
A Details of denoising diffusion probabilistic models

In this section, we describe the details of denoising diffusion probabilistic models in Section 3.2.

Diffusion probabilistic models [26] are latent variable models that are composed of two processes:
the forward process and the reverse process. The forward process and the reverse process are defined
by Eq. (1) and 2, respectively. Then, the parameters θ are learned by maximizing variational lower
bound (ELBO) of likelihood pθ(x0:T):

Eq(x0)[log pθ(x0)] ≥ Eq(x0,x1,...,xT)[log pθ(x0:T)− log q(x1:T | x0)] := ELBO. (8)

To analyse this ELBO, Ho et al. [11] proposed denoising diffusion probabilistic models (DDPM),
which considered the parameterization given by Eq. (3). Under the parameterization, Ho et al. [11]
showed ELBO satisfies the following equation:

−ELBO = c+

T∑
t=1

κtEx0∼q(x0),ε∼N (0,I)||ε− εθ(
√
αtx0 + (1− αt)ε, t)||22 (9)

where c is a constant and {κ1:T } are positive coefficients depending on α1:T and β1:T . The diffusion
process can be trained by minimizing Eq. (9). In addition, Ho et al. [11] found that minimizing the
following unweighted version of ELBO leads to good sample quality:

min
θ
L(θ) := min

θ
Ex0∼q(x0),ε∼N (0,I),t||ε− εθ(

√
αtx0 + (1− αt)ε, t)||22. (10)

The function εθ estimates noise ε in the noisy input. Once trained, we can sample x0 from Eq. (2).

B Algorithms

B.1 Algorithm for training and sampling of CSDI

We provide the training procedure of CSDI in Algorithm 1 and the imputation (sampling) procedure
with CSDI in Algorithm 2, which are described in Section 4.

Algorithm 1 Training of CSDI
1: Input: distribution of training data q(x0), a target choice strategy T , the number of iteration
Niter, the sequence of noise levels {αt}

2: Output: Trained denoising function εθ
3: for i = 1 to Niter do
4: t ∼ Uniform({1, . . . , T}), x0 ∼ q(x0)
5: Separate observed values of x0 into conditional information xco

0 and imputation targets xta
0 by

the target choice strategy T
6: ε ∼ N (0, I) where the dimension of ε corresponds to xta

0
7: Calculate noisy targets xta

t =
√
αtx

ta
0 + (1− αt)ε

8: Take gradient step on ∇θ||(ε− εθ(x
ta
t , t | xco

0))||22 according to Eq. (7)

Algorithm 2 Imputation (Sampling) with CSDI
1: Input: a data sample x0, trained denoising function εθ
2: Output: Imputed missing values xta

0
3: Denote observed values of x0 as xco

0
4: xta

T ∼ N (0, I) where the dimension of xta
T corresponds to the missing indices of x0

5: for t = T to 1 do
6: Sample xta

t−1 using Eq. (5) and Eq. (6)

B.2 Target choice strategies for self-supervised training

We describe the target choice strategies for self-supervised training of CSDI, which is discussed in
Section 4.3. We give the algorithm of the random strategy in Algorithm 3 and that of the historical

14

Algorithm 3 Target choice with the random strategy
1: Input: a training sample x0

2: Output: conditional information xco
0 , imputation targets xta

0
3: Draw target ratio r ∼ Uniform(0, 100)
4: Randomly choose r% of the observed values of x0 and denote the chosen observations as xta

0 ,
and denote the remaining observations as xco

0

Algorithm 4 Target choice with the historical strategy
1: Input: a training sample x0, missing pattern dataset Dmiss
2: Output: conditional information xco

0 , imputation targets xta
0

3: Draw a data sample x̃0 from Dmiss
4: Denote the indices of observed values of x0 as J
5: Denote the indices of missing values of x̃0 as J̃
6: Take the intersection of J and J̃ , and denote values of x0 for the intersection as xta

0
7: Set the remaining observations of x0 as xco

0

strategy in Algorithm 4. On the historical strategy, we use the training dataset as missing pattern
dataset Dmiss, unless otherwise stated. The mix strategy draws one of the two strategies with a ratio
of 1:1 for each training sample. The test pattern strategy just uses the fixed missing pattern in the test
dataset to choose imputation targets.

