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ABSTRACT

Federated clustering is an unsupervised learning problem that arises in a number
of practical applications, including personalized recommender and healthcare
systems. With the adoption of recent laws ensuring the “right to be forgotten”, the
problem of machine unlearning for federated clustering methods has become of
significant importance. This work proposes the first known unlearning mechanism
for federated clustering with privacy criteria that support simple, provable, and
efficient data removal at the client and server level. The gist of our approach is
to combine special initialization procedures with quantization methods that allow
for secure aggregation of estimated local cluster counts at the server unit. As part
of our platform, we introduce secure compressed multiset aggregation (SCMA),
which is of independent interest for secure sparse model aggregation. In order
to simultaneously facilitate low communication complexity and secret sharing
protocols, we integrate Reed-Solomon encoding with special evaluation points
into the new SCMA pipeline and derive bounds on the time and communication
complexity of different components of the scheme. Compared to completely
retraining K-means++ locally and globally for each removal request, we obtain
an average speed-up of roughly 84x across seven datasets, two of which contain
biological and medical information that is subject to frequent unlearning requests.

1 INTRODUCTION

The availability of large volumes of user training data has contributed to the success of modern
machine learning models. For example, most state-of-the-art computer vision models are trained on
large-scale image datasets including Flickr (Thomee et al., 2016) and ImageNet (Deng et al., 2009).
Organizations and repositories that collect and store user data must comply with privacy regulations,
such as the recent European Union General Data Protection Regulation (GDPR), the California
Consumer Privacy Act (CCPA), and the Canadian Consumer Privacy Protection Act (CPPA), all of
which guarantee the right of users to remove their data from the datasets (Right to be Forgotten).
Data removal requests frequently arise in practice, especially for sensitive datasets pertaining to
medical records (numerous machine learning models in computational biology are trained using UK
Biobank (Sudlow et al., 2015) which hosts a collection of genetic and medical records of roughly half
a million patients (Ginart et al., 2019)). Removing user data from a dataset is insufficient to ensure
sufficient privacy, since training data can often be reconstructed from trained models (Fredrikson et al.,
2015; Veale et al., 2018). This motivates the study of machine unlearning (Cao & Yang, 2015) which
aims to efficiently eliminate the influence of certain data points on a model. Naively, one can retrain
the model from scratch to ensure complete removal, yet retraining comes at a high computational
cost and is thus not practical when accommodating frequent removal requests. To avoid complete
retraining, specialized approaches have to be developed for each unlearning application (Ginart et al.,
2019; Guo et al., 2020; Bourtoule et al., 2021; Sekhari et al., 2021).

At the same time, federated learning (FL) has emerged as a promising approach to enable distributed
training over a large number of users while protecting their privacy (McMahan et al., 2017; Chen et al.,
2020; Kairouz et al., 2021; Wang et al., 2021; Bonawitz et al., 2021). The key idea of FL is to keep
user data on their devices and train global models by aggregating local models in a communication-
efficient and secure manner. Due to model inversion attacks (Zhu et al., 2019; Geiping et al., 2020),
secure local model aggregation at the server is a critical consideration in FL, as it guarantees that
the server cannot get specific information about client data based on their local models (Bonawitz
et al., 2017; Bell et al., 2020; So et al., 2022; Chen et al., 2022). Since data privacy is the main goal
in FL, it should be natural for a FL framework to allow for frequent data removal of a subset of
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Figure 1: Overview of our proposed federated clustering scheme. K-means++ initialization and
quantization are performed at each client in parallel. The SCMA procedure ensures that only the
server knows the aggregated statistics of clients, without revealing who contributed the points in each
individual cluster. The server generates points from the quantization bins with prescribed weights
and performs full K-means++ clustering to infer the global model.

client data in a cross-silo setting (e.g., when several patients request their data to be removed in the
hospital database), or the entire local dataset for clients in a cross-device setting (e.g., when users
request apps not to track their data on their phones). This leads to the largely unstudied problem
termed federated unlearning (Liu et al., 2021; Wu et al., 2022; Wang et al., 2022). However, existing
federated unlearning methods do not guarantee exact or approximate unlearning (Ginart et al., 2019;
Guo et al., 2020), they do not come with theoretical performance guarantees after model updates, and
often, they are vulnerable to adversarial attacks.

Our contributions. We describe the first unlearning framework for a newly developed federated
clustering approach (Fig. 1) which addresses the following problems:

• Unlearning of clusters at the client level via an intuitive application of K-means++ initialization
without subsequent Lloyd’s iterations. The advantage of using K-means++ is that the models do
not need to be updated unless removed points were selected as initial centroids. At the server level,
full K-means++ can be performed to improve the overall federated clustering performance.

• Enabling secure aggregation of sparse vectors via a novel approach termed secure compressed
multiset aggregation (SCMA). The gist of SCMA is to encode quantized local data into information
pertaining to the identifiers of quantization bins and their occupancies using specialized Reed-
Solomon code evaluations, and followed by secure model aggregations.

• Ensuring privacy-accuracy-efficiency trade-offs through the introduction of a privacy criterion
suitable for federated clustering and unlearning with simple communication protocols. In this
context, we derive theoretical performance guarantees for the computational and communication
complexity of model training and unlearning procedures.

• Compiling a collection of datasets for benchmarking unlearning of federated clusters, including
two new datasets which contain anonymized cancer genomics and microbiome information that is
subject to frequent unlearning requests. Experimental results reveal that our one-shot algorithm
offers an average speed-up of roughly 84x compared to complete retraining across seven datasets.

2 RELATED WORKS

Machine unlearning. For centralized machine unlearning problems, two types of unlearning
requirements were proposed in previous works: exact unlearning and approximate unlearning. For
exact unlearning, the unlearned model is required to perform identically as a completely retrained
model. To achieve this, Cao & Yang (2015) introduced distributed learners, Bourtoule et al. (2021)
proposed sharding-based methods, Ginart et al. (2019) used quantization to eliminate the effect of
removed data in clustering problems, and Chen et al. (2021) applied sharding-based methods to
Graph Neural Networks. For approximate unlearning, the “differences” in behavior between the
unlearned model and the completely retrained model should be appropriately bounded, similarly
to what is done in the context of differential privacy. Following this latter direction, Guo et al.
(2020) introduced the inverse Newton update for linear models, Sekhari et al. (2021) studied the
generalization performance of approximately unlearned models, while Chien et al. (2022) extended
the analysis to linearized Graph Neural Networks. A limited number of recent works also investigated
data removal in the FL settings: Liu et al. (2021) proposed to use fewer iterations during retraining
for federated unlearning, Wu et al. (2022) introduced Knowledge Distillation into the unlearning
procedure to eliminate the effect of data points requested for removal, and Wang et al. (2022)
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considered removing all data from one particular class via inspection of the internal influence of
each channel in Convolutional Neural Networks. These federated unlearning methods are (mostly)
empirical and do not come with theoretical guarantees for model performance after removal and/or
for the unlearning efficiency. In contrast, our proposed federated clustering framework not only
enables efficient data removal in practice, but also provides theoretical guarantees for the unlearned
model performance and for the expected time complexity of the unlearning procedure.

Federated clustering. The idea of federated clustering is to perform clustering using data that resides
at different edge devices. It is closely related to clustered FL (Sattler et al., 2020), whose goal is
to learn several global models simultaneously, based on the cluster structure of the dataset, as well
as personalization according to the cluster assignments of client data in FL (Mansour et al., 2020).
One difference between federated clustering and distributed clustering (Guha et al., 2003; Ailon
et al., 2009) is the assumption of data heterogeneity across different clients. Recent works (Ghosh
et al., 2020; Dennis et al., 2021; Chung et al., 2022) exploit the non-i.i.d nature of client data to
improve the performance of some learners. Another difference pertains to data privacy. Most previous
methods were centered around the idea of sending exact (Dennis et al., 2021) or quantized client
(local) centroids (Ginart et al., 2019) to the server, which may not be considered private as it leaks
the data statistics or cluster information of all the clients. To avoid sending exact centroids, Li et al.
(2022) proposes sending distances between data points and centroids to the server without revealing
the membership of data points to any of the parties involved. Note that there is currently no formal
definition of computational or information-theoretic secrecy/privacy for federated clustering problems,
making it hard to compare methods addressing different aspects of FL. Our method introduces a
simple-to-unlearn clustering process and new privacy mechanism that is intuitively appealing as it
involves communicating obfuscated point counts of the clients to the server.

3 PRELIMINARIES

We start with a formal definition of the centralized K-means problem. Given a set of n points X
arranged into a matrix X ∈ Rn×d, and the number of clusters K, the K-means problem asks for
finding a set of points C = {c1, ..., cK}, ck ∈ Rd,∀k ∈ [K] that minimizes the objective

ϕc(X;C) = ∥X − C∥2F , (1)

where || · ||F denotes the Frobenius norm of a matrix, ∥ · ∥ denotes the ℓ2 norm of a vector, and
C ∈ Rn×d records the closest centroid in C to each data point xi (i.e., ci = argmincj∈C ∥xi − cj∥).
Without loss of generality, we make the assumption that the optimal solution is unique in order to
facilitate simpler analysis and discussion, and denote the optimum by C∗ = {c∗1, ..., c∗K}. The set of
centroids C∗ induces an optimal partition

⋃K
k=1 C∗k overX , where ∀k ∈ [K], C∗k = {xi : ||xi−c∗k|| ≤

||xi − c∗j || ∀i ∈ [n], j ∈ [K]}. We use ϕ∗
c(X) to denote the optimal value of the objective function

for the centralized K-means problem. With a slight abuse of notation, we also use ϕ∗
c(C∗k) to denote

the objective value computed over the optimal cluster C∗k . A detailed description of a commonly used
approach for solving the K-means problem, K-means++, is available in Appendix A.

