paper; see Appendix B.6.
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Input GPT-3.5 GPT-4 Answer

8493
+ 2357

10850 ✓ 10850 ✓ 10850

84935834
+ 23572898

108008732 ✗ 108508732 ✓ 108508732

9991999919909993
+ 6109199190990097 16111199100810090 ✗ 16101199100890090 ✗ 16101199110900090

Table 1: Examples (in Figure 1) of GPT variants on addition: While models tend to succeed at
additions with a small number of digits, they (nondeterministically) fail at longer additions.

which parse these languages. By considering expanded notions of “ground truth”, it is possible to
capture other notions of model hallucinations (such as incorrectly memorized facts). Our work
does not address open-domain hallucinations (i.e. where the model output contradicts real-world
knowledge (OpenAI, 2023)), which may be unrelated to attention glitches.

• Submodules: Towards attributing implementations and errors to localized components of a
network, it is impossible to provide a single all-encompassing notion of “localized component”.
This is a perennial challenge faced in the mechanistic interpretability literature. Our work
considers two extremes: the entire network (in the main experiments, where we probe end-to-end
behavior), and a single self-attention head (in Sections 4.1, 5.3 and Appendix B.5, in which we
probe whether a single attention head can learn multiplication in the flip-flop monoid). Even when
considering the same functionality, attention glitches can be considered for different choices of
“submodule”.15 Our results reveal a key subtlety: in the presence of overparameterization (more
layers and parallel heads than necessary according to the theoretical constructions), Transformers
learn to process flip-flop languages via soft attention.

We expect that to effectively debug the full scope of LLM hallucinations, all of the above choices
will need to be revisited, perhaps in tandem.

We hypothesize that the algorithmic reasoning capabilities of real LLMs (i.e. their ability to recognize,
parse, and transduce formal symbolic languages) are implemented by internal subnetworks whose
functionalities can be identified with generalizations of the flip-flop machine. To the extent that such
modules exist, attention glitches (the failure of these modules to represent the flip-flop operations
perfectly, due to insufficient training data coverage) cause sporadic end-to-end errors (“closed-domain
hallucinations”). In this work, we have treated the case of external attention (where the task is to
learn the flip-flop directly).

B Full experimental results

B.1 Details for LLM addition prompts (Figure 1)

These addition problem queries serve as a quick demonstration of (1) non-trivial algorithmic general-
ization capabilities of Transformer-based LLMs; (2) the brittleness of such capabilities: we directly
address this type of reasoning error in this work. Table 1,2 show these queries and results in detail.

We emphasize that these examples were selected in an adversarial, ad-hoc manner; we do not attempt
to formalize or investigate any claim that the errors made by larger models are at longer sequence
lengths. We also cannot rule out the possibility that some choice of prompt elicits robust algorithmic
reasoning (e.g. the prompting strategies explored in (Zhou et al., 2022)). The only rigorous conclusion
to draw from Figure 1 is that of non-robustness: even LLMs exhibiting state-of-the-art reasoning
continue to make these elementary errors for some unambiguous queries with deterministic answers.
It was last verified on May 8, 2023 that GPT-4 (in its ChatGPT Plus manifestation) demonstrates the
claimed failure mode.

15Beyond the two extremes considered in this work, some examples include “a subset of attention heads”, “a
subset of layers”, and “a subspace of the entire network’s embedding space”.
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Input GPT-3.5 GPT-4 Answer

4491
+ 8759

13250 ✓ 13250 ✓ 13250

80087394
+ 63457948

143045342 ✗ 143545342 ✓ 143545342

5101611078665398
+ 8969499832688802 1.4071110911354202e+16 ✗ 14071110911354196 ✗ 14071110911354200

Table 2: More examples of GPT variants on addition: While models tend to succeed at additions with
a small number of digits, they (nondeterministically) fail at longer additions.

B.2 Extrapolation failures of standard Transformers (Section 4)

This section provides full details for our empirical findings (R1) through (R3).

Architecture size sweep. We consider a sweep over Transformer architecture dimensionalities,
varying the three main size parameters. We emphasize that these are somewhat larger than “toy”
models: the parameters go up to ranges encountered in natural sequence modeling (though, of course,
far short of state-of-the-art LLMs).

• The number of layers (depth) L ∈ {2, 4, 6, 8}.
• The embedding dimension d ∈ {128, 256, 512, 1024}.
• The number of parallel attention heads per layer H ∈ {2, 4, 8, 16}. In accordance with

standard scaling rules-of-thumb, each head’s dimension is selected to be d/H .

Other hyperparameter choices. We use a sequence length of T = 512, again to reflect a typical
length of dependencies considered by nontrivial Transformer models. We use a canonical set of
training hyperparameters for this sweep: the AdamW (Loshchilov and Hutter, 2017) optimizer, with
(β1, β2) = (0.9, 0.999), learning rate 3 × 10−4, weight decay 0.1, 50 steps of linear learning rate
warmup, and linear learning rate decay (setting the would-be 10001th step to 0). We train for 10000
steps on freshly sampled data, and choose a minibatch size of 16; consequently, the models in this
setup train on 81,920,000 tokens.

