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APPENDIX

A PROOF OF THEOREM 1

Proof. Denote α̂t = αt

√
1−βt

2

1−βt
1,t

and vt = max(
√
bt, δ

√
1− βt2), then

‖
√
vt(wt+1 −w∗)‖2 = ‖

√
vt(wt − α̂t

mt

vt
−w∗)‖2 = ‖

√
vt(wt −w∗)‖2 − 2α̂t 〈wt −w∗,mt〉+ α̂2

t ‖
mt√
vt
‖2

= ‖
√
vt(wt −w∗)‖2 + α̂2

t ‖
mt√
vt
‖2 − 2α̂tβ1,t 〈wt −w∗,mt−1〉 − 2α̂t(1− β1,t) 〈wt −w∗, gt〉 .

(6)
Rearranging Equation 6, we have

〈wt −w∗, gt〉 =
1

1− β1,t

[
1

2α̂t
(‖
√
vt(wt −w∗)‖2 − ‖

√
vt(wt+1 −w∗)‖2)− β1,t 〈wt −w∗,mt−1〉+

α̂t
2
‖mt√
vt
‖2
]

≤ 1

1− β1

[
1

2α̂t
(‖
√
vt(wt −w∗)‖2 − ‖

√
vt(wt+1 −w∗)‖2) +

β1,t

2α̂t
‖wt −w∗‖2

+
β1,tα̂t

2
‖mt−1‖2 +

α̂t
2
‖mt√
vt
‖2
]
,

where the first inequality follows from Cauchy-Schwartz inequality and ab ≤ 1
2 (a2 + b2). Hence, the

regret

T∑
t=1

(ft(wt)− ft(w∗)) ≤
T∑
t=1

〈wt −w∗, gt〉

≤ 1

1− β1

T∑
t=1

[
1

2α̂t
(‖
√
vt(wt −w∗)‖2 − ‖

√
vt(wt+1 −w∗)‖2) +

β1,t

2α̂t
‖wt −w∗‖2

+
β1,tα̂t

2
‖mt−1‖2 +

α̂t
2
‖mt√
vt
‖2
]
,

(7)
where the first inequality follows from the convexity of ft(w). For further bounding Equation 7, we
need the following lemmas.

Lemma 1. For the parameter settings and conditions assumed in Theorem 1, we have

α̂t > α̂t+1, t ∈ [T ],

where α̂t = αt

√
1−βt

2

1−βt
1,t

.

Proof. Since 1
1−βt

1,t
is non-increasing, we only need to prove φ(t) = αt

√
1− βt2 is decreasing.

Since

φ′(t) = −α
2
t−

3
2 (1− βt2)

1
2 − α

2
t
1
2 (1− βt2)−

1
2 βt−1

2 < 0,

hence we complete the proof.

Lemma 2. For the parameter settings and conditions assumed in Theorem 1, we have

T∑
t=1

α̂t‖mt‖2 <
2nαG2

∞
(1− β1)3

√
T .
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Proof. From Equation 4, we have

α̂t‖mt‖2 = α̂t‖
t∑
i=1

(1− β1,t−i+1)gt−i+1

i−1∏
j=1

β1,t−j+1‖2 ≤ α̂t‖
t∑
i=1

gt−i+1β
i−1
1 ‖2

= α̂t

n∑
j=1

(
t∑
i=1

gt−i+1,jβ
i−1
1

)2

≤ α̂t
n∑
j=1

(
t∑
i=1

g2
t−i+1,jβ

i−1
1

)(
t∑
i=1

βi−1
1

)

<
α√
t

1

1− β1,t

nG2
∞

(1− β1)2
≤ nαG2

∞
(1− β1)3

1√
t
,

where the second inequality follows from Cauchy-Schwartz inequality. Therefore,

T∑
t=1

α̂t‖mt‖2 <
nαG2

∞
(1− β1)3

T∑
t=1

1√
t
<

2nαG2
∞
√
T

(1− β1)3
,

where the last inequality follows from

T∑
t=1

1√
t

= 1 +

∫ 3

2

1√
2
ds+ · · ·+

∫ T

T−1

1√
T
ds

< 1 +

∫ 3

2

1√
s− 1

ds+ · · ·+
∫ T

T−1

1√
s− 1

ds

= 1 +

∫ T

2

1√
s− 1

ds = 2
√
T − 1− 1 < 2

√
T .