In federated clustering, the dataset X is no longer available at the centralized server. Instead, data is
stored on L edge devices (clients) and the goal of federated clustering is to learn a global set of K
centroids Cs over the union of client data. For simplicity, we assume that there exists no identical
data points across clients, and that the overall dataset X is the union of the datasets X (l) arranged as
X(l) ∈ Rn(l)×d on devices l,∀l ∈ [L]. To make sure the global model can be learned securely, we
allow all clients to communicate with each other as well as the server only to perform secure model
aggregation (Bonawitz et al., 2017; Bell et al., 2020; So et al., 2022). The server will receive the
aggregated cluster statistics of all clients, while each client will only know the cluster assignment
of its own data X (l) and not that of the global server clusters. In this case, the federated K-means
problem asks for finding K global centroids Cs that minimize the objective

ϕf (X;Cs) =

L∑
l=1

∥X(l) − C(l)
s ∥2F , (2)

where C
(l)
s ∈ Rn(l)×d records the centroids of the global clusters that data points {x(l)

i }n
(l)

i=1 on client
l belong to. A formal definition of global clusters is given in Definition 5.2. Here, ϕf stands for the
objective of federated clustering, not to be confused with the centralized ϕc from Eq. (1).
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Exact unlearning. For clustering problems, the exact unlearning criterion may be formulated as
follows. Let X be a given dataset and A a (randomized) clustering algorithm that trains on X and
outputs a set of centroids C ∈M, whereM is the chosen space of models. Let U be an unlearning
algorithm that is applied to A(X ) to remove the effects of one data point x ∈ X . Then U is an exact
unlearning algorithm if ∀C ∈ M, x ∈ X ,P(U(A(X ),X , x) = C) = P(A(X\x) = C). To avoid
confusion, in certain cases, this criterion is referred to as probabilistic (model) equivalence.

Privacy-accuracy-efficiency trilemma. How to trade-off data privacy, model performance, commu-
nication and computational efficiency is a long-standing problem in distributed learning (Acharya
& Sun, 2019; Chen et al., 2020; Gandikota et al., 2021) that also carries over to FL and federated
clustering. Solutions that simultaneously address all these challenges in the latter context are still
lacking. For example, Dennis et al. (2021) proposed a one-shot algorithm that takes model per-
formance and communication efficiency into consideration by sending the exact centroids of each
client to the server in a nonanonymous fashion. This approach may not be desirable under stringent
privacy constraints as the server can gain information about individual client data. On the other
hand, privacy considerations were addressed in Li et al. (2022) by performing K-means Lloyd’s
iterations anonymously via distribution of computations across different clients. Since the method
relies on obfuscating pairwise distances for each client, it incurs computational overheads to hide
the identity of contributing clients at the server and communication overheads due to interactive
computations. None of the above methods is suitable for unlearning applications. To simultaneously
enable unlearning and address the trilemma in the unlearning context, our privacy criterion involves
transmitting the number of client data points within local client clusters in such a manner that the
server cannot learn the data statistics of any specific client, but only the overall statistics of the union
of client datasets. In this case, computations are limited and the clients on their end can perform
efficient unlearning, unlike the case when presented with data point/centroid distances.

Random and adversarial removal. Most unlearning literature focuses on the case when all data
points are equally likely to be removed, a setting known as random removal. However, adversarial
data removal requests may arise when users are malicious in unlearning certain points that are critical
for model training (i.e., boundary points in optimal clusters). We refer to such a removal request as
adversarial removal. In Section 4, we provide theoretical analysis for both types of removal.

4 MACHINE UNLEARNING VIA SPECIALIZED SEEDING

We exhibit next a useful connection between exact unlearning and the K-means++ initialization
procedure. Throughout this section we consider the problem in the centralized setting so as to set the
stage for the discussion of the federated clustering setting in Section 5. The first step is to introduce
the unlearning mechanism based on the initial centroid set, as described in Alg. 1.

4.1 PERFORMANCE ANALYSIS

Since the centroids chosen through K-means++ initialization are true data points, the results returned
by Alg. 1 are guaranteed to contain no information about the data points that have been removed. To
verify that Alg. 1 is an exact unlearning method, we also need to check that C′ is probabilistically
equivalent to the models generated by rerunning the K-means++ initialization process on X ′, the set
of point remaining after removal. This observation is best explained through an example, while a
formal proof is provided in Appendix C.

Suppose that one would like to unlearn the data point xi from the clustering model represented
by an initial centroid set C. For the first chosen centroid c1 in C, there are only two possibilities:
c1 = xi and c1 ̸= xi. In the first case, we will have to re-run the initialization over X ′, which is
retraining the model. In the second case, since we know c1 ̸= xi, the probability of choosing c1
from X as the first centroid becomes the conditional probability P(choose c1 from X as the first
centroid|c1 ̸= xi) =

1
n−1 = P(choose c1 from X ′ as the first centroid), where n is the number of

data points in X . Therefore, the first centroid c′1 returned by Alg. 1 can always be viewed as the first
centroid obtained by re-running the initialization over X ′. This can be generalized for cj ∀j ∈ [K]
and arbitraryXR. Since Alg. 1 is an exact unlearning method, we can have the performance guarantees
in Lemma 4.1 based on Theorem 1.1 of Vassilvitskii & Arthur (2006).
Lemma 4.1. For any set of data points X and removal set XR, assuming that the remaining dataset
is X ′ and the centroid set returned by Alg. 1 is C′, we have E(ϕc(X

′;C′)) ≤ 8(lnK + 2)ϕ∗
c(X

′).
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4.2 COMPLEXITY ANALYSIS

Algorithm 1 Unlearning via K-means++ Init.
1: input: Dataset X , centroid set C obtained

by K-means++ initialization on X , re-
moval request set XR = {xr1 , . . . , xrR}.

2: if cj /∈ XR ∀cj ∈ C then
3: C′ ← C
4: else
5: i← (argminj cj ∈ XR)− 1
6: if i = 0 then
7: C′ ← ∅, X ′ ← X\XR.
8: else
9: C′ ← {c1, . . . , ci}, X ′ ← X\XR.

10: end if
11: for j = i+ 1, . . . ,K do
12: Sample x from X ′ with prob

d2(x,C′)
ϕc(X′;C′) .

13: C′ ← C′ ∪ {x}.
14: end for
15: end if
16: return C′

We show next that Alg. 1 supports removing R
random points in expected time O(RK2d) and R
adversarial points in expected time O(RK3ϵ1ϵ2d).
In contrast, the corresponding time complexity of
retraining is O(nKRd). To analyze the removal
time complexity of Alg. 1, we first state two as-
sumptions pertaining to optimal cluster sizes and
outliers.
Assumption 4.2. Let ϵ1 = n

Ksmin
be a constant

denoting what we refer to as cluster size imbalance,
where smin equals the size of the smallest cluster
in the optimal clustering; when ϵ1 = 1, all clusters
are of the same size n

K .
Assumption 4.3. Assume that ϵ2 ≥ 1 is a fixed
constant. An outlier xi in X satisfies

∥xi − c∗j∥ ≤ ∥xi − c∗k∥,∀k ∈ [K]

and ∥xi − c∗j∥ >

√
ϵ2ϕ∗

c(C∗j )
|C∗j |

. (3)

The assumption is not overly restrictive, as out-
liers are commonly defined as points that are well-

separated from all “regular” clusters: the distance between an outlier and its closest centroid is
larger than a scaled proxy for the empirical standard deviation of the average distance between
the cluster points and that centroid (Chien et al., 2018; Dennis et al., 2021). There also exist many
different approaches for removing outliers for clustering purposes (Chawla & Gionis, 2013; Gan &
Ng, 2017), which effectively reduce the probability of outliers to negligible values.

Assumptions 4.2 and 4.3 can be used to derive an expression for the probability of xi ∈ C when xi

needs to be unlearned, which equals the probability of retraining with X ′.
Lemma 4.4. Assume that the number of data points in X is n and the probability of the dataset
containing at least one outlier is upper bounded by O (1/n). Let C be the centroid set obtained by
running K-means++ on X . For unlearning a data point xi ∈ X we have that for random removal:
P(xi ∈ C) < O (K/n); for adversarial removal: P(xi ∈ C) < O

(
K2ϵ1ϵ2/n

)
.

Figure 2: Example of the SCMA procedure
for K = 2, L = 2, Bd = 4, n = 12, p = 13.

Based on Alg. 1, we need to reinitialize the centroids
only when the point that requests removal lie in the
original centroid set. We need O(K) time to check
if this is the case, and we need extra O(nd) time
to sample every new centroid due to the distance
computation. Therefore, we arrive at an estimate of
the expected removal time as shown in Theorem 4.5,
which is independent of the problem size n.
Theorem 4.5. Assume that the number of data points
in X is n and the probability of the dataset contain-
ing at least one outlier is upper bounded by O (1/n).
Algorithm 1 supports removing R points with time
O(RK2d) in expectation for random removals, and
with time O(RK3ϵ1ϵ2d) in expectation for adversar-
ial removals. The time complexity of complete retraining equals O(nKRd).