Training and evaluation data. Unless otherwise stated, we train our models on online samples
(fresh i.i.d. batches) containing moderate-length dependencies (T = 512, pi = 0.8, pw = pr = 0.1,
or FFL(0.8) for short). We evaluate on the following held-out test sets, which are held the same
across all training runs:

(i) In-distribution: 103 sequences from the same distribution FFL(0.8), containing 26508 read
instructions.

(ii) Sparse tail: 105 sequences from FFL(0.98), containing 353875 read instructions.
(iii) Dense tail: 3000 sequences from FFL(0.1), containing 345781 read instructions.

When showing training curves, we evaluate errors only on (i) and the first 1% of (ii) every 100 steps;
the purpose of these is only to give a qualitative sense of instability, and affirm the presence of errors.
For the main suite of experiments, we focus on reporting the high-precision glitch rate measurements
on (ii) and (iii). Final errors on (i) are exactly 0 except for a small number of non-converged runs
(2-layer architectures and badly tuned hyperparameters), so we omit these evaluations in favor of the
more informative measurements which focus on the sparse and dense tails.

(R1) Transformers exhibit a long, irregular tail of errors. Figure B.3 shows training curves for
3 replicates (random seeds) in each setting, while the scatter plot in the main paper shows
variability of out-of-distribution accuracy across random seeds for the baseline setup. We find
that Transformers sometimes succeed at extrapolation, but erratically.

(R2) 1-layer LSTM extrapolates perfectly. We train a 1-layer LSTM (Hochreiter and Schmidhuber,
1997) network, with hidden state dimension 128 (for a total of 133K parameters), for 500

21



10 4

10 3

10 2

10 1

100
2L 128-dim 2-head

in-distr
o.o.d.

2L 128-dim 4-head 2L 128-dim 8-head 2L 128-dim 16-head 2L 256-dim 2-head 2L 256-dim 4-head 2L 256-dim 8-head 2L 256-dim 16-head

10 4

10 3

10 2

10 1

100
2L 512-dim 2-head 2L 512-dim 4-head 2L 512-dim 8-head 2L 512-dim 16-head 2L 1024-dim 2-head 2L 1024-dim 4-head 2L 1024-dim 8-head 2L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
4L 128-dim 2-head 4L 128-dim 4-head 4L 128-dim 8-head 4L 128-dim 16-head 4L 256-dim 2-head 4L 256-dim 4-head 4L 256-dim 8-head 4L 256-dim 16-head

10 4

10 3

10 2

10 1

100
4L 512-dim 2-head 4L 512-dim 4-head 4L 512-dim 8-head 4L 512-dim 16-head 4L 1024-dim 2-head 4L 1024-dim 4-head 4L 1024-dim 8-head 4L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
6L 128-dim 2-head 6L 128-dim 4-head 6L 128-dim 8-head 6L 128-dim 16-head 6L 256-dim 2-head 6L 256-dim 4-head 6L 256-dim 8-head 6L 256-dim 16-head

10 4

10 3

10 2

10 1

100
6L 512-dim 2-head 6L 512-dim 4-head 6L 512-dim 8-head 6L 512-dim 16-head 6L 1024-dim 2-head 6L 1024-dim 4-head 6L 1024-dim 8-head 6L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
8L 128-dim 2-head 8L 128-dim 4-head 8L 128-dim 8-head 8L 128-dim 16-head 8L 256-dim 2-head 8L 256-dim 4-head 8L 256-dim 8-head 8L 256-dim 16-head

0.0 0.5 1.0
1e4

10 4

10 3

10 2

10 1

100
8L 512-dim 2-head

0.0 0.5 1.0
1e4

8L 512-dim 4-head

0.0 0.5 1.0
1e4

8L 512-dim 8-head

0.0 0.5 1.0
1e4

8L 512-dim 16-head

0.0 0.5 1.0
1e4

8L 1024-dim 2-head

0.0 0.5 1.0
1e4

8L 1024-dim 4-head

0.0 0.5 1.0
1e4

8L 1024-dim 8-head

0.0 0.5 1.0
1e4

8L 1024-dim 16-head

Transformer training curves: train on FFL(pi = 0.8), test o.o.d. on FFL(pi = 0.98)

training iterations

te
st

 e
rro

r

Figure 6: Examples of training curves over various Transformer architectures, ranging from 46K to
101M trainable parameters. We exhibit 3 (randomly selected) random seeds for each architecture.
Lighter curves show raw error percentages, while solid curves denote the lowest error so far in each
run. Notice the following: (1) non-convergence of shallow models (despite representability) (2)
failure of most runs to extrapolate (i.e. reach 0% out-of-distribution error); (3) high variability
between runs; (4) erratic, non-monotonic progress on out-of-distribution data, even when the in-
distribution training curves appear flat; (5) a small LSTM outperforms all of these Transformers
(see Figure 3). The bolded box represents our 19M-parameter baseline model.

steps with the same optimizer hyperparameters as above. The LSTM model achieves exactly 0
final-iterate o.o.d. error, over 100 out of 100 replicates. In smaller experiments, we found that
larger LSTMs (width up to 8192, depth up to 4) also extrapolate perfectly.
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Figure 7: Additional training curves. Left: Identical baseline architecture, varying the 5 data seeds
and 5 model seeds: models in the same row encounter the same sequence of data, while models in
the same column start from identical initializations. Both sources of randomness affect training
dynamics and extrapolation, and it is not clear which is more important. Right: Similar findings
for models trained in “fully generative” mode (scoring on all tokens); baseline architecture is in the
bolded box .