This completes the proof.

Lemma 3. For the parameter settings and conditions assumed in Theorem 1, we have

‖
√
vt‖2 <

n(2G∞ + δ)

(1− β1)2
, t ∈ [T ],

where vt = max(
√
bt, δ

√
1− βt2).

Proof.

‖mt‖∞ =‖
t∑
i=1

(1− β1,t−i+1)gt−i+1

i−1∏
j=1

β1,t−j+1‖∞ ≤ ‖
t∑
i=1

gt−i+1β
i−1
1 ‖∞ ≤

G∞
1− β1

,

‖st‖∞ ≤


‖m1‖∞
1−β1,t

≤ G∞
(1−β1)2 <

2G∞
(1−β1)2 t = 1,

‖mt‖∞
1−βt

1,t
+ ‖mt−1‖∞

1−βt−1
1,t

≤ 2G∞
(1−β1)2 t > 1,

‖bt‖∞ =‖(1− β2)

t∑
i=1

s2
t−i+1β

i−1
2 ‖∞ ≤

4G2
∞

(1− β1)4
,

‖
√
vt‖2 =

n∑
i=1

vt,i < n(‖
√
bt‖∞ + δ) ≤ n(2G∞ + δ)

(1− β1)2
.
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Now we return to the proof of Theorem 1. Let α̂0 := α̂1. By Lemma 1, Lemma 2, Lemma 3 and
Equation 7, we have

T∑
t=1

(ft(wt)− ft(w∗)) ≤
1

1− β1

[
1

2α̂1
‖
√
v1(w1 −w∗)‖2 +

T∑
t=2

(
1

2α̂t
‖
√
vt(wt −w∗)‖2 −

1

2α̂t−1
‖√vt−1(wt −w∗)‖2

)

+

T∑
t=1

β1,t

2α̂t
‖wt −w∗‖2 +

T∑
t=1

(
α̂t−1

2
‖mt−1‖2 +

α̂t
2
‖mt√
vt
‖2
)]

≤ 1

1− β1

[
D2
∞

2α̂1
‖
√
v1‖2 +

T∑
t=2

D2
∞

(
‖√vt‖2

2α̂t
−
‖√vt−1‖2

2α̂t−1

)
+

T∑
t=1

β1,t

2α̂t
nD2
∞

+

T∑
t=1

α̂t

(
1

2
+

1

2δ
√

1− β2

)
‖mt‖2

]

=
1

1− β1

[
D2
∞
‖√vT ‖2

2αT
+

T∑
t=1

β1,t

2α̂t
nD2
∞ +

T∑
t=1

α̂t

(
1

2
+

1

2δ
√

1− β2

)
‖mt‖2

]

<
1

1− β1

[
n(2G∞ + δ)D2

∞
2α
√

1− β2(1− β1)2

√
T +

T∑
t=1

β1,t

2α̂t
nD2
∞ +

nαG2
∞

(1− β1)3

(
1 +

1

δ
√

1− β2

)√
T

]
.

This completes the proof.

B PROOF OF COROLLARY 1

Proof. Since β1,t = β1/t, we have

T∑
t=1

β1,t

2α̂t
=

T∑
t=1

(1− βt1,t)
√
tβ1,t

2α
√

1− βt2
<

T∑
t=1

√
tβ1,t

2α
√

1− β2

=
β1

2α
√

1− β2

T∑
t=1

1√
t
<

β1

α
√

1− β2

√
T .

This completes the proof.