5 UNLEARNING FEDERATED CLUSTERS

We introduce next our federated clustering framework (Alg. 2) based on the discussion from Section 4.
The removal procedure is described in Alg. 4. We introduce an oversampling coefficient α for clients,
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following a common strategy for K-means clustering (Bahmani et al., 2012) to improve the final
federated clustering performance. In practice, a constant value α suffices, and for simplicity, we set
α = 1 in our subsequent analysis. For Alg. 2 to satisfy the privacy criterion stated in Section 3, we
need to design an efficient protocol for aggregating information at the server pertaining to the overall
dataset without leaking individual client data statistics. This approach is discussed in Section 5.1. A
simplified version of Alg. 2 is discussed in Appendix J, for applications where the privacy criterion is
not an imperative concern.

Algorithm 2 Secure Federated Clustering
1: input: Dataset X distributed on L clients

(X (1), . . . ,X (L)), client oversampling coeffi-
cient α.

2: Run (αK)-means++ initialization on each
client l in parallel, obtain the initial centroid
sets C(l), and record the corresponding cluster
sizes (|C(l)1 |, . . . , |C

(l)
αK |), ∀l ∈ [L].

3: Perform uniform quantization of C(l) on each
dimension, and flatten the quantization bins into
a vector q(l), ∀l ∈ [L].

4: Set q(l)j =
∣∣∣C(l)k

∣∣∣ with j being the index of the

quantization bin where c
(l)
k lies in for ∀k ∈

[αK]. Set q(l)j = 0 for all other indices.
5: Securely sum up q(l) at server by Algorithm 3,

with the aggregated vector denoted as q.
6: For index j ∈ {t : qt ̸= 0}, sample qj points

based on pre-defined distribution and denote
their union as new dataset Xs at server.

7: Run full K-means++ clustering at server with
Xs to obtain the centroid set Cs at server.

8: return Each client retains its own centroid set
C(l), server retains Xs, q and Cs.

Note that Step 6 of Alg. 2 involves generating
qj points for the j-th quantization bin. The sim-
plest idea is to choose the center of the quanti-
zation bin as the representative point and assign
weight qj to it. Then, in Step 7, we can use the
weighted K-means++ algorithm at the server
to further reduce the computational complexity
at the server side, by reducing the problem size
at the server from n, which is the total number
of data points, to KL. However, in practice we
find that when the server computational power
is not the bottleneck in the FL system, gener-
ating data points uniformly at random for the
quantization bins with non-zero weights can of-
ten lead to better clustering performance. Thus,
this is the default choice in our subsequent sim-
ulations.

5.1 SCMA AT THE SERVER

To utilize off-the-shelf secure aggregation
methods developed for FL (Bonawitz et al.,
2017; Bell et al., 2020; So et al., 2022), we first
need to quantize the centroids of client data and
convert the information into vectors. For sim-
plicity, we use uniform quantization with step
size γ for each dimension in Step 3 of Alg. 2. A
detailed description of the quantization process

is available in Appendix I. Once the vector representations q(l) of length Bd (B = 1/γ), l ∈ [L]
of client data are generated, we can use standard secure model aggregation methods (Bonawitz
et al., 2017; Bell et al., 2020; So et al., 2022) to sum up all q(l) securely and obtain the aggregated
results q at the server. However, since the length of each q(l) is Bd, securely aggregating the whole
vector would lead to very high communication complexity for each client if γ is small (i.e., if we
need finer quantization) or d is large (i.e., if we have to cluster high dimensional data). Moreover,
each q(l) is a sparse vector since the number of client centroids is much smaller than the number of
quantization bins (i.e., K ≪ Bd). It is inefficient and unnecessary to sum up q(l) for all dimensions.
This motivates us to first compress the vectors and then perform the secure aggregation, and we refer
to this process as SCMA.

By observing that there can be at most K nonzero entries in q(l),∀l ∈ [L] and at most KL nonzero
entries in q, we invoke the Reed-Solomon code construction (Reed & Solomon, 1960) for designing
SCMA. Let Fp = {0, 1, . . . , p− 1} be a finite field of prime order p ≥ max{n,Bd}. We treat the
indices of the quantization bins as distinct elements from the underlying finite field, and use them as
evaluation points of the encoder polynomial. In addition, we treat a nonzero entry q

(l)
j in vector q(l) as

a substitution error at the j-th entry in a codeword. Then, we use our SCMA scheme shown in Alg. 3,
where the messages that the clients send to server can be treated as syndromes in Reed-Solomon
decoding. The discussion about the differences between SCMA and a related problem termed private
set union is available in Appendix M. Note that in our scheme, the server does not know q(l), l ∈ [L]

beyond the fact that
∑

l∈[L] q
(l) = q, which fits into our privacy criterion. This follows because z

(l)
i

is uniformly distributed over Fp and independently chosen for different l ∈ [L] and i ∈ [2KL]. For
details, please refer to Appendix K. One example of SCMA procedure is illustrated in Fig. 2.
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5.2 PERFORMANCE ANALYSIS

Algorithm 3 SCMA

1: input: L different vectors q(l) of length Bd to
be securely aggregated, a finite field Fp.

2: Each client l ∈ [L], i ∈ [2KL] communi-
cates

(
S
(l)
1 , . . . , S

(l)
2KL

)
to the server, where

S
(l)
i = (

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 + z

(l)
i ) mod p,

and z
(l)
i is a random key uniformly distributed

over Fp and hidden from the server. The keys
{z(l)i }l∈[L],i∈[2KL] are generated offline us-
ing standard secure model aggregation so that∑

l z
(l)
i = 0.

3: The server first computes the sum Si =∑
l∈[L] S

(l)
i ,∀i ∈ [2KL]. Given Si, the

server computes the coefficients of the poly-
nomial g(x) =

∏
j:qj ̸=0(1 − j · x) using

the Berlekamp-Massey algorithm (Berlekamp,
1968; Massey, 1969). Then, the server fac-
torizes g(x) over the field Fp to determine
the roots j−1, qj ̸= 0, using the polyno-
mial factorizing algorithm (Kedlaya & Umans,
2011). Finally, the server solves a set of
2KL linear equations Si =

∑
l∈[L] S

(l)
i =∑

j:qj ̸=0 qj · ji−1 for i ∈ [2KL], by consider-
ing qj as unknowns and ji−1 as known coeffi-
cients for qj ̸= 0.

4: return q reconstructed at the server.

We describe next the performance guarantees
of Alg. 2 w.r.t. the objective defined in Eq. (2),
using the definition of global clusters from Def-
inition 5.2 originally proposed in Dennis et al.
(2021). Note that only the global clustering in-
formation can be sent to clients by the server,
if requested (i.e., global centroids will not be
interactively communicated between clients and
server). We first consider the case where no
quantization is used (see Alg. 5). The proof is
relegated to Appendix G.

Lemma 5.1. Suppose that the entire dataset
across clients is denoted by X , and the set of
server centroids returned by Alg. 5 is Cs. Then
E (ϕf (X;Cs)) < O(log2 K) · ϕ∗

c(X).

The result of Lemma 5.1 holds for any distri-
bution of data across clients, and Alg. 5 may
perform even better than for the case of homo-
geneous assignments. This is best explained
through the following example. In the extreme
case of data heterogeneity, each client stores
a different cluster w.r.t. the global optimal
clustering (L = K). Then Alg. 5 can be
viewed as seeding each optimal cluster by a
data point uniformly at random chosen from
that cluster, through 1-means clustering at each
client. This leads to a performance guarantee of
E (ϕf (X;Cs)) = 2ϕ∗

c(X), where the approx-
imation factor is independent of K. A more
detailed discussion how data heterogeneity can

benefit our unlearning method is available in Appendix G.

Definition 5.2. Suppose that the local clusters at client l are denoted by C(l)k ,∀k ∈ [K], l ∈ [L],
and that the clusters at the server are denoted by Csk,∀k ∈ [K]. The global clustering equals

Pk =
{
x
(l)
i |x

(l)
i ∈ C

(l)
j , c

(l)
j ∈ Csk,∀j ∈ [K], l ∈ [L]

}
, where c

(l)
j is the centroid of C(l)j . Note that

(P1, . . . ,PK) forms a partition of the entire dataset X , and the representative centroid for Pk is
defined as cs,k in Cs returned by Alg. 2.

Next, we consider the distortion introduced by quantization. The performance guarantee is given in
Theorem 5.3. Note that SCMA does not contribute to the distortion as it always returns the exact
sum. Furthermore, following the same reasoning as in Lemma 4.1, one can show that the result of
Theorem 5.3 also holds for the remaining dataset X ′ after running the unlearning procedure in Alg. 4.

Theorem 5.3. Suppose that we performed uniform quantization with step size γ in Algorithm 2. Then
we have E (ϕf (X;Cs)) < O(log2 K) · ϕ∗

c(X) +O(ndγ2 logK).

Remark. To make the second term in the upper bound a constant w.r.t. n, we can choose γ =
Θ(1/

√
n), which is a good choice in practice offering good performance across different datasets.

5.3 COMPLEXITY ANALYSIS

We derived a cohort of in-depth analysis pertaining to the computational complexity of both types of
data removals, SCMA at the client and server side, as well as the communication complexity at the
clients. Due to space limitations, these results are summarized in Appendix B.
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6 EXPERIMENTAL RESULTS

Algorithm 4 Unlearning of Federated Clusters
1: input: Dataset X distributed on L clients

(X (1), . . . ,X (L)), (C(l),Xs, q,Cs) obtained
by Algorithm 2 on X , removal request set
X (l)

R for single-client removal or LR for multi-
client removal.

2: if single-client removal then
3: Run Algorithm 1 on client l and update q(l)

if client l has to perform retraining.
4: else
5: q(l) ← 0 on client l, ∀l ∈ LR.
6: end if
7: Securely sum up q(l) at server by Algorithm 3,

with the aggregated vector denoted as q′.
8: if q′ = q then
9: C′

s ← Cs.
10: else
11: Generate X ′

s with q′.
12: Run full K-means++ at the server with X ′

s
to obtain C′

s.
13: end if
14: return Client centroid sets C(l)′, server data
X ′

s, q
′ and centroids C′

s.