Canonical baseline. We select the 6-layer, 512-dimensional, 8-head architecture (with 19M
trainable parameters) as our canonical baseline model: it is large in relevant dimensions16 to real
Transformers, while being small enough to allow for thousands of training runs at a reasonable cost.
To fully understand the variability of this single architectural and algorithmic setup, we train and
evaluate 500 replicates in this setting.

Random data vs. random initialization. Recent synthetic probes on the surprising behavior of
deep neural nets on hard synthetic tasks (Barak et al., 2022; Garg et al., 2022) obtain additional
insights by disentangling the effects of data randomness (i.e. the precise sequence of minibatches)
vs. model randomness (e.g. random initialization and dropout). We provide a quick demonstration
in Figure 7 (left) that both sources of stochasticity matter. We do not perform a more detailed
investigation of their precise influence and roles.

Fully generative setting: similar negative results. As mentioned in Section 3.1, to capture a
setting closer to standard autoregressive (sometimes called GPT-style) language modeling, we find
a similar failure to extrapolate when models are trained to predict all tokens, rather than only the
deterministic ones (xt+1 such that xt = r). Figure 7 (right) exhibits some training curves for
this setting, showing non-extrapolation, variability, and instability. We observe that training (to in-
distribution convergence) takes slightly longer in this setting, and usually succeeds with the baseline
architecture. We do not perform further controlled experiments in this setting.

B.2.1 Evaluating real LLMs on flip-flops

We provide a quick corroboration that while LLMs in practice can perform in-context reasoning when
the sequences are unambiguously isomorphic to a flip-flop language. We use the natural language

16Except the vocabulary size. In preliminary experiments, we obtained similar findings in the case of token
spaces larger than {0, 1}.
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(a) Explaining FFLM to ChatGPT.

(b) Correct on short sequences.

(c) Wrong on long sequences (input length 1000).

Figure 8: Examples of interacting with ChatGPT-4 (as of 05/22/2023) by explaining FFLM to it.

example from Figure 2 (top right), and evaluate the capability of popular pretrained LLMs to correctly
remember the state of a light switch. Specifically, write instructions in the FFLM task are either
“Alice turns the light off” or “Alice turns the light on”. The ignore instructions are either “Bob eats a
banana” or “Bob eats an apple”. All models are prompted with a translated, length-16 FFLM task
that’s been translated to English in this way before evaluation.

We measure this accuracy as a function of the sequence length for several well-known LLMs: GPT-2,
GPT-2-large, GPT-2-xl, Pythia-12C, and GPT-NeoX-20B. Figure 3 shows how well these models
perform on this task (i.e. the correctness of the model when prompted with “The light is turned ”)
as the sequence length is varied. Consistent with the findings of this paper, larger models tend to
perform best at this task, and the quality of all models deteriorates with increased sequence length.
Each point on the plot considers 500 sequences of the indicated length. All models were prompted
with a randomly generated, length 16 flip flop sequence to allow the model to learn the task in context.
Accuracy is measured according to the frequency with which the model correctly predicts the current
state of the light switch, as described in Section B.2.1.

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly.

Note that it is impossible to quantify the degree to which these sequences are “in-distribution” (it is
unlikely that any sequences of this form occur in the training distributions for these LLMs). Much
like linguistic reasoning evaluations in the style of BIG-bench (Srivastava et al., 2022), we rely
on the emergent capability of in-context inference (Brown et al., 2020) of the task’s syntax and
semantics. As discussed in Appendix A.4, this layer of indirection, which is impossible to avoid in
the finetuning-free regime, can cause additional (and unrelated) failure modes to those studied in
our synthetic experiments. Fully reconciling our findings between the synthetic and non-synthetic
settings (e.g. by training or finetuning on sequences of this form, or via mechanistic interpretation of
non-synthetic language models) is outside the scope of this paper, and yields an interesting direction
for future work.

Direct in-context induction of flip-flop languages? Given the conversational abilities of LLMs, another
way to interact with an existing pretrained model is to explain the definition of FFLM in natural
language, and ask the model to output the correct state for r. We test this using ChatGPT (with
GPT-4), as demonstrated in Figure 8. ChatGPT seems to understand the rules and can get short
sequences correct (up to sequence length 400), but makes errors with unexpected connections on
longer sequences.

B.3 Effects of training data and scale (Section 5.1)

Here, we provide more details for the interventions outlined in Section 5.1, which directly modify the
training distributions and resources.
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Figure 9: Detailed comparisons of various scaling axes, showing violin plots for selected runs (left)
and an annotated scatter plot for all runs (right); + markers show medians for particular configurations.
Increasing training data diversity is by far the most effective way to mitigate attention glitches
in FFLM. The other scaling axes (increasing the amount of fresh data, increasing the number of
optimization steps on the same dataset, and changing the model size) have mixed effects on rare-
sequence performance. In particular, we wish to highlight that neither overparameterization nor
underparameterization strongly modulates the rate of glitches.