C Training and imputation for unconditional diffusion model

C.1 Imputation with unconditional diffusion model

We describe the imputation method with the unconditional diffusion model used for the experiments
in Section 6.1. We followed the method described in previous studies [12]. To utilize unconditional
diffusion models for imputation, they approximated the conditional reverse process pθ(xta

t−1 |
xta
t ,x

co
0) in Eq. (5) with the unconditional reverse process in Eq. (2). Given a test sample x0, they

set all observed values as conditional observations xco
0 and all missing values as imputation targets

xta
0 . Then, instead of conditional observations xco

0 , they considered noisy conditional observations
xco
t :=

√
αtx

co
0 + (1 − αt)ε and exploited xt = [xco

t ;xta
t] ∈ X for the input to the distribution

pθ(xt−1 | xt) in Eq. (2), where [xco
t ;xta

t] combines xco
t and xta

t to create a sample in X . Using this
approximation, we can sample xt−1 from pθ(xt−1 | xt = [xco

t ;xta
t]) and obtain xta

t−1 by extracting
target indices from xt−1. By repeating the sampling procedure from t = T to t = 1, we can generate
imputation targets xta

0 .

C.2 Training procedure of unconditional diffusion models for time series imputation

In Section 3.2, we described the training procedure of the unconditional diffusion model, which
expects the training dataset does not contain missing values. However, the training dataset that we
use for time series imputation contains missing values. To handle missing values, we slightly modify
the training procedure. Given a training sample x0 with missing values, we treat the missing values
like observed values by filling dummy values to the missing indices of x0. We adopt zeros for the
dummy values and denote the training sample after filling zeros as x̂0. Since all indices of x̂0 contain
values, we can sample noisy targets

√
αtx̂0 + (1−αt)ε as with the training procedure in Section 3.2.

We consider denoising the noisy target for training, but we are only interested in estimating the
noises added to the observed indices since the dummy values contain no information about the data
distribution. To exclude the missing indices, we introduce an observation mask m ∈ {0, 1}K×L,
which takes value 1 for observed indices. Then, instead of Eq. (4), we use the following loss function
for training under the existence of missing values:

min
θ
L(θ) := min

θ
Ex0∼q(x0),ε∼N (0,I),t||(ε− εθ(

√
αtx̂0 + (1− αt)ε, t))�m||22. (11)

15

Figure 5: The self-supervised training procedure of CSDI for implementation of time series imputa-
tion. The colored areas in each rectangle represent the existence of values. The green and white areas
represent observed and missing values, respectively, and white areas are padded with zeros to fix the
shape of the inputs. Zero padding is also applied to all white areas. As with Figure 2, the observed
values are separated into red imputation targets xta

0 and blue conditional observations xco
0 . For the

extended targets xt̂a
0 , the area of value 0 shows dummy values.

D CSDI for implementation of time series imputation

In this section, we discuss the effect of adjusting the function εθ, described in Section 5. First, let
us consider the effect of the adjustment on sampling. The adjustment does not essentially affect the
model at sampling time, because all values of data are either conditional observations or imputation
targets as shown in Table 1 and the model can distinguish the type of each value through the mask
mco. Since the output shape is adjusted, we need to recover the shape by extracting the indices of the
imputation targets from the output, so that we substitute the outputs into Eq. (6).

Next, we focus on the effect of the adjustment on training. Unlike sampling, the model at training
time cannot distinguish imputation targets and missing values since we ignore missing values during
training as shown in Table 1. In order to handle the missing values, we need to modify the inputs to εθ.
Here, we use a similar approach to the training procedure with the unconditional model in Section C.2.
Namely, we treat the missing indices like a part of imputation targets. We illustrate the extended
training procedure in Figure 5. First, we set zeros to the missing indices as dummy values. We denote
the extended imputation targets as xt̂a

0 . Then, we sample noisy targets xt̂a
t =

√
αtx

t̂a
0 + (1− αt)εt̂a,

where εt̂a is masked noise and is given by εt̂a := (1−mco)� ε, as shown in Figure 5. We denoise
the noisy targets for training. We only estimate the noise for the original imputation targets, since
the dummy values contain no information about the data distribution. In other words, we train εθ by
solving the following optimization problem:

min
θ
L(θ) := min

θ
Ex0∼q(x0),ε∼N (0,I),t||(ε− εθ(x

t̂a
t , t | xco

0 ,m
co))�mta||22 (12)

where mta is a mask which corresponds to xta
0 and takes value 1 for the original imputation targets.