To empirically characterize the trade-off be-
tween the efficiency of data removal and perfor-
mance of our newly proposed federated cluster-
ing method, we compare it with baseline meth-
ods on both synthetic and real datasets. Due
to space limitations, more in-depth experiments
and discussions are delegated to Appendix N.

Datasets and baselines. We use one synthetic
dataset generated by a Gaussian Mixture Model
(Gaussian) and six real datasets (Celltype, Cov-
type, FEMNIST, Postures, TMI, TCGA) in our
experiments. We preprocess the datasets such
that the data distribution is non-i.i.d. across dif-
ferent clients. The symbol K ′ in Fig. 3 repre-
sents the maximum number of (true) clusters
among clients, while K represents the number
of true clusters in the global dataset. A detailed
description of the data statistics and the prepro-
cessing procedure is available in Appendix N.
Since there is currently no off-the-shelf algo-
rithm designed for unlearning federated clusters,
we adapt DC-Kmeans (DC-KM) from Ginart
et al. (2019) to apply to our problem setting, and
use complete retraining as the baseline compar-

ison method. To evaluate federated clustering performance on the complete dataset (before data
removals), we also include the K-FED algorithm from Dennis et al. (2021) as the baseline method. In
all plots, our Alg. 2 is referred to as MUFC. Note that in FL, clients are usually trained in parallel so
that the estimated time complexity equals the sum of the longest processing time of a client and the
processing time of the server.

Clustering performance. The clustering performance of all methods on the complete dataset is
shown in the first row of Tab. 1. The loss ratio is defined as ϕf (X;Cs)/ϕ

∗
c(X)1, which is the metric

used to evaluate the quality of the obtained clusters. For the seven datasets, MUFC offered the best
performance on TMI and Celltype, datasets for which the numbers of data points in different clusters
are highly imbalanced. This can be explained by pointing out an important difference between MUFC
and K-FED/DC-KM: the quantized centroids sent by the clients may have non-unit weights, and
MUFC is essentially performing weighted K-means++ at the server. In contrast, both K-FED and
DC-KM assign equal unit weights to the client’s centroids. Note that assigning weights to the client’s
centroids based on local clusterings not only enables a simple analysis of the scheme but also improves
the empirical performance, especially for datasets with highly imbalanced cluster distributions. For
all other datasets except Gaussian, MUFC obtained competitive clustering performance compared
to K-FED/DC-KM. The main reason why DC-KM outperforms MUFC on Gaussian data is that all
clusters are of the same size in this case. Also note that DC-KM runs full K-means++ clustering for
each client while MUFC only performs initialization. Although running full K-means++ clustering
at the client side can improve the empirical performance on certain datasets, it also greatly increases
the computational complexity during training and the retraining probability during unlearning, which
is shown in Fig. 3. Nevertheless, we also compare the performance of MUFC with K-FED/DC-KM
when running full K-means++ clustering on clients for MUFC in Appendix N.

We also investigated the influence of K ′ and γ on the clustering performance. Fig. 3(a) shows that
MUFC can obtain a lower loss ratio when K ′ < K, indicating that data is non-i.i.d. distributed across
clients. Fig. 3(b) shows that the choice of γ does not seem to have a strong influence on the clustering
performance of Gaussian datasets, due to the fact that we use uniform sampling in Step 6 of Alg. 2 to
generate the server dataset. Meanwhile, Fig. 3(c) shows that γ can have a significant influence on
the clustering performance of real-world datasets, which agrees with our analysis in Theorem 5.3.

1ϕ∗
c(X) is approximated by running K-means++ multiple times and selecting the smallest objective value.

8
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Table 1: Clustering performance of different federated clustering algorithms compared to centralized
K-means++ clustering.

TMI Celltype Gaussian TCGA Postures FEMNIST Covtype

Loss ratio
MUFC 1.24 ± 0.10 1.14 ± 0.03 1.25 ± 0.02 1.18 ± 0.05 1.10 ± 0.01 1.20 ± 0.00 1.03 ± 0.02
K-FED 1.84 ± 0.07 1.72 ± 0.24 1.25 ± 0.01 1.56 ± 0.11 1.13 ± 0.01 1.21 ± 0.00 1.60 ± 0.01
DC-KM 1.54 ± 0.13 1.46 ± 0.01 1.02 ± 0.00 1.15 ± 0.02 1.03 ± 0.00 1.18 ± 0.00 1.03 ± 0.02

Speed-up of MUFC
(if no retraining is performed) 151x 1535x 2074x 483x 613x 53x 267x

Figure 3: The shaded areas represent the standard deviation of results from different trails. (a)
Influence of data heterogeneity on the clustering performance of MUFC: K ′ represents the maximum
number of (global) clusters covered by the data at the clients, while K ′ = 10 indicates that the data
points are i.i.d. distributed across clients. (b)(c) Influence of the quantization step size γ on the
clustering performance of MUFC. The red vertical line indicates the default choice of γ = 1/

√
n,

where n is the total number of data points across clients. (d) The change in the loss ratio after
each round of unlearning. (e) The accumulated removal time for adversarial removals. (f)-(l) The
accumulated removal time for random removals.

The red vertical line in both figures indicates the default choice of γ = 1/
√
n, where n stands for the

number of total data points across clients.

Unlearning performance. Since K-FED does not support data removal, has high computational
complexity, and its empirical clustering performance is worse than DC-KM (see Tab. 1), we only
compare the unlearning performance of MUFC with that of DC-KM. For simplicity, we consider
removing one data point from a uniformly at random chosen client l at each round of unlearning.
The second row of Tab. 1 records the speed-up ratio w.r.t. complete retraining for one round of
MUFC unlearning (Alg. 4) when the removed point does not lie in the centroid set selected at client l.
Fig. 3(e) shows the accumulated removal time on the TMI dataset for adversarial removals, which
are simulated by removing the data points with the highest contribution to the current value of
the objective function at each round, while Fig. 3(f)-(l) shows the accumulated removal time on
different datasets for random removals. The results show that MUFC maintains high unlearning
efficiency compared to all other baseline approaches, and offers an average speed-up ratio of 84x
when compared to complete retraining for random removals across seven datasets. We also report
the change in the loss ratio of MUFC during unlearning in Fig. 3(d). The loss ratio remains nearly
constant after each removal, indicating that our unlearning approach does not significantly degrade
clustering performance. Similar conclusions hold for other tested datasets, as shown in Appendix N.
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7 ETHICS STATEMENT

The seven datasets used in our simulations are all publicly available. Among these datasets, TCGA
and TMI contain potentially sensitive biological data and are downloaded after logging into the
database. We adhered to all regulations when handling this anonymized data and will only release the
data processing pipeline and data that is unrestricted at TCGA and TMI. Datasets that do not contain
sensitive information can be downloaded directly from their open-source repositories.

8 REPRODUCIBILITY STATEMENT

We upload our source code along with test datasets as supplementary materials to reproduce our
results shown in Section 6. Detailed instructions are included as well in the source code.
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Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making AI forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams: Theory and practice. IEEE transactions on knowledge and data engineering, 15(3):
515–528, 2003.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and modular composition.
SIAM Journal on Computing, 40(6):1767–1802, 2011.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International Cryptology
Conference, pp. 241–257. Springer, 2005.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for
k-means. Information Processing Letters, 120:40–43, 2017.

Songze Li, Sizai Hou, Baturalp Buyukates, and Salman Avestimehr. Secure federated clustering.
arXiv preprint arXiv:2205.15564, 2022.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling
efficient client-level data removal from federated learning models. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE, 2021.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is
np-hard. Theoretical Computer Science, 442:13–21, 2012.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

James Massey. Shift-register synthesis and bch decoding. IEEE transactions on Information Theory,
15(1):122–127, 1969.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang, Jeffery A Schloss, Vivien
Bonazzi, Jean E McEwen, Kris A Wetterstrand, Carolyn Deal, et al. The NIH Human Microbiome
Project. Genome research, 19(12):2317–2323, 2009.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neural
networks and learning systems, 32(8):3710–3722, 2020.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. Constant-round multi-party private set union
using reversed laurent series. In International Workshop on Public Key Cryptography, pp. 398–412.
Springer, 2012.

13



Under review as a conference paper at ICLR 2023

Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and
Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in
federated learning. Proceedings of Machine Learning and Systems, 4:694–720, 2022.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey,
Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3):
e1001779, 2015.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Sergei Vassilvitskii and David Arthur. k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2006.

Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that remember: model inversion
attacks and data protection law. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2133):20180083, 2018.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv preprint arXiv:2107.06917, 2021.

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative
pruning. In Proceedings of the ACM Web Conference 2022, pp. 622–632, 2022.