Long-tailed data. For direct training on long-tailed sequences, we train on an equal mixture of
FFL(0.8), FFL(0.98), and FFL(0.1), ensuring that the the sparse and dense tails are both adequately
represented in training.

Scaling up data and compute. For both the default and long-tailed training distributions, we consider
increasing the number of training iterations by a factor of 3 or 10, either with freshly generated
samples (“N× data”) or looping over the same training dataset for multiple epochs (“N× steps”).

Scaling up the model. We also perform these exhaustive tail error evaluations on all 64 of the
architecture scale settings shown in Figure , as well as a limited number of larger architectures (shown
in Figure 9).

(R4) Training on rare sequences works best, by a wide margin. See the teal violins in Figure 9
(left); training for longer (either with fresh data, or for more epochs on the same data) reduces
the fraction of unlucky error-prone outliers. Recall that extrapolation is possible without such
favorable coverage, via using a recurrent model.

(R5) Resource scaling (in-distribution data, training steps, network size) helps. Training on
more data from the same distribution, as well as for more steps on the same examples, both
improve sparse-sequence performance, at the expense of dense-sequence performance (blue
violins in Figure 9 (left). As best seen through Figure 9 (right), there is no discernible
monotonic relationship between any of the Transformer’s standard architecture size parameters
(i.e. number of layers, embedding dimension, and number of parallel self-attention heads per
layer) and extrapolative performance (navy violins).

B.4 Indirect algorithmic controls for extrapolation (Section 5.2)

As shown in Figure 4 in the main paper, various architectural, algorithmic and regularization choices
can help improve error rates compared to the baseline Transformer. The various settings of weight
decay, {attention, MLP, embedding} dropout, position embedding, activation function, attention-
sharpening penalty are all found in Figures 10 and 11.

Details for architecture variants. There is no clear consensus on the advantages and drawbacks of
various positional encodings, but it has been known Dai et al. (2019) that the choice of positional
symmetry-breaking scheme modulates long-sequence performance on natural tasks. We evaluate
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Regularizer effects on o.o.d. performance

Figure 10: Detailed comparisons of standard regularizers (weight decay, and 3 forms of dropout).
While some regularizer choices reduce rare-sequence error rates (in particular, large embedding
dropout reduces sparse-sequence errors by 2 orders of magnitude), nothing eliminates the glitches
entirely.
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Figure 11: Detailed comparisons of a selection of architectural changes, attention-sharpening losses,
and combinations of indirect algorithmic controls. Our best runs come from jointly tuning these
interventions, including an annealing schedule for the attention-sharpening loss; however, even the
best models have nonzero glitch rates. Figure 13 provides an exhaustive view of these results.
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Figure 12: Supplementary plots. Left: Additional comparisons: modifying the softmax temperature β
inside the attention heads (multiplying the attention alignment scores by 1/β), and generalizations of
the FFLM task to larger vocabularies (i.e. the “data” tokens are uniformly drawn from {0, 1, . . . ,M−
1}). In the rightmost violin, “2*2” refers to a token space consisting of length-2 bitstrings. In all of
these settings, attention glitches remain (and mostly worsen). Right: Distribution of dependency
lengths (number ignore operations since last read or write operation) of wrong answers on the
union of the o.o.d. test sets, for a canonical baseline model. This serves as a quick check that the
errors are diverse.

various choices which appear in high-profile LLMs: sinusoidal, learned, ALiBi (Press et al., 2021),
and RoPE (Su et al., 2021). We also try the zero positional encoding (which breaks symmetry via
the causal attention mask; see Haviv et al. (2022). We find that non-trainable position encodings
help on dense sequences (FFL(0.1)), but have no clear benefit on sparse ones (FFL(0.98)) which
require more handling of long-term dependency. We also try the gated activation units considered by
(Shazeer, 2020).

Details for attention sharpening. There are many possible choices of continuous regularization
terms which can promote sparsity in an attention head’s weights—we consider entropy, negative L2

loss, and negative L∞ loss. These terms are averaged across every attention head in the Transformer,
and added as a surrogate objective during training. We perform a large grid sweep over coefficients
{0.01, 0.03, ..., 0.1, 0.3, 1, 10, 30}, annealing schedules (linear and oscillating, starting from 0, 2000,
and 5000 steps), and display in Figure 11 the 3 choices which appear on the Pareto front.

Optimizer hyperparameters. We also varied the optimizer parameters for AdamW (β1 ∈
{0.85, 0.9, 0.95}, β2 ∈ {0.95, 0.99, 0.999}, learning rate η ∈ {0.0001, 0.0003, 0.001, 0.003}) and
found no significant improvements to extrapolation performance.

We restate the main findings:

(R6) Many algorithmic choices influence extrapolative behavior. We sweep over various forms
of implicit and explicit regularizers; see Figures 10 and 11. Details are provided below.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely. Refer to
the scatter plot in Figure 4 (left) for a visualization of every training run.