E Details of architectures and experiment settings

E.1 Details of implementation of CSDI

We describe the details of architectures and hyperparameters for the conditional diffusion model
described in Section 5. First, we provide the whole architecture of CSDI in Figure 6. Since the
architecture in Figure 6 is based on DiffWave [13], we mainly explain the difference from DiffWave.

On the top of the figure, the models take xco
0 and xta

t as inputs since εθ is the conditional denoising
function. For the diffusion step t, we use the following 128-dimensions embedding following previous
works [29, 13]:

tembedding(t) =
(

sin(100·4/63t), . . . , sin(1063·4/63t), cos(100·4/63t), . . . , cos(1063·4/63t)
)
. (13)

16

Figure 6: Architecture of εθ in CSDI for multivariate time series imputation.

Similarly, we utilize time embedding of s = {s1:L} as a side information. We use 128-dimensions
temporal embedding following previous studies [29, 30]:

sembedding(sl) =
(

sin(sl/τ
0/64), . . . , sin(sl/τ

63/64), cos(sl/τ
0/64), . . . , cos(sl/τ

63/64)
)

(14)

where τ = 10000. On the top right of the figure, we expand each side information and concatenate all
the side information. On the bottom right of the figure, we multiply the output by a mask (1−mco)
in order to mask the indices of the conditional observations of the output.

As for Transformer layers, we used 1-layer TransformerEncoder implemented in PyTorch [39],
which is composed of a multi-head attention layer, fully-connected layers and layer normalization.
Only for forecasting tasks, we adopted the "linear attention transformer" package [40] to improve
computational efficiency, since the forecasting datasets we used contained many features and long
sequences. The package implements an efficient attention mechanism [41], and we only used global
attention in the package.

E.2 Details of experiment settings in Section 6

In this section, we provide the details of the experiment settings in Section 6. When we evaluated
baseline methods with the original implementation in each section, we used their original hyperpa-
rameters and model size. Although we also ran experiments under the same model size as our model,
the performance did not improve in more than half of the cases and did not outperform our model in
all cases.

E.2.1 Experiment settings for imputation in Section 6.1

First, we explain additional information for the air quality dataset. The dataset is composed of air
quality data in Beijing from 2014/05/01 to 2015/04/30. The dataset contains artificial ground-truth,
whose missing patterns are created based on those in the next month.

Next, we describe data splits. For the healthcare dataset, we randomly divided the dataset into five
parts and used one of them as test data for each run. We also randomly split the remaining data into
train and validation data with a ratio of 7:1. For the air quality dataset, following [2], we used the
3rd, 6th, 9th and 12th months as test data. To avoid evaluating imputation for each missing value
multiple times, we separated the test data of each month every 36 consecutive time steps without
overlap. When the length of a monthly data was not divisible by 36, we allowed the last sequence to
overlap with the previous one and did not aggregate the result for the overlapping parts. For each run,
we selected a month as validation data and used the rest as training data. We note that we excluded
the 4th, 7th, 10th, and 1st months from missing pattern dataset for the historical strategy, because
these months were used for creating missing patterns of the artificial ground-truth.

17

On the healthcare dataset, due to the different scales of features, we evaluate the performance on
normalized data following previous studies [7]. For training of all tasks, we normalize each feature to
have zero mean and unit variance.

As for hyperparameters, we set the batch size as 16 and the number of epochs as 200. We used Adam
optimizer with learning rate 0.001 that is decayed to 0.0001 and 0.00001 at 75% and 90% of the total
epochs, respectively. As for the model, we set the number of residual layers as 4, residual channels as
64, and attention heads as 8. We followed DiffWave[13] for the number of channels and decided the
number of layers based on the validation loss and the parameter size. The number of the parameter in
the model is about 415,000.