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. arXiv
preprint arXiv:2201.09441, 2022.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

14



Under review as a conference paper at ICLR 2023

A K-MEANS++ INITIALIZATION

The K-means problem is NP-hard even for K = 2, and when the points lie in a two-dimensional
Euclidean space (Mahajan et al., 2012). Heuristic algorithms for solving the problem, including
Lloyd’s (Lloyd, 1982) and Hartigan’s method (Hartigan & Wong, 1979), are not guaranteed to
obtain the global optimal solution unless further assumptions are made on the point and cluster
structures (Lee et al., 2017). Although obtaining the exact optimal solution for the K-means problem
is difficult, there are many methods that can obtain quality approximations for the optimal centroids.
For example, a randomized initialization algorithm (K-means++) was introduced in Vassilvitskii &
Arthur (2006) and the expected objective value after initialization is a (logK)-approximation to the
optimal objective (E(ϕ) ≤ (8 lnK + 16)ϕ∗). K-means++ initialization works as follows: initially,
the centroid set C is assumed to be empty. Then, a point is sampled uniformly at random from X
for the first centroid and added to C. For the following K − 1 rounds, a point x from X is sampled
with probability d2(x,C)/ϕc(X;C) for the new centroid and added to C. Here, d(x,C) denotes the
minimum ℓ2 distance between x and the centroids in C chosen so far. After the initialization step, we
arrive at K initial centroids in C used for running Lloyd’s algorithm.

B COMPLEXITY ANALYSIS OF ALGORITHM 3 AND 4

Removal time complexity. We consider two types of removal requests in the federated clustering
setting: removing R points from one client l (cross-silo, single-client removal), and removing all data
points from R clients l1, . . . , lR (cross-device, multi-client removal). For the case where multiple
clients want to unlearn only a part of their data, the approach is similar to that of single-client removal
and is based on a simple union bound.

For the first case, we know from Theorem 4.5 that the expected removal time for client l is O(RK2d)
for random requests and O(RK3ϵ1ϵ2d) for adversarial requests. Other clients do not require ad-
ditional computations, since their centroids will not be affected by the removal requests. Thus
the expected removal time for the server is O

(
RK/n(l)

)
· O(K2LTd) = O

(
RK3LTd/n(l)

)
for

random removal requests and O
(
RK4LTϵ1ϵ2d/n

(l)
)

for adversarial removal requests, where T is
the maximum number of iterations of Lloyd’s algorithm at the server before convergence, and n(l) is
the number of data points on client l with n(l) ≥ K.

For the second case when we want to unlearn all data from R clients, no client needs to perform
additional computations. Since in this case we always re-run the full K-means++ clustering at the
server, the expected removal time complexity at the server equals O((L−R)K2Td).

Communication complexity of SCMA at the client end. Since each S
(l)
i can be represented by

⌈log p⌉ bits, the information {S(l)
i }i∈[2KL] sent by each client l can be represented by 2KL⌈log p⌉ ≤

max{2KL log n, 2KLd logB} + 1 bits. Note that there are at most
∑

k∈[KL]

(
Bd

k

)(
n

k−1

)
q-ary

vectors of length Bd. Hence, the cost for communicating q(l) from the client to server l is at
least log

(∑
k∈[KL]

(
Bd

k

)(
n

k−1

))
= max{O(KL log n), O(KLd logB)} bits, which implies that

our scheme is order-optimal w.r.t. the communication cost. Note that following standard practice in
the area, we do not take into account the complexity of noise generation in secure model aggregation,
as it can be done offline and independently of the Reed-Solomon encoding procedure.

Computational complexity of SCMA at the client end. The computation of S(l)
i on client l requires

at most O(K log i) multiplications over Fp, i ∈ [2KL]. The total computational complexity equals
O(K2L log(KL)) multiplication and addition operations over Fp.

Computational complexity of SCMA at the server end. The computational complexity at the
server is dominated by the complexity of the Berlekamp-Massey decoding algorithm (Berlekamp,
1968; Massey, 1969), factorizing the polynomial g(x) over Fp (Kedlaya & Umans, 2011), and solving
the linear equations Si =

∑
l∈[L] S

(l)
i =

∑
j:qj ̸=0 qj · ji−1 with known j, qj ̸= 0. The complexity

of Berlekamp-Massey decoding over Fp is O(K2L2). The complexity of factorizing a polynomial
g(x) over Fp using the algorithm in Kedlaya & Umans (2011) is O((KL)1.5 log p + KL log2 p)

operations over Fp. The complexity of solving for Si =
∑

l∈[L] S
(l)
i equals that of finding the inverse
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of a Vandermonde matrix, which takes O(K2L2) operations over Fp (Eisinberg & Fedele, 2006).
Hence, the total computational complexity at the server side is max{O(K2L2), O((KL)1.5 log p+
KL log2 p)} operations over Fp.

C PROOF OF LEMMA 4.1

Proof. Assume that the number of data points in X is n, the size of XR is R, and the initial centroid
set for X is C. We use induction to prove that C′ returned by Alg. 1 is probabilistically equivalent to
re-running the K-means++ initialization on X ′ = X\XR.

The base case of induction amounts to investigating the removal process for c1, the first point selected
by K-means++. There are two possible scenarios: c1 ∈ XR and c1 /∈ XR. In the first case, we will
re-run the initialization process over X ′, which is equivalent to retraining the model. In the second
case, since we know c1 /∈ XR, the probability of choosing c1 from X as the first centroid equals the
conditional probability

1

n−R
= P(choose c1 from X as the first centroid|c1 /∈ XR)

= P(choose c1 from X ′ as the first centroid).

Next suppose that K > 1, i = (argminj cj ∈ XR)−1. The centroids C′
i−1 = {c′1 = c1, . . . , c

′
i−1 =

ci−1} returned by Alg. 1 can be viewed probabilistically equivalent to the model obtained from
re-running the initialization process over X ′ for the first i− 1 rounds. Then we have

P(choose ci from X as i-th centroid|ci /∈ XR) =
P(choose ci from X as i-th centroid ∩ ci /∈ XR)

P(ci /∈ XR)

(a)
=

P(choose ci from X as i-th centroid)
P(ci /∈ XR)

=
d2(ci,C

′
i−1)/ϕc(X;C′

i−1)

1−
∑

x∈XR
d2(x,C′

i−1)/ϕc(X;C′
i−1)

=
d2(ci,C

′
i−1)/ϕc(X;C′

i−1)

ϕc(X ′;C′
i−1)/ϕc(X;C′

i−1)

=
d2(ci,C

′
i−1)

ϕc(X ′;C′
i−1)

= P(choose ci from X ′ as i-th centroid),

where (a) holds based on the definition of i, indicating that the i-th centroid is not in XR. Therefore,
the centroid c′i = ci returned by Alg. 1 can be seen as if obtained from rerunning the initialization
process over X ′ in the i-th round. Again based on the definition of i, it is clear that for j > i, c′j are
the centroids chosen by the K-means++ procedure over X ′. This proves our claim that C′ returned
by Alg. 1 is probabilistic equivalent to the result obtained by rerunning the K-means++ initialization
on X ′.

Theorem 1.1 of Vassilvitskii & Arthur (2006) then establishes that

E(ϕc(X
′;C′)) ≤ 8(lnK + 2)ϕ∗

c(X
′), (4)

which completes the proof.

D PROOF OF LEMMA 4.4

Proof. Since outliers can be arbitrarily far from all true cluster points according to Eq. (3), during
initialization they may be sampled as centroids with very high probability. For simplicity of analysis,
we thus assume that outliers are sampled as centroids with probability 1 if they exist in the dataset.
Note that for the adversarial removal scenario, we also assume that outliers will request unlearning
with probability 1, meaning that we will always need to re-run the K-means++ initialization when
outliers exist in the complete dataset before any removals.
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For random removals, where the point requested for unlearning, xi, is drawn uniformly at random
from X , it is clear that P(xi ∈ C) = K

n , since C contains K distinct data points in X .

For adversarial removals, we need to analyze the probability of choosing xi as the (k+1)-th centroid,
given that the first k centroids have been determined and xi /∈ Ck = {c1, . . . , ck}. For simplicity we
first assume that there is no outlier in X . Then we have

P(choose xi from X as the (k + 1)-th centroid|Ck) =
d2(xi,Ck)∑

y ̸=xi
d2(y,Ck) + d2(xi,Ck)

(5)

For the denominator
∑

y ̸=xi
d2(y,Ck) + d2(xi,Ck), the following three observations are in place∑

y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥ ϕ∗
c(X) ≥ ϕ∗

c(C∗i ), xi ∈ C∗i∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
∑
y ̸=xi

d2(y,C∗)

∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
∑
y ̸=xi

d2(y,Ck).

Therefore,

∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
ϕ∗
c(C∗i )
5

+
2

5

∑
y ̸=xi

d2(y,C∗) + d2(y,Ck)


(a)

≥ 1

5

ϕ∗
c(C∗i ) +

∑
y ̸=xi

∥cy − c∗y∥2
 , (6)

where cy, c
∗
y are the closest centroid in Ck and C∗ to y, respectively. Here, (a) is a consequence of

the fact that ∥a− b∥2 = ∥a− c+ c− b∥2 ≤ 2(∥a− c∥2 + ∥b− c∥2). Since xi is not an outlier for
C∗i based on our assumption, we have

ϕ∗
c(C∗i ) ≥

|C∗i |
ϵ2
∥xi − c∗i ∥2 ≥

n

Kϵ1ϵ2
∥xi − c∗i ∥2.

Consequently,

ϕ∗
c(C∗i ) +

∑
y ̸=xi

∥cy − c∗y∥2 ≥
|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗y∥2

=
|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗i ∥2. (7)

For ∀y ∈ C∗i , it hold ∥xi − c∗i ∥2 + ∥cy − c∗i ∥2 ≥ 1
2∥xi − cy∥2 ≥ 1

2d
2(xi,Ck). Thus, (7) can be

lower bounded by

|C∗i |
ϵ2
∥xi − c∗i ∥2 +

∑
y∈C∗

i

∥cy − c∗i ∥2 ≥
|C∗i |
2ϵ2

d2(xi,Ck) ≥
n

2Kϵ1ϵ2
d2(xi,Ck). (8)

Combining (8) and (6) we obtain∑
y ̸=xi

d2(y,Ck) + d2(xi,Ck) ≥
n

10Kϵ1ϵ2
d2(xi,Ck).