Figure 12 provides a few supplementary experiments, verifying that attention glitches persist: scaling
the attention softmax temperature, and larger vocabularies for the memory register. We also provide
a quick verification that errors are not concentrated at the same dependency lengths (i.e. distances
between write and read).

Finally, to provide a bird’s-eye view of all of our experiments, Figure 13 provides a scatter plot of
o.o.d. error rates for all models trained in this paper, color coded by intervention category.

B.5 Preliminary mechanistic study and challenges (Section 5.3)

We continue the discussions in Section 5.3 and provide preliminary mechanistic interpretability
results on simulating the flip-flop automaton (Definition 1). Recall the main takeaway:
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Figure 13: Error scatter plots for all models evaluated in this work (a larger version of Figure 4 (left)
from the main paper), color-coded by intervention category. Left: All runs on the same plot. Right:
Segmented by intervention type. The best runs result from an exhaustive joint hyperparameter search
over dropout, position embeddings, and annealed attention-sharpening regularizers.

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist.

Sparsity regularization helps sharpen the attention. Figures 16a and 16b compare the attention
patterns of 1-layer 1-head models with or without attention-sharpening regularization. While both
types of models give correct results, the attention-sharpened model puts all attention weights to the
most recently write position, which is the solution given according to the definition of the task,
whereas the attention patterns of the non-regularized model (Figure 16a) are much less clean.

Are there solutions other than the “ideal” solution? There is a solution naturally associated with
the definition of the flip-flop automaton (i.e. the sparse pattern shown in Figure 16b), but it is not
necessarily the only solution. For example, an equally valid (dense) solution is for the model to attend
to every write token of the correct type.

Are attention patterns reliable for interpretability? Prior work has pointed out the limitations of
interpretations based solely on attention patterns (Jain and Wallace, 2019; Bolukbasi et al., 2021;
Wen et al., 2023). The intuition is that attention patterns can interact with other components of the
network in various ways; for example, WV can project out certain dimensions even though they may
have contributed to a large attention score. Hence, for multi-layer multi-head non-sparse models, the
magnitude of attention weights may not have an intuitive interpretation of “importance” (Meister
et al., 2021). This is observed in our experiments as well; for instance, Figure 17 shows examples
where the attention on an incorrect token may be higher than that of the correct token. 17 However, in
a 1-layer 1-head model, 1-sparse attention (Figure 16b) indeed offers interpretability, since if zero

17However, if we consider the “importance / influence” as measured by the norms of the attention-weighted
value vectors, then the max norm still corresponds to the correct token, which helps explain why the final output
is correct.
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Figure 14: Attention drifts as the length increases. The model is trained on length-500 sequences
with p(σ ̸= ⊥) = 0.5. The testing sequences are (a) [2, 0 · · · , 0︸ ︷︷ ︸

800

], and (b) [1, 0 · · · , 0︸ ︷︷ ︸
32

, 2, 0 · · · , 0︸ ︷︷ ︸
800

]. We

sample every 32 positions for visualization.

attention weight 18 necessarily means the absence of dependency, which greatly reduces the set of
possible solutions implemented.

Sporadic errors persist. Section Section 5.1 (R5) showed that none of the mitigations was suc-
cessful at making Transformers reach 100% accuracy. One common failure mode is long-range
dependency, where the input sequences contain very few writes. The failure could be attributed to
multiple factors; we will explore one aspect related to attention patterns, demonstrated with a 1-layer
1-head Transformers with linear position encoding, on a length-834 sequence with 2 writes. As
shown in Figure 14, the attentions for positions early in the sequence correctly attend to the most
recent write. However, attention starts to “drift” as we move to later positions, and the positions at
the end of the sequence attend entirely 19 to the recent read tokens, which contains no information for
solving the task. This may be because the attention weights are undesirably affected by the position
encodings, as discussed in Proposition 4.

Optimization hurdles. While sparse solutions may be preferred for various reasons, sparsity itself
is not sufficient to guarantee good performance: As shown in Figure 16d, sparsity regularization can
lead to bad local minima, where the model tends to (incorrectly) rely on earlier positions. This is
observed across different types of sparsity regularization. While we do not yet have a full explanation
of the phenomenon, a possible explanation for this bias is that earlier positions show up more often
during training, due to the use of the causal attention: a valid flip-flop solution is for the model
to attend to every write token of the correct type; positions earlier in the sequence get observed
in more subsequences because of the causal mask, and are hence more likely to be attended to.
We also observe that the phenomenon seems to be closely related to the training distribution. For
example, the model is much more likely to get stuck at a bad local minima when p(⊥) = 0.5 (denser
sequences) compared to p(⊥) = 0.9 (sparse sequences). We leave a more thorough study on the
training dynamics (Jelassi et al., 2022; Li et al., 2023; Ahn et al., 2023) for future work.