We also provide hyperparameters for the diffusion model as follows. We set the number of the
diffusion step T = 50, the minimum noise level β1 = 0.0001, and the maximum noise level
βT = 0.5. Since recent studies[38, 42] reported that gentle decay of αt could improve the sample
quality, we adopted the following quadratic schedule for other noise levels:

βt =

(
T − t
T − 1

√
β1 +

t− 1

T − 1

√
βT

)2

. (15)

With regard to the baselines for probabilistic imputation, we used their original implementations for
GP-VAE and V-RIN. For Multitask GP, we utilized GPyTorch [43] for the implementation. We used
RBF kernel for the covariance between timepoints and low-rank IndexKernel with rank = 10 for
that between features.

Finally, we describe the baselines for deterministic imputation, which were used for comparison. 1)
BRITS [7]: the method utilizes a bi-directional recurrent neural network to handle multiple correlated
missing values. 2) V-RIN [32]: the method utilizes the uncertainty learned with VAE to improve
recurrent imputation. 3) GLIMA [21]: the method combines recurrent imputations with an attention
mechanism to capture cross-time and cross-feature dependencies and shows the state-of-the-art
performance. 4) RDIS [20]: the method applies random drops to given training data for self-training.
We used the original implementation for BRITS and V-RIN. For RDIS, we set the number of models
as 8, hidden units as 108, drop rate as 30%, threshold as 0.1, update epoch as 200, and total epochs as
1000.

E.2.2 Experiment settings for interpolation in Section 6.2

First, we explain how we process the dataset. We processed the healthcare dataset as irregularly
sampled time series. Following previous studies [22, 35], we rounded observation times to the nearest
minute. Then, there are 48× 60 possible measurement times per time series, and the lengths of time
series samples can be different each other.

We used almost the same experiment settings as those for imputation in Section E.2.1. Since the
length of each irregularly sampled time series is different, we applied zero padding to each time series
in order to fix the length for each batch. The padding does not affect the result since the attention
mechanisms in the implementation of CSDI can deal with the padding by using padding masks.

We describe the baselines which were used for comparison. We used the original implementation.
1) Latent ODE [35]: the method consists of an ODE-RNN model as the encoder and a neural ODE
model as the decoder. 2) mTANs [22]: the method utilized an attention mechanism and showed
state-of-the-art results for the interpolation of irregularly sampled time series.

Table 6: Description of datasets for time series forecasting.

feature K total
time step

history
steps L1

prediction
steps L2

test
sample epochs

solar 137 10392 168 24 7 50
electricity 370 5833 168 24 7 100
traffic 963 7009 168 24 7 200
taxi 1214 1488 48 24 56 300
wiki 2000 792 90 30 5 300

18

E.2.3 Datasets and Experiment settings for forecasting in Section 6.3

First we describe the datasets we used. We used five open datasets that are commonly used for
evaluating probabilistic time series forecasting. The datasets were preprocessed in Salinas et al. [34]
and provided in GluonTS1[44]:

• solar [45]: hourly solar power production records of 137 stations in Alabama State.
• electricity2: hourly electricity consumption of 370 customers.
• traffic3: hourly occupancy rate of 963 San Fancisco freeway car lanes.
• taxi4: half hourly traffic time series of New York taxi rides taken at 1214 locations in the

months of January 2015 for training and January 2016 for test.
• wiki: daily page views of 2000 Wikipedia pages.

We summarize the characteristics of each dataset in Table 6. The task for these datasets is to predict
the future L2 steps by exploiting the latest L1 steps where L1 and L2 depend on datasets as shown
in Table 6. We set L1 and L2 referring to previous studies [37]. For training, we randomly selected
L1 + L2 consecutive time steps as one time series and set the last L2 steps as imputation targets.
We followed the train/test split in previous studies. We used the last five samples of training data as
validation data.

As for experiment settings, since we basically followed the setting for time series imputation in
Section E.2.1, we only describe the difference from it. We ran each experiment three times with
different random seeds. We set batch size as 8 because of longer sequence length, and utilized an
efficient Transformer as mentioned in Section E.1.