Using this expression in (5) results in

P(choose xi from X as the (k + 1)-th centroid|Ck) ≤
10Kϵ1ϵ2

n
, (9)
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which holds for ∀k ∈ [K]. Thus, the probability P(xi ∈ C) can be computed as

P(xi ∈ C) =

K−1∑
k=0

P(choose xi from X as the (k + 1)-th centroid|Ck)P(Ck)

≤
K−1∑
k=0

P(choose xi from X as the (k + 1)-th centroid|Ck)

≤ 1

n
+

10K(K − 1)ϵ1ϵ2
n

< O

(
K2ϵ1ϵ2

n

)
. (10)

Here, we assumed that C0 = ∅.

For the case where outliers are present in the dataset, we have

P(xi ∈ C) = P(xi ∈ C|xi is outlier)P(xi is outlier) + P(xi ∈ C|xi is not outlier)P(xi is not outlier)

≤ 1 ·O
(
1

n

)
+O

(
K2ϵ1ϵ2

n

)
· 1 < O

(
K2ϵ1ϵ2

n

)
,

which completes the proof for the adversarial removal scenario.

E PROOF OF THEOREM 4.5

Proof. Assume that XR denotes the removal request set over X . From the union bound we have

Random removals: P(∃j : cj ∈ XR) < O

(
RK

n

)
,

Adversarial removals: P(∃j : cj ∈ XR) < O

(
RK2ϵ1ϵ2

n

)
.

Therefore, the expected removal time for random removals can be upper bounded by

E(Removal time) = E(Removal time|new initialization needed)P(new initialization needed)+
E(Removal time|new initialization not needed)P(new initialization not needed)

≤ O(nKd+RK) ·O
(
RK

n

)
+O(RK) · 1

< O(RK2d).

Following a similar argument, we can also show that the expected removal time for adversarial
removals can be upper bounded by O(RK3ϵ1ϵ2d). This completes the proof.

F COMPARISON BETWEEN ALGORITHM 1 AND QUANTIZED K-MEANS

In Ginart et al. (2019), quantized K-means were proposed to solve a similar problem of machine
unlearning in the centralized setting. However, that approach substantially differs from Alg. 1. First,
the intuition behind quantized K-means is that the centroids are computed by taking an average, and
the effect of a small number of points is negligible when there are enough terms left in the clusters
after removal. Therefore, if we quantize all centroids after each Lloyd’s iteration, the quantized
centroids will not change with high probability when we remove a small number of points from the
dataset. Meanwhile, the intuition behind Alg. 1 is as described in Lemma 4.4. Second, the expected
removal time complexity for quantized K-means equals O

(
R2K3T 2d2.5/ϵ

)
, which is high since

one needs to check if all quantized centroids remain unchanged after removal at each iteration, where
T denotes the maximum number of Lloyd’s iteration before convergence and ϵ is some intrinsic
parameter. In contrast, Alg. 1 only needs O(RK3ϵ1ϵ2d) even for adversarial removals. Also note
that the described quantized K-means algorithm does not come with performance guarantees on
removal time complexity unless it is randomly initialized.
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G PROOF OF LEMMA 5.1

Proof. Let C∗ denote the optimal set of centroids that minimize the objective (1) for the entire dataset
X ∈ Rn×d, let C∗ ∈ Rn×d be the matrix that records the closest centroid in C∗ to each data point,
Cs the set of centroids returned by Alg. 2, and Cs ∈ Rn×d the matrix that records the corresponding
centroid in Cs for each data point based on the global clustering defined in Definition 5.2. Since we
perform K-means++ initialization on each client dataset, for client l it holds

E
(
∥X(l) − C(l)∥2F

)
≤ (8 lnK + 16)∥X(l) − C

(l)
∗ ∥2F , ∀l ∈ [L]

≤ (8 lnK + 16)∥X(l) − C∗,(l)∥2F (11)

where C(l) ∈ Rn(l)×d records the closest centroid in C(l) to each data point xi in X (l), C(l)
∗ is the

optimal solution that can minimize the local K-means objective for client l, and C∗,(l) denotes the
row in C∗ that corresponds to client l. Summing up (11) over all clients gives

E

(
L∑

l=1

∥X(l) − C(l)∥2F

)
≤ (8 lnK + 16)

L∑
l=1

∥X(l) − C∗,(l)∥2F . (12)

At the server side the client centroids are reorganized into a matrix Xs ∈ Rn×d. The weights of
the client centroids are converted to replicates of rows in Xs. Since we perform full K-means++
clustering at the server, it follows that

E
(
∥Xs − Cs∥2F

)
= E

(
L∑

l=1

∥C(l) − C(l)
s ∥2F

)
(a)

≤ (8 lnK + 16)

L∑
l=1

E
(
∥C(l) − C

(l)
s,∗∥2F

)
≤ (8 lnK + 16)

L∑
l=1

E
(
∥C(l) − C∗,(l)∥2F

)
, (13)

where Cs,∗ ∈ Rn×d is the optimal solution that minimizes the K-means objective at the server.
It is worth pointing out that Cs,∗ is different from C∗, as they are optimal solutions for different
optimization objectives. Note that we still keep the expectation on RHS for (a). The randomness
comes from the fact that C(l) is obtained by K-means++ initialization, which is a probabilistic
procedure.

Combining (12) and (13) results in

E (ϕf (X;Cs)) = E

(
L∑

l=1

∥X(l) − C(l)
s ∥2F

)

≤ 2 · E

[
L∑

l=1

(
∥X(l) − C(l)∥2F + ∥C(l) − C(l)

s ∥2F
)]

≤ (16 lnK + 32)

L∑
l=1

[
∥X(l) − C∗,(l)∥2F + E

(
∥C(l) − C∗,(l)∥2F

)]
. (14)

For E
(
∥C(l) − C∗,(l)∥2F

)
, we have

E
(
∥C(l) − C∗,(l)∥2F

)
≤ 2 · E

(
∥C(l) −X(l)∥2F + ∥X(l) − C∗,(l)∥2F

)
= 2 · ∥X(l) − C∗,(l)∥2F + 2 · E

(
∥C(l) −X(l)∥2F

)
. (15)

Replacing (15) into (14) shows that E (ϕf (X;Cs)) < O(log2 K) · ϕ∗
c(X), which completes the

proof.
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If we are only concerned with the performance of non-outlier points over the entire dataset, we can
upper bound the term E

(∑L
l=1 ∥C(l) − C∗,(l)∥2F

)
by

E

(
L∑

l=1

∥C(l) − C∗,(l)∥2F

)
≤ ϵ2ϕ

∗
c(X). (16)

Here, we used the fact that rows of C(l) are all real data points sampled by the K-means++ initial-
ization procedure. For each data point xi, it holds that ∥xi − c∗i ∥2|C∗i | ≤ ϵ2ϕ

∗
c(C∗i ), where xi ∈ C∗i .

In this case, we arrive at E (ϕf (Xt;Cs)) < O(ϵ2 logK) · ϕ∗
c(Xt), where Xt corresponds to all

non-outlier points.

Remark. In Theorem 4 of Guha et al. (2003) the authors show that for the distributed K-median
problem, if we use a O(b)-approximation algorithm (i.e., ϕ ≤ O(b) · ϕ∗) for the K-median problem
with subdatasets on distributed machines, and use a O(c)-approximation algorithm for the K-median
problem on the centralized machine, the overall distributed algorithm achieves effectively a O(bc)-
approximation of the optimal solution to the centralized K-median problem. This is consistent
with our observation that Alg. 5 can offer in expectation a O(log2 K)-approximation to the optimal
solution of the centralized K-means problem, since K-means++ initialization achieves a O(logK)-
approximation on both the client and server side.

We also point out that in Dennis et al. (2021) the authors assume that the exact number of clusters
from the global optimal clustering on client l is known and equal to K(l), and propose the K-FED
algorithm which performs well when K ′ = maxl∈[L] K

(l) ≤
√
K. The difference between K ′ and

K represents the data heterogeneity across different clients. With a slight modifications of the proof,
we can also obtain E (ϕf (X;Cs)) < O(logK · logK ′) ·ϕ∗

c(X), when K(l) is known for each client
beforehand, and perform K(l)-means++ on client l instead of K-means++ in Alg. 2. For the extreme
setting where each client safeguards data of one entire cluster (w.r.t. the global optimal clustering
(L = K,K ′ = 1)), the performance guarantee for Alg. 2 becomes E (ϕf (X;Cs)) < O(1) · ϕ∗

c(X),
which is the same as seeding each optimal cluster by a data point sampled uniformly at random
from that cluster. From Lemma 3.1 of Vassilvitskii & Arthur (2006) we see that we can indeed have
E (ϕf (X;Cs)) = 2ϕ∗

c(X), where the approximation factor does not depend on K. This shows
that data heterogeneity across different clients can benefit the entire federated clustering framework
introduced.