Effect of sparsity regularization on training dynamics An interesting future direction is to
understand the learning dynamics of flip-flop tasks with attention-sharpening regularization, as
suggested by the (quantitively and qualitatively) different results and optimization challenges. As
some initial empirical evidence that the regularization indeed have a large impact on the dynamics, we
found that sharpened attention seems to have a regularization effect on the weight norms (Figure 15),
and also lead to different behaviors of the attention heads (Figure 18).

18By “zero” we mean an attention score on the magnitude of 1e-8 empirically.
19The attention weights that are not on the most recent write sum up to around 1e-7.
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Figure 15: Frobenius norms of weight matrices in 1-layer 1-head models, trained without regulariza-
tion (blue), with attention-sharpening regularization (yellow), or first without regularization and then
adding regularization from epoch 30 (red; epoch 30 marked by the dashed lines). The solid curve and
the shadow shows the median and the standard deviation calculated on 8 models.

(a) (b) (c) (d)

Figure 16: Attention-sharpening regularization on 1-layer 1-head models. Compared to a non-
regularized model (16a), the sparsity-regularized model (16b) shows clear attention at the last write
position. However, sparse attention does not have to align with the “ideal” pattern (16c), and can
even be wrong (16d). Positions with yellow borders are where the max attention in each row occur;
errors are marked in red.

More examples of attention patterns Figure 19 shows the full set of attention patterns of two
6-layer 8-head models trained with and without attention-sharpening regularization, corresponding to
Figure 5 (a,b). Attention-sharpening regularization can be applied in different ways; for example,
Figure 20 shows results of a model for which only the first layer is regularized. The attention patterns
of subsequent layers remain sharp, even though there is no explicit regularization.

Figure 17: Non-sparse atten-
tion pattern can be misleading:
a non-sparse model may put
more attention on an incorrect
token (i.e. a token that is not
the write with the right type),
while making the correct pre-
dictions. Yellow boxes mark
the position of the max atten-
tion of each row.
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(a) Model trained without sparsity regularization.

(b) Model trained with entropy sparsity regularization with λ = 0.01.

Figure 18: Examples of the ℓ2 difference in attention patterns from two 6-layer 8-head 512-dimension
models. Differences are calculated between all pairs of heads in the same layer.

(a) Without regularization. (b) With attention-sharpening regularization.

Figure 19: Attention patterns for 6-layer 8-head 512-dimension models on the input sequence
[σ1,⊥, σ0,⊥, ⊥, σ0, σ1,⊥]: attention-sharpening regularization lead to cleaner attention patterns. 1
attention head in the first layer of the regularized model (marked by the purple box) matches the
“ideal” attention pattern Figure 5c.
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(a) ℓ2 differences between pairs of attention heads in the
same layer, throughout training (x-axis).

(b) Attention patterns on the input sequence
[σ1,⊥, σ0,⊥,⊥, σ0, σ1,⊥].

Figure 20: Attention heads and attention patterns for a 6-layer 8-head 512-dimension model, trained
with attention-sharpening regularization (entropy regularization with strength 0.01) on the first layer
only. 1 attention head in the first layer (marked by the purple box) matches the “ideal” attention
pattern Figure 5c.

B.6 Software, compute infrastructure, and resource costs

GPU-accelerated training and evaluation pipelines were implemented in PyTorch Paszke et al. (2017).
For the FFLM experiments, we used the x-transformers20 implementations of the Transformer
architecture and variants. For the fine-grained mechanistic interpretability experiments on the pure
flip-flops, we used the “vanilla, GPT-2”-like Transformer implementation published by HuggingFace
(Wolf et al., 2019). Our benchmarks have been released at https://huggingface.co/datasets/
synthseq/flipflop.

Each training run was performed on one GPU in an internal cluster, with NVIDIA P40, P100, V100,
and RTX A6000 GPUs, with at least 16GB of VRAM. Each (6-layer, 512-dimensional, 8-head)
baseline model took ∼10 minutes to train (and evaluate online) for 104 steps. A nontrivial fraction
of the compute time (∼ 20%) was spent on fine-grained evaluation through the course of training.
The vast majority of training runs are close to these specifications; consequently, one set of replicates
under identical conditions (i.e. each violin plot in each figure) is the product of ∼4 GPU-hours of
training time.

We hope that this computational investment will aid in understanding how to build robust Transformer
models and training pipelines at much larger scales.

C Proofs for Section 4.1

Transformer recap. A Transformer (Vaswani et al., 2017) consists of multiple self-attention layers.
Given d-dimensional embeddings of a length-T sequence, denoted as X ∈ RT×d, a self-attention
layer f computes

f(X) = ϕ(WV softmax(XWQW
⊤
KX⊤)XWV WC). (C.1)

where WQ,WK ∈ Rd×k for k ≤ d are the query and key matrix; WV ,W
⊤
C ∈ Rd×k project the

representations from and back to Rd. softmax calculates row-wise softmax. ϕ : Rd → Rd is a
2-layer fully-connected network. Residual links and layer norm can be optionally included at different
places of a self-attention layer.

C.1 Realizability of FFL by small Transformers

Proposition 2. A 2-layer 1-head Transformer with residual connections can represent "deterministic"
FFL.