Since the number of features K is large, we adopted subset sampling of features for training. For
each time series in a training batch, we randomly chose a subset of features and only used the subset
for the batch. The attention mechanism allows the model to take varying length inputs. We set the
subset size as 64. Due to the subset sampling, we need large epochs when the number of features K
is large. Therefore, we set training epochs based on the number of features and the validation loss.
We provide the epochs in Table 6.

Finally, we describe the baselines which were used for comparison. 1) GP-copula [34]: the method
combines a RNN-based model with a Gaussian copula process to model time-varying correlations. 2)
Transformer MAF [36]: the method uses Transformer to learn temporal dynamics and a conditioned
normalizing flow to capture feature dependencies. 3) TLAE [37]: the method combines a RNN-based
model with autoencoders to learn latent temporal patterns. 4) TimeGrad [25]: the method has shown
the state-of-the-art results for probabilistic forecasting by combining a RNN-based model with
diffusion models.

E.3 Computations of CRPS

We describe the definition and computation of the CRPS metric.

The continuous ranked probability score (CRPS) [33] measures the compatibility of an estimated
probability distribution F with an observation x, and can be defined as the integral of the quantile
loss Λα(q, z) := (α− 1lz<q)(z − q) for all quantile levels α ∈ [0, 1]:

CRPS(F−1, x) =

∫ 1

0

2Λα(F−1(α), x)dα (16)

where 1l is the indicator function. We generated 100 samples to approximate the distribution F over
each missing value. We computed quantile losses for discretized quantile levels with 0.05 ticks.
Namely, we approximated CRPS with

CRPS(F−1, x) '
19∑
i=1

2Λi∗0.05(F−1(i ∗ 0.05), x)/19. (17)

1https://github.com/awslabs/gluon-ts
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://archive.ics.uci.edu/ml/datasets/PEMS-SF
4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data

19

Then, we evaluated the following normalized average of CRPS for all features and time steps:∑
k,l CRPS(F−1k,l , xk,l)∑

k,l |xk,l|
(18)

where k and l indicates features and time steps of imputation targets, respectively.

For probabilistic forecasting, we evaluated CRPS-sum. CRPS-sum is CRPS for the distribution F of
the sum of all K features and is computed by the following equation:∑

l CRPS(F−1,
∑
k xk,l)∑

k,l |xk,l|
(19)

where
∑
k xk,l is the sum of forecasting targets for all features at time point l.

F Additional results and experiments

Table 7: Comparing the two dimension attention mechanism of various architectures. For ablations,
we report the mean and the standard error for three trials.

healthcare (10% missing) air quality
MAE CRPS MAE CRPS

no-temporal 0.439(0.004) 0.475(0.001) 26.63(0.23) 0.292(0.002)
no-feature 0.352(0.001) 0.386(0.002) 14.44(0.11) 0.162(0.001)
flatten 0.383(0.002) 0.418(0.002) 12.26(0.09) 0.139(0.001)
Bi-RNN 0.272(0.001) 0.301(0.001) 12.56(0.26) 0.142(0.003)
dilated conv 0.279(0.002) 0.305(0.002) 11.67(0.11) 0.130(0.001)
2D attention (proposed) 0.217(0.001) 0.238(0.001) 9.60(0.04) 0.108(0.001)

F.1 Effectiveness of two dimensional attention mechanism

In this paper, we utilized a two dimensional attention mechanism to learn temporal and feature
dependencies. To show the effectiveness of the attention mechanism, we demonstrate an ablation
study. We replace the attention mechanism with the following architecture baselines and compare the
performance:

• no temporal: remove temporal attention layers

• no feature: remove feature attention layers

• flatten: flatten 2D tensor (K features x L length) to 1D, and input the 1D vector to trans-
former layers

• Bi-RNN: replace the attention mechanism with Bi-directional RNN which is a popular
architecture for multivariate time series imputation

• dilated conv: replace temporal and feature attention layers with 1D dilated convolution
layers, respectively. The dilated convolution was used in previous studies for diffusion
models[13, 25]

We set hyperparameters of each architecture so that the number of parameters is almost the same
as our attention mechanism. We show the result in Table 7. Our attention mechanism outperforms
all of the other architectures. The comparison with “no temporal” and “no feature” shows that
both temporal and feature correlations are important for accurate imputation. The comparison with
“flatten”, “Bi-RNN”, and “dilated conv” shows that our attention mechanism is effective to learn
temporal and feature dependency compared with existing methods. In summary, the result of the
ablation indicates the proposed attention mechanism plays a key role in improving the imputation
performance by a large margin.