H PROOF OF THEOREM 5.3

Proof. Following the same idea as the one used in the proof of Lemma 5.1, we arrive at

E (ϕf (X;Cs)) ≤ 3 · E

[
L∑

l=1

(
∥X(l) − C(l)∥2F + ∥C(l) − Ĉ(l)∥2F + ∥Ĉ(l) − C(l)

s ∥2F
)]

, (17)

where Ĉ(l) is the quantized version of C(l). The first term can be upper bounded in the same way as
in Lemma 5.1. For the second term, the distortion introduced by quantizing one point is bounded by√

dγ
2 , if we choose the center of the quantization bin as the reconstruction point. Therefore,

E

(
L∑

l=1

∥C(l) − Ĉ(l)∥2F

)
≤ n

(√
dγ

2

)2

=
ndγ2

4
. (18)

The third term can be bounded as

E

(
L∑

l=1

∥Ĉ(l) − C(l)
s ∥2F

)
≤ (8 lnK + 16)

L∑
l=1

E
(
∥Ĉ(l) − C∗,(l)∥2F

)
E
(
∥Ĉ(l) − C∗,(l)∥2F

)
≤ 3 · E

(
∥Ĉ(l) − C(l)∥2F + ∥C(l) −X(l)∥2F + ∥X(l) − C∗,(l)∥2F

)
. (19)

Replacing (18) and (19) into (17) leads to

E (ϕf (X;Cs)) < O(log2 K) · ϕ∗
c(X) +O(ndγ2 logK),
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which completes the proof.

Similar as in Lemma 5.1, we can have that for non-outlier points Xt, E (ϕf (Xt;Cs)) < O(ϵ2 logK)·
ϕ∗
c(Xt) +O(ndγ2 logK).

I QUANTIZATION

For uniform quantization, we set ŷ = γ · a(y), where a(y) = argminj∈Z |y − γj|, y ∈ R2. The
parameter γ > 0 determines the number of quantization bins in each dimension. Suppose all client
data lie in the unit hypercube centered at the origin, and that if needed, pre-processing is performed
to meet this requirement. Then the number of quantization bins in each dimension equals B = γ−1,
while the total number of quantization bins for d dimensions is Bd = γ−d.

J SIMPLIFIED FEDERATED K-MEANS CLUSTERING

When privacy criteria like the one stated in Section 3 are not enforced, and as done in the framework of
Dennis et al. (2021), one can skip Steps 3-6 in Alg. 2 and send the centroid set C(l) obtained by client
l along with the cluster sizes (|C(l)1 |, . . . , |C

(l)
αK |) directly to the server. Then, one can run the weighted

K-means++ algorithm at the server on the aggregated centroid set to obtain Cs. The pseudocode for
this simplified case is shown in Alg. 5. It follows a similar idea as the divide-and-conquer schemes
of (Guha et al., 2003; Ailon et al., 2009), developed for distributed clustering.

Algorithm 5 Simplified Federated K-means Clustering

1: input: Dataset X distributed on L clients (X (1), . . . ,X (L)), client oversampling coefficient α.
2: Run (αK)-means++ initialization on each client l in parallel, obtain the initial centroid sets C(l),

and record the corresponding cluster sizes
(
|C(l)1 |, . . . , |C

(l)
αK |
)
, ∀l ∈ [L].

3: Send
(
c
(l)
1 , . . . , c

(l)
αK

)
along with the corresponding cluster sizes

(
|C(l)1 |, . . . , |C

(l)
αK |
)

to the
server, ∀l ∈ [L].

4: Concatenate
(
c
(l)
1 , . . . , c

(l)
αK

)
as rows of Xs and set

(
|C(l)1 |, . . . , |C

(l)
αK |
)

as the weights for the
corresponding rows, ∀l ∈ [L].

5: Run full weighted K-means++ clustering at server with Xs to obtain the centroid set at server
Cs.

6: return Each client retains their own centroid set C(l) while the server retains Xs and Cs.

In Step 5 of Alg. 5, weighted K-means++ would assign weights to data points when computing
the sampling probability during the initialization procedure and when computing the average of
clusters during the Lloyd’s iterations. Since the weights we are considering here are always positive
integers, a weighted data point can also be viewed as there exist identical data points in the dataset
with multiplicity equals to the weight.

K THE UNIQUENESS OF THE VECTOR q GIVEN {Si}i∈[2KL]

To demonstrate that the messages generated by Alg. 3 can be uniquely decoded, we prove that
there exists a unique q that produces the aggregated values {Si}i∈[2KL] at the server. The proof
is by contradiction. Assume that there exist two different vectors q and q′ that result in the same
{Si}i∈[2KL]. In this case, we have the following set of linear equations

∑
j:qj ̸=0 qj ·ji−1−

∑
j:q′j ̸=0 q

′
j ·

ji−1 = 0, i ∈ [2KL]. Given that {qj : qj ̸= 0} and {q′j : q′j ̸= 0} represent at most 2KL unknowns
and ji−1 coefficients, the linear equations can be described using a square Vandermonde matrix for
the coefficients, with the columns of the generated by the indices of the nonzero entries in q. This
leads to a contradiction since a square Vandermonde matrix with different column generators is

2We can also add random shifts during quantization as proposed in Ginart et al. (2019) to make the data
appear more uniformly distributed within the quantization bins.

21



Under review as a conference paper at ICLR 2023

invertible, which we show below. Hence, the aggregated values {Si} must be different for different q.
Similarly, the sums

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 are distinct for different choices of vectors q(l), i ∈ [2KL],

l ∈ [L].

If two vectors q and q′ result in the same {Si}i∈[2KL], then
∑

j:qj ̸=0 qj ·ji−1−
∑

j:q′j ̸=0 q
′
j ·ji−1 = 0,

for all i ∈ [2KL]. Let {i1, . . . , iu} = ({j : qj ̸= 0} ∪ {j : q′j = 0}) be the set of integers such that
at least one of qim and q′im is nonzero for m ∈ [u]. Note that u ≤ 2KL. Rewrite this equation as

1 · · · 1
i1 · · · iu
...

...
...

i2KL−1
1 · · · i2KL−1

u


qi1 − q′i1

...
qiu − q′iu

 = 0. (20)

Since u ≤ 2KL, we take the first u equations in (20) and rewrite them as

Bv = 0,

where

B =


1 · · · 1
i1 · · · iu
...

...
...

i2KL−1
1 · · · i2KL−1

u


is a square Vandermonde matrix and

v =

qi1 − q′i1
...

qiu − q′iu


is a nonzero vector since q ̸= q′. It is known that the determinant of a square Vandermonde matrix B
is given by

∏
m1<m2,m1,m2∈[u](im2

− im1
), which in our case is nonzero since all the i1, . . . , iu are

different. Therefore, B is invertible and does not admit a non-zero solution, which contradicts the
equation Bv = 0.

L A DETERMINISTIC LOW-COMPLEXITY ALGORITHM FOR SCMA AT THE
SERVER

In the SCMA scheme we described in Alg. 2, the goal of the server is to reconstruct the vector q,
given values Si =

∑
j:qj ̸=0 qj · ji−1 mod p for i ∈ [2KL]. To this end, we first use the Berlekamp-

Massey algorithm to compute the polynomial g(x) =
∏

j:qj ̸=0(1− j · x). Then, we factorize g(x)

over the finite field Fp using the algorithm described in Kedlaya & Umans (2011). The complexity
O((KL)1.5 log p + KL log2 p) referred to in Section 5.3 corresponds to the average complexity
(finding a deterministic algorithm that factorizes a polynomial over finite fields with poly(log p)
worst-case complexity is an open problem). The complexity max{O(K2L2), O((KL)1.5 log p +
KL log2 p)} referred to in Appendix B for the SCMA scheme represents an average complexity.

We show next that the SCMA scheme has small worst-case complexity under a deterministic decoding
algorithm at the server as well. To this end, we replace the integer p in Alg. 3 with a large number
p′ ≥ max{KLB2dKL, n} + 1 such that p′ is larger than the largest possible Si and there is no
overflow when applying the modulo p′ operation on Si. It is known (Bertrand’s postulate) that there
exists a prime number between any integer n > 3 and 2n−2, and hence there must be a prime number
lower-bounded by max{KLB2dKL, n}+1 and twice the lower bound 2(max{KLB2dKL, n}+1).
However, since searching for a prime number of this size can be computationally intractable, we
remove the requirement that p′ is prime. Correspondingly, Fp′ is not necessarily a finite field.
Then, instead of sending S

(l)
i = (

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 + z

(l)
i ) mod p, client l, l ∈ [L], will send

S
(l)
i = (

∑
j:q

(l)
j ̸=0

q
(l)
j · ji−1 + z

(l)
i ) mod p′ to the server, i ∈ [2KL], where random keys z(l)i are
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independently and uniformly distributed over {0, . . . , p′ − 1} and hidden from the server. After
obtaining Si, i ∈ [2KL], the server can continue performing operations over the field of reals since
there is no overflow in computing Si mod p′. We note that though p′ is exponentially large, the
computation of S(l)

i and Si, l ∈ [L] and i ∈ [2KL] is still manageable, and achieved by computing
and storing S

(l)
i and Si using O(KL) floating point numbers, instead of computing and storing S

(l)
i

in a single floating point number. Note that ji can be computed using O(i) floating point numbers
with complexity almost linear in i (i.e., O(i logc i) for some constant c).

We now present a low complexity secure aggregation algorithm at the server. After reconstructing Si,
we have Si =

∑
j:qj ̸=0 qj · ji−1. The server switches to computations over the real field. First, it uses

the Berlekamp-Massey algorithm to find the polynomial g(x) =
∏

j:qj ̸=0(1− j · x) (the algorithm
was originally proposed for decoding of BCH codes over finite fields, but it applies to arbitrary fields).
Let m be the degree of g(x). Then h(x) = xmg(1/x) =

∏
j:qj ̸=0(x− j). The goal is to factorize

h(x) over the field of reals, where the roots are known to be integers in [Bd] and the multiplicity of
each root is one.