20https://github.com/lucidrains/x-transformers

32

https://huggingface.co/datasets/synthseq/flipflop
https://huggingface.co/datasets/synthseq/flipflop


Proof. Let us consider predicting in the deterministic mode (Section 3.1). Then we need to predict
xt+1 given x1:t with xt = r. In order to do this, we need to find the largest τ < t such that xτ = w
and output xτ+1. There are multiple ways to implement this, we will consider the following: (1)
layer 1 converts FFL to the flip-flop automaton (Definition 1), (2) layer 2 implements the flip-flop
construction. For layer 2, we can use the construction described in Liu et al. (2023). Here we present
the full construction for completeness.

We will consider a two-layer Transformer with one head in each layer followed by a 2-layer MLP
and a residual connection. In particular, for x ∈ {w, r, i, 0, 1}T :

f(x) = ϕ2(W
(2)
V softmax(f1(x)W

(2)
Q W

(2)
K

⊤
f1(x)

⊤)f1(x)W
(2)
V W

(2)
C )

where f1(x) = E(x) + ϕ1(W
(1)
V softmax(E(x)W

(1)
Q W

(1)
K

⊤
E(x)⊤)E(x)W

(1)
V W

(1)
C )

where E(x) ∈ RT×d is the encoding for the input sequence x given some encoding function E.

Our construction is as follows:

• Select d = 7, k = 2, H = 1 (recall from Equation C.1that d, k are the dimensions of WQ,WK ).
Among the d = 7 embedding dimension, two dimensions are for the operations (w versus r,i),
two for the two write values, one for the positional embedding, one for padding, and the final
dimension is for storing whether the previous position is the most recent write, as calculated
by the first layer.

• Select input symbol encodings such that for the token at position t, denoted as xt,

E(xt) := 1[xt = w]e1 + 1[xt = r∨ xt = i]e2 + 1[xt = 0]e3 + 1[xt = 1]e4 + e5 + Pt ∈ R7,

where Pt is the positional encoding. We use the linear positional encoding Pt := (t/C) · e6, for
some (large) constant C. For a fixed sequence length T , we can set C = T .

• W
(1)
Q :=

[
e5 e5

]
∈ R7×2, W (1)

K :=

[
3c e1

2T ce6

]
∈ R7×2 for c = O(T log(T )), W (1)

V :=[
e1 0

]
∈ R7×2, and W

(1)
C

⊤
:=

[
e7 0

]
∈ R7×2.

• W
(2)
Q :=

[
e5 e5

]
∈ R7×2, W (2)

K :=

[
ce7 ce6

]
∈ R7×2 for c = O(T log(T )), W (2)

V :=[
e4 0

]
∈ R7×2, and W

(2
C

⊤
:=

[
e1 0

]
∈ R7×2.

In layer 1, the unnormalized attention score for query position i to key position j is〈
W

(1)
Q

⊤
xi,W

(1)
K

⊤
xj

〉
=

〈
c

T
·
[
3

2
· 1[xj = w], j

]
, [1, 1]

〉
=

c

T
·
(
3

2
1[xj = w] + j

)
.

Note that the max attention value for position i is achieved at i if xi−1 ̸= w, else the max is achieved
at position i− 1.

In the setting of hard attention, the output for the ith token after the attention module is 1[xi−1 =
w ∨ xi = w]e7. Now similar to the constructions in Liu et al. (2023) (Lemma 6), with a appropriate
choice of c = O(T log T ), we can approximate hard attention by soft attention, and subsequently
use the MLP to round the coordinate corresponding to e7. The MLP otherwise serves as the identity
function. Together with the residual link, the first layer output (i.e. the second layer input) at position
i takes the form

f1(xi) = E(xi) + 1[xi−1 = w ∨ xi = w]e7.
In layer 2, the unnormalized attention score computed for position i attending to j is〈

W
(2)
Q

⊤
f1(xi),W

(2)
K

⊤
f1(xj)

〉
=

c

T

〈
[1, 1],

[
1[xj−1 = w ∨ xj = w],

j

T

]〉
=c ·

(
1[xj−1 = w ∨ xj = w] +

j

T

)
.
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Note that the max attention value is achieved at the position right after the closest w to xi. Let us
denote this position by τ ≤ i, then with hard attention, the output at the ith position is xτe1, as
desired. Now similar to before, we can approximate this with soft attention and use the MLP to do
the appropriate rounding to get our final construction.

Remark: The construction in Proposition 2 is a construction, but it is not the only construction. For
example, for the second layer implementation for the flip-flop automaton, there could be an equally
valid dense solution, where the model uniformly attends to all write tokens of the correct type.

C.2 Failure of soft attention: attention dilution with bounded Lipschitzness

Consider any attention layer with weight matrices WQ,WK ∈ Rk×d. If ∥W⊤
KWQ∥2 is bounded,

then the attention cannot be sparse as the sequence length increases:

Proposition 3 (Leaky soft attention). Assume the latent variables have bounded norm, i.e. ∥v∥2 ≤ 1
for any latent vector v ∈ Rd, and let σmax denote the max singular value of W⊤

KWQ. Then for T =
Ω(exp(2σmax)), any sequences of latent vectors {vτ}τ∈[T ], ∥softmax({vτ}τ∈[T ])∥∞ = 1− Ω(1).