20

Table 8: Comparison of the negative log likelihood (NLL) and CRPS for various schedules. We
report the mean for three trials.

healthcare (10% missing) air quality
method schedule NLL CRPS NLL CRPS

GP-VAE − < 1.22 0.574 < 1.09 0.397
proposed quad. (in paper) < 1.63 0.238 < 0.97 0.108
proposed linear < 29.70 0.240 < 18.55 0.110
proposed quad. (large min. noise) < 0.07 0.239 < −0.70 0.109

F.2 Comparison of negative log likelihood for probabilistic imputation

The negative log likelihood (NLL) is a popular metric for evaluating probabilistic methods and ELBO
is often utilized to estimate NLL. A reason why we mainly focused on other metrics is that ELBO is
sometimes far from NLL and uncorrelated with the quality of generated samples. Specifically, in the
proposed method, the choice of the noise schedule highly affects the ELBO while it has little effect
on the sample quality.

To demonstrate this, we performed an experiment. We chose the following three noise schedules for
CSDI and calculated NLL and CRPS for each schedule.

• quadratic (used in the paper): quadratic spaced schedule between βmin = 0.0001 and
βmax = 0.5

• linear: linear spaced schedule with the same βmin and βmax as those in the paper
• quadratic (large minimum noise): quadratic schedule with large minimum noise level
βmin = 0.001, which makes the model ignore small noise

We also calculated the metrics for GP-VAE. The result is shown in Table 8. While CRPS by the
proposed method is almost independent from the choice of schedules, NLL significantly depends on
the schedule. This phenomenon happens because time series data is generally noisy and it is difficult
to denoise small noise during imputation. Estimated scores by the model could be inaccurate when
inputs to the model (i.e. imputation targets) only contain small noise. These inaccurate scores could
make the estimated ELBO loose, whereas small noise does not affect the sample quality. When the
minimum noise level βmin is large, since the model does not denoise small noise in sampling steps,
ELBO by the proposed method is tightly estimated and smaller than that by GP-VAE. Therefore,
ELBO is not suitable for evaluating the sample quality and we adopted other metrics such as CRPS
and MAE.

F.3 Experimental results for other metrics in Section 6

We show the experimental results in Section 6 for different metrics in Table 9 to 12. Table 9 evaluates
RMSE for deterministic imputation methods. We added SSGAN [19] as an additional baseline, which
has shown the state-of-the-art performance for RMSE in the healthcare dataset. We can confirm that
CSDI outperforms all baselines for RMSE. The advantage of CSDI is particularly large when the
missing ratio is low. This result is consistent with that in Section 6.1.

Table 10 evaluates MAE and RMSE for interpolation methods. The result is consistent with Table 4.
Table 11 and 12 report CRPS and MSE for probabilistic forecasting methods, respectively. We
exclude TimeGrad [25] from the baselines, as they did not report these metrics. We can see that CSDI
is competitive with baselines for these metrics as with CRPS-sum.

F.4 Effect of the number of generated samples

For the experiments in Section 6, we generated 100 samples to estimate the distribution of imputation.
We demonstrate the relationship between the number of samples and the performance in Figure 7.
We can see that five or ten samples are enough to estimate good distributions and outperform the
baselines. Increasing the number of samples further improves the performance, and the improvement
becomes marginal over 50 samples.

21

Table 9: Comparing deterministic imputation methods with CSDI for RMSE. The results correspond
to Table 3. We report the mean and the standard error for five trials. The asterisk means the values
are cited from the original paper.

healthcare air quality

10% missing 50% missing 90% missing

V-RIN [32] 0.628(0.025) 0.693(0.022) 0.928(0.013) 40.11(1.14)
BRITS [7] 0.619(0.022) 0.693(0.023) 0.836(0.015) 24.47(0.73)
RDIS [20] 0.633(0.021) 0.741(0.018) 0.934(0.013) 37.49(0.28)
SSGAN [19] (*) 0.598 0.762 0.818 −
unconditional 0.621(0.020) 0.734(0.024) 0.940(0.018) 22.58(0.23)
CSDI (proposed) 0.498(0.020) 0.614(0.017) 0.803(0.012) 19.30(0.13)

Table 10: Comparing the state-of-the-art interpolation method with CSDI for MAE and RMSE. The
results correspond to Table 4. We report the mean and the standard error for five trials.