If the degree of h(x) is odd, then h(0) < 0 and h(Bd) > 0. Then we can use bisection search to find
a root of h(x), which requires O(logBd) polynomial evaluations of h(x), and thus O(MK logBd)
multiplication and addition operations of integers of size at most log p′. After finding one root j, we
can divide h(x) by x− j and start the next root-finding iteration.

If the degree of h(x) is even, then the degree of h′(x) is odd, and the roots of h′(x) are different
and confined to [Bd]. We use bisection search to find a root j′ of h′(x). If h(j′) < 0, then we use
bisection search on [0, j′] = {0, 1, . . . , j′} to find a root of h(x) and start a new iteration as described
above when the degree of h(x) is odd. If h(j′) > 0, then h′(j′ − 1) > 0 and h′(0) < 0. We use
bisection search to find another root of h′(x) in [j′ − 1]. Note that for every two roots j′1 and j′2
(j′1 < j′2) of h′(x) satisfying h(j′1) > 0 and h(j′2) > 0 we can always find another root j′3 of h′(x) in
[j′1+1, j′2−1]. We keep iterating the search for every two such roots j′1, j

′
2 until we find a list of roots

r1, . . . , r2R+1 of h′(x) such that h(ri) < 0 for odd i in [2R+1] and h(ri) > 0 for even i ∈ [2R+1].
Then we can run bisection search on the sets [0, r1], [r1, r2], . . . , [r2R, r2R+1], [r2R+1, B

d], to find
2R + 2 roots of h(x). Note that during the iteration we need 2R + 1 bisection search iterations to
find the roots r1, . . . , r2R+1 for h′(x) and 2R+ 2 bisection search iterations to find 2R+ 2 roots for
h(x).

The total computations complexity is hence at most O(MK logBd) evaluations of polynomials
with degree at most O(MK) and at most O(MK) polynomial divisions, which requires at most
O((MK)2 logBd) multiplications and additions for integers of size at most log p′. This results in an
overall complexity of O((MK)3d2 logc(MK) logB), for some constant c < 2.

M COMPARISON AMONG SCMA, PRIVATE SET UNION AND SPARSE SECURE
MODEL AGGREGATION

Our SCMA scheme is different from a related problem of private set union (Kissner & Song, 2005;
Frikken, 2007; Seo et al., 2012), in which multiple parties communicate with each other to securely
compute the union of their sets. In SCMA we aggregate multisets, which include the frequency of
each element that is not revealed in the private set union problem. In addition, our scheme includes
only one round of communication from clients to the server, while there is no server in the private
set union problem and multi-round client to client communication is needed. Note that SCMA may
also be adapted to solve problems related with sparse secure model aggregation (Beguier et al., 2020;
Ergun et al., 2021), which is another interesting but orthogonal research direction to this work.

N EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

N.1 DATASETS

In what follows, we describe the datasets used in our numerical experiments. Note that we prepro-
cessed all datasets such that the absolute value of each element in the data matrix is smaller than 1.
Each dataset has an intrinsic parameter K for the number of optimal clusters, and these are used in
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the centralized K-means++ algorithm to compute the approximation of the optimal objective value.
We use ϕ∗

c(X) in subsequent derivation to denote the objective value returned by the K-means++
algorithm. Besides K, we set an additional parameter K ′ ∼

√
K for each client data so that the

number of true clusters at the client level is not larger than K ′. This non-i.i.d. data distribution across
clients is discussed in Dennis et al. (2021). For small datasets (e.g., TCGA, TMI), we consider the
number of clients L as 10, and set L = 100 for all other datasets.

Celltype [n = 12009, d = 10,K = 4] (Han et al., 2018; Gardner et al., 2014b) comprises single cell
RNA sequences belonging to a mixture of four cell types: fibroblasts, microglial cells, endothelial
cells and mesenchymal stem cells. The data, retrieved from the Mouse Cell Atlas, consists of 12009
data points and each sample has 10 feature dimensions, reduced from an original dimension of 23, 433
using Principal Component Analysis (PCA). The sizes of the four clusters3 are 6506, 2328, 2201, 974.

Postures [n = 74975, d = 15,K = 5] (Gardner et al., 2014b;a) comprises images obtained via a
motion capture system and a glove for 12 different users performing five hand postures – fist, pointing
with one finger, pointing with two fingers, stop (hand flat), and grab (fingers curled). For establishing
a rotation and translation invariant local coordinate system, a rigid unlabeled pattern on the back of
the glove was utilized. There are a total of 74975 samples in the dataset and the data dimension is 15.
The sizes of the given clusters are 19772, 17340, 15141, 12225, 10497.

Covtype [n = 15120, d = 52,K = 7] (Blackard & Dean, 1999) comprises digital spatial data for
seven forest cover types obtained from the US Forest Service (USFS) and the US Geological Survey
(USGS). There are 52 cartographic variables including slope, elevation, and aspect. The dataset has
15120 samples. The sizes of the seven clusters are 3742, 3105, 2873, 2307, 1482, 886, 725.

Gaussian [n = 30000, d = 10,K = 10] comprises ten clusters, each generated from a 10-variate
Gaussian distribution centered at uniformly at random chosen locations in the unit hypercube. From
each cluster, 3000 samples are taken, for a total of 30000 samples. Each Gaussian cluster is spherical
with variance 0.5.

FEMNIST [n = 36725, d = 784,K = 62] (Caldas et al., 2018) is a popular FL benchmark dataset
comprising images of digits (0-9) and letters from the English alphabet (both upper and lower cases)
from over 3500 users. It dataset is essentially built from the Extended MNIST repository (Cohen et al.,
2017) by partitioning it on the basis of the writer of the digit/character. We extract data corresponding
to 100 different clients, each of which contributed at least 350 data points. Each image has dimension
784. The size of the largest cluster is 1234, and that of the smallest cluster is 282.

TCGA [n = 1904, d = 57,K = 4] methylation consists of methylation microarray data for 1904
samples from The Cancer Genome Atlas (TCGA) (Hutter & Zenklusen, 2018) corresponding to four
different cancer types: Low Grade Glioma (LGG), Lung Adenocarcinoma (LUAD), Lung Squamous
Cell Carcinoma (LUSC) and Stomach Adenocarcinoma (STAD). The observed features correspond
to a subset of β values, representing the coverage of the methylated sites, at 57 locations on the
promoters of 11 different genes (ATM, BRCA1, CASP8, CDH1, IGF2, KRAS, MGMT, MLH1,
PTEN, SFRP5 and TP53). This subset of genes was chosen for its relevance in carcinogenesis. The
sizes of the four clusters are 735, 503, 390, 276.

TMI [n = 1126, d = 984,K = 4] contains samples from human gut microbiomes. We retrieved
1126 human gut microbiome samples from the NIH Human Gut Microbiome (Peterson et al., 2009).
Each data point is of dimension 983, capturing the frequency (concentration) of identified bacterial
species or genera in the sample. The dataset can be roughly divided into four classes based on gender
and age. The sizes of the four clusters are 934, 125, 46, 21.

N.2 BASELINE SETUPS.

We use the publicly available implementation of K-FED and DC-KM as our baseline methods. For
DC-KM, we set the height of the computation tree to 2, and observe that the leaves represent the clients.
Since K-FED does not originally support data removal, has high computational complexity, and its
clustering performance is not comparable with that of DC-KM (see Tab. 1), we thus only compare
the unlearning performance of MUFC with DC-KM. During training, the clustering parameter K is

3The clusters are obtained by running centralized K-means++ clustering multiple times and selecting the
one inducing the lowest objective value.
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set to be the same in both clients and server for all methods, no matter how the data was distributed
across the clients. Experiments on all datasets except FEMNIST were repeated 5 times to obtain the
mean and standard deviations, and experiments on FEMNIST were repeated 3 times due to the high
complexity of training. Note that we used the same number of repeated experiments as in Ginart et al.
(2019).

N.3 ENABLING COMPLETE CLIENT TRAINING FOR MUFC

Note that both K-FED and DC-KM allow clients to perform full K-means++ clustering to improve
the clustering performance at the server. Thus it is reasonable to enable complete client training for
MUFC as well to compare the clustering performance on the full datasets. Although in this case we
need to retrain affected clients and the server for MUFC upon each removal request, leading to a
similar unlearning complexity as DC-KM, the clustering performance of MUFC is consistently better
than that of the other two baseline approaches (see Tab. 2). This is due to the fact that we utilize
information about the aggregated weights of client centroids.

Table 2: Clustering performance of different federated clustering algorithms compared to centralized
K-means++ clustering.

TMI Celltype Gaussian TCGA Postures FEMNIST Covtype

Loss ratio
MUFC 1.05 ± 0.01 1.03 ± 0.00 1.02 ± 0.00 1.02 ± 0.01 1.02 ± 0.00 1.12 ± 0.00 1.02 ± 0.00
K-FED 1.84 ± 0.07 1.72 ± 0.24 1.25 ± 0.01 1.56 ± 0.11 1.13 ± 0.01 1.21 ± 0.00 1.60 ± 0.01
DC-KM 1.54 ± 0.13 1.46 ± 0.01 1.02 ± 0.00 1.15 ± 0.02 1.03 ± 0.00 1.18 ± 0.00 1.03 ± 0.02

N.4 LOSS RATIO AND UNLEARNING EFFICIENCY

In Fig. 4 we plot results pertaining to the change of loss ratio after each removal request and the
accumulated removal time when the removal requests are adversarial. The conclusion is consistent
with the results in Section 6.

Figure 4: The shaded areas represent the standard deviation of results from different trails for
all subplots. (a)-(d) The change of loss ratio ϕf (X;Cs)/ϕ

∗
c(X) after each round of unlearning

procedure. (e)-(h) The accumulated removal time for adversarial removals.
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