Proof. The proof follows directly from a simple rewriting.

For any u,v with ∥u∥2, ∥v∥2 ≤ 1, the pre-softmax attention score is bounded by u⊤W⊤
KWQv ∈

[−σmax, σmax].

exp(v⊤
t W

⊤
KWQvT )∑

τ∈[T ] exp(v
⊤
τ W

⊤
KWQvT )

≤ exp(σmax)

exp(σmax) + (T − 1) exp(−σmax)
= 1− T − 1

T − 1 + exp(2σmax)
,

where the last term is Ω(1) when T = Ω(exp(2σ)).

Attention dilution and failure on dense sequences Strictly speaking, attention dilution caused
by an increased sequence length does not necessarily affect the output of the layer. For example, if
ignore gets mapped to a subspace orthogonal to that of write, then WV can project out the ignore
subspace, making the weighted averaged depending only on the number of writes. Hence with the
presence of layer norm, attention dilution won’t be a problem for the final prediction if the number of
write is upper bounded regardless of the sequence length.

For the experiments in Section 5.1, denser sequences (i.e. larger p(write)) do increase the number
of write compared to the training distribution, hence attention dilution can be a potential cause for
the decrease in performance.

C.3 Failure of hard attention: bad margin for positional embeddings

In this section, we look at a failure mode that a 1-layer 1-head Transformer has on the flip-flop
automaton simulation task. Why do we care about this setup? Simulating the automaton is in fact a
sub-task of FFLM. For example, the second layer of the construction in Proposition 2 reduces to the
simulation task.

Consider a 1-layer 1-head Transformer with parameters WQ,WK ∈ Rk×d. Write the attention
query matrix WQ as WQ = [WQe,WQp], where WQe ∈ Rk×(d−1) corresponds to the embedding
dimensions, and WQpRk corresponds to the dimension for the linear positional encoding. Write
WK = [WKe,WKp] similarly.

Then, we claim that the following must be true, regardless of the choice of the token embedding:

Proposition 4. Consider linear positional encoding, i.e. pi = i/C for some (large) constant C.
Then, perfect length generalization to arbitrary length requires W⊤

QpWKp = 0.

Proof. Let e(i) ∈ Rd−1 denote the embedding vector (without the position encoding) for token
i ∈ {0, 1, 2}. Let vt = [et, pt]

⊤ ∈ Rd denote the embedding for the tth token, where et ∈
{e(0), e(1), e(2)}Rd is the embedding of the token itself, and pt := i/C is the linear positional
encoding.
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Let si→j denote the pre-softmax attention score that the ith token puts on the jth token, which is
given by

si→j = ⟨WQvi,WKvj⟩ (C.2)

=e⊤i WQeWKeej + e⊤i W
⊤
QeWKp · pj + (ej)

⊤WKeWQp · pi +W⊤
QpWKp · pipj (C.3)

=e⊤i WQeWKeej +
e⊤i W

⊤
QeWKp

C
· j + (ej)

⊤WKeWQp

C
· i+

W⊤
QpWKp

C2
· ij. (C.4)

We will prove the proposition in two cases, which respectively require W⊤
QpWKp ≤ 0 and

W⊤
QpWKp ≥ 0.

Case 1: W⊤
QpWKp ≤ 0 required Consider the case of long-term dependency, where the input

sequence consists of an initial write and a series of reads, i.e. σ1 = 1 and σt = 0 for t > 1. Then for
the Tth position, the score for the first write token is

sT→1 = ⟨WQvT ,WKv1⟩ (C.5)

=e(0)
⊤
WQeWKee

(1) +
e(0)

⊤
W⊤

QeWKp

C
+

(e(1))⊤WKeWQp

C
· T +

W⊤
QpWKp

C2
· T (C.6)

=

(
(e(1))⊤WKeWQp

C
+

W⊤
QpWKp

C2

)
· T +O(1) = O(T ), (C.7)

and the score for the last write token is

sT→T = ⟨WQvT ,WKvT ⟩ (C.8)

=e(0)
⊤
WQeWKee

(0) +
e(0)

⊤
W⊤

QeWKp

C
T +

e(0)
⊤
WKeWQp

C
· T +

W⊤
QpWKp

C2
· T 2 (C.9)

=
W⊤

QpWKp

C2
· T 2 +O(T ). (C.10)

Think of C as going to infinity. If W⊤
QpWKp > 0, then there exists a sufficiently large T such that

sT→T > sT→1. Hence we need W⊤
QpWKp ≤ 0.

Case 2: W⊤
QpWKp ≥ 0 required Consider the input sequence where σ1 = 1, σT−1 = 2, and

σt = 0 for t ∈ [T ] \ {1, T − 1}. Similar to the above, calculate the pre-softmax attention scores for
σ1, σT−1 as

sT→1 = O(T ) (C.11)

sT→T−1 =
W⊤

QpWKp

C2
· T 2 +O(T ). (C.12)

Since we need sT→T−1 > sT→1, it must be that W⊤
QpWKp ≥ 0.
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