10% missing 50% missing 90% missing

MAE
Latent ODE [35] 0.522(0.002) 0.506(0.003) 0.578(0.009)
mTANs [22] 0.389(0.003) 0.422(0.003) 0.533(0.005)
CSDI (proposed) 0.362(0.001) 0.394(0.002) 0.518(0.003)

RMSE
Latent ODE [35] 0.799(0.012) 0.783(0.012) 0.865(0.017)
mTANs [22] 0.749(0.037) 0.721(0.014) 0.836(0.018)
CSDI (proposed) 0.722(0.043) 0.700(0.013) 0.839(0.009)

Table 11: Comparing probabilistic forecasting methods with CSDI for CRPS. The results correspond
to Table 5. We report the mean and the standard error for three trials. The results for baseline methods
are cited from their paper. ’TransMAF’ is the abbreviation for ’Transformer MAF’.

solar electricity traffic taxi wiki

GP-copula [34] 0.371(0.022) 0.056(0.002) 0.133(0.001) 0.360(0.201) 0.236(0.000)
TransMAF [36] 0.368(0.001) 0.052(0.000) 0.134(0.001) 0.377(0.002) 0.274(0.007)
TLAE [37] 0.335(0.025) 0.058(0.002) 0.097(0.001) 0.369(0.006) 0.298(0.001)
CSDI (proposed) 0.338(0.012) 0.041(0.000) 0.073(0.000) 0.271(0.001) 0.207(0.002)

Table 12: Comparing probabilistic forecasting methods with CSDI for MSE. The results correspond
to Table 5. We report the mean and the standard error for three trials. The results for baseline methods
are cited from their paper. ’TransMAF’ is the abbreviation for ’Transformer MAF’. ’TransMAF’ did
not report the standard error.

solar electricity traffic taxi wiki

GP-copula [34] 9.8e2(5.2e1) 2.4e5(5.5e4) 6.9e-4(2.2e-5) 3.1e1(1.4e0) 4.0e7(1.6e9)
TransMAF [36] 9.3e2 2.0e5 5.0e-4 4.5e1 3.1e7
TLAE [37] 6.8e2(7.5e1) 2.0e5(9.2e4) 4.0e-4(2.9e-6) 2.6e1(8.1e-1) 3.8e7(4.2e4)
CSDI (proposed) 9.0e2(6.1e1) 1.1e5(2.8e3) 3.5e-4(7.0e-7) 1.7e1(6.8e-2) 3.5e7(4.4e4)

Table 13: The effect of the target choice strategy for the air quality dataset. We report the mean and
the standard error for five trials.

CRPS MAE

random 0.108(0.001) 9.58(0.08)
historical 0.113(0.001) 10.12(0.05)
mix 0.108(0.001) 9.60(0.04)

22

Figure 7: The effect of the number of generated samples. The first row shows the effect on proba-
bilistic imputation in Table 2 and the second row shows the effect on deterministic imputation in
Table 3.

F.5 Effect of target choice strategy

In the experiment for the air quality dataset in Section 6.1, we adopted the mix strategy for the target
choice. Here, we provide the result for other strategies and show the effect of the target choice
strategy on imputation quality. In Table 13, the performances of the mix strategy and the random
strategy are almost the same, and the performance of the historical strategy is slightly worse than
that of the other strategies. This means that the historical strategy is not effective for the air quality
dataset even though the dataset contains structured missing patterns. This is due to the difference
of missing patterns between training dataset and test dataset. Note that all strategies outperform the
baselines in Table 2 and Table 3.

G Additional examples of probabilistic imputation

In this section, we illustrate various imputation examples to show the characteristic of imputed
samples. We pick a multivariate time series from the results of each experiment in Section 6.1 and
show imputation results for all features of each time series in Figure 8 to 11. We compare CSDI with
GP-VAE in Figure 8 to 11. Note that the scales of the y axis depend on the features. For the healthcare
dataset with 90% missing ratio in Figure 10, while GP-VAE fails to learn the distribution, CSDI gives
reasonable probabilistic imputation for most of the features. For the air quality dataset in Figure 11,
CSDI learns the dependency between features and provides more accurate imputation than GP-VAE.
In Figure 12 to 15, we compare CSDI with the unconditional diffusion model. In all figures, CSDI
tends to provide tighter uncertainty than the unconditional diffusion model. We hypothesize that it
is due to the approximation discussed in Section 3.3. Since the unconditional model approximates
the conditional distribution by using noisy observed values, the estimated imputation become less
confident than that with the conditional model.

H Potential negative societal impacts

Since score-based diffusion models are generative models, our proposed model has negative impacts
as well as other generative models. For example, the model can potentially memorize private
information and be used to generate fake data.

23

Figure 8: Comparison of imputation between GP-VAE and CSDI for the healthcare dataset (10%
missing). The result is for a time series sample with all 35 features. The red crosses show observed
values and the blue circles show ground-truth imputation targets. Green and gray colors correspond
to CSDI and GP-VAE, respectively. For each method, median values of imputations are shown as the
line and 5% and 95% quantiles are shown as the shade.

24

Figure 9: Comparison of imputation between GP-VAE and CSDI for the healthcare dataset (50%
missing). The result is for a time series sample with all 35 features. The red crosses show observed
values and the blue circles show ground-truth imputation targets. Green and gray colors correspond
to CSDIand GP-VAE, respectively. For each method, median values of imputations are shown as the
line and 5% and 95% quantiles are shown as the shade.

25

Figure 10: Comparison of imputation between GP-VAE and CSDI for the healthcare dataset (90%
missing). The result is for a time series sample with all 35 features. The red crosses show observed
values and the blue circles show ground-truth imputation targets. Green and gray colors correspond
to CSDI and GP-VAE, respectively. For each method, median values of imputations are shown as the
line and 5% and 95% quantiles are shown as the shade.

26

Figure 11: Comparison of imputation between GP-VAE and CSDI for the air quality dataset. The
result is for a time series sample with all 36 features. The red crosses show observed values and the
blue circles show ground-truth imputation targets. Green and gray colors correspond to CSDI and
GP-VAE, respectively. For each method, median values of imputations are shown as the line and 5%
and 95% quantiles are shown as the shade.

27

Figure 12: Comparison of imputation between the unconditional diffusion model and CSDI for the
healthcare dataset (10% missing). The result is for a time series sample with all 35 features. The red
crosses show observed values and the blue circles show ground-truth imputation targets. Green and
gray colors correspond to CSDI and the unconditional model, respectively. For each method, median
values of imputations are shown as the line and 5% and 95% quantiles are shown as the shade.

28

Figure 13: Comparison of imputation between the unconditional diffusion model and CSDI for the
healthcare dataset (50% missing). The result is for a time series sample with all 35 features. The red
crosses show observed values and the blue circles show ground-truth imputation targets. Green and
gray colors correspond to CSDIand the unconditional model, respectively. For each method, median
values of imputations are shown as the line and 5% and 95% quantiles are shown as the shade.

29

Figure 14: Comparison of imputation between the unconditional diffusion model and CSDI for the
healthcare dataset (90% missing). The result is for a time series sample with all 35 features. The red
crosses show observed values and the blue circles show ground-truth imputation targets. Green and
gray colors correspond to CSDI and the unconditional model, respectively. For each method, median
values of imputations are shown as the line and 5% and 95% quantiles are shown as the shade.

30

Figure 15: Comparison of imputation between the unconditional diffusion model and CSDI for the
air quality dataset. The result is for a time series sample with all 36 features. The red crosses show
observed values and the blue circles show ground-truth imputation targets. Green and gray colors
correspond to CSDI and the unconditional model, respectively. For each method, median values of
imputations are shown as the line and 5% and 95% quantiles are shown as the shade.

31