C PROOF OF THEOREM 2

Proof. Denote α̂t = αt

√
1−βt

2

1−βt
1,t

and vt = max(
√
bt, δ

√
1− βt2). By assumptions 2, 4, Lemma 1 and

Lemma 3, ∀t ∈ [T ], we have

‖mt‖∞ ≤
G∞

1− β1
, ‖vt‖∞ ≤

2G∞
(1− β1)2

,
α̂t
vt,i

>
α̂t+1

vt+1,i
, ∀i ∈ [n]. (8)

Following Yang et al. (2016); Chen et al. (2019); Zhou et al. (2018), we define an auxiliary sequence
{ut}: ∀t ≥ 2,

ut = wt +
β1,t

1− β1,t
(wt −wt−1) =

1

1− β1,t
wt −

β1,t

1− β1,t
wt−1, (9)
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hence, we have

ut+1 − ut =

(
1

1− β1,t+1
− 1

1− β1,t

)
wt+1 −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
wt

+
1

1− β1,t
(wt+1 −wt)−

β1,t

1− β1,t
(wt −wt−1)

=

(
1

1− β1,t+1
− 1

1− β1,t

)
(wt − α̂t

mt

vt
)−

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
wt

− α̂t
1− β1,t

mt

vt
+
β1,tα̂t−1

1− β1,t

mt−1

vt−1

=

(
1

1− β1,t
− 1

1− β1,t+1

)
α̂t
mt

vt
− α̂t

1− β1,t

(
β1,t

mt−1

vt
+ (1− β1,t)

gt
vt

)
+
β1,tα̂t−1

1− β1,t

mt−1

vt−1

=

(
1

1− β1,t
− 1

1− β1,t+1

)
α̂t
mt

vt
+

β1,t

1− β1,t

(
α̂t−1

vt−1
− α̂t
vt

)
mt−1 − α̂t

gt
vt
.

(10)
By assumption 1 and Equation 10, we have

f(ut+1) ≤f(ut) + 〈∇f(ut),ut+1 − ut〉+
L

2
‖ut+1 − ut‖2

=f(ut) + 〈∇f(wt),ut+1 − ut〉+ 〈∇f(ut)−∇f(wt),ut+1 − ut〉+
L

2
‖ut+1 − ut‖2

=f(ut) +

〈
∇f(wt),

(
1

1− β1,t
− 1

1− β1,t+1

)
α̂t
mt

vt

〉
+

β1,t

1− β1,t

〈
∇f(wt),

(
α̂t−1

vt−1
− α̂t
vt

)
mt−1

〉
− α̂t

〈
∇f(wt),

gt
vt

〉
+ 〈∇f(ut)−∇f(wt),ut+1 − ut〉+

L

2
‖ut+1 − ut‖2.

(11)
Rearranging Equation 11 and taking expectation both sides, by assumption 3 and Equation 8, we get

(1− β1)2α̂t
2G∞

E[‖∇f(wt)‖2] ≤α̂tE
[〈
∇f(wt),

∇f(wt)

vt

〉]
≤E[f(ut)− f(ut+1)] + E

[〈
∇f(wt),

(
1

1− β1,t
− 1

1− β1,t+1

)
α̂t
mt

vt

〉]
︸ ︷︷ ︸

P1

+
β1,t

1− β1,t
E

[〈
∇f(wt),

(
α̂t−1

vt−1
− α̂t
vt

)
mt−1

〉]
︸ ︷︷ ︸

P2

+ E [〈∇f(ut)−∇f(wt),ut+1 − ut〉]︸ ︷︷ ︸
P3

+
L

2
E
[
‖ut+1 − ut‖2

]︸ ︷︷ ︸
P4

.

(12)
For further bounding Equation 12, we need the following lemma.

Lemma 4. For the sequence {ut} defined as Equation 9, ∀t ≥ 2, we have

‖ut+1 − ut‖ ≤
√
nG∞
δ

(
α̂tβ1,t

(1− β1)3
+

α̂t−1β1,t

(1− β1)2
+ α̂t

)
,

‖ut+1 − ut‖2 ≤
3nG2

∞
δ2

(
α̂2
tβ

2
1,t

(1− β1)6
+

α̂2
t−1β

2
1,t

(1− β1)4
+ α̂2

t

)
.
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Proof. Since ∀t ∈ [T ],∀i ∈ [n], 1/(1 − β1,t) ≥ 1/(1 − β1,t+1), vt ≥ δ
√

1− β2, α̂t−1/vt−1,i >
α̂t/vt,i. By Equation 10, we have

‖ut+1 − ut‖ ≤ α̂t
√
nG∞

(1− β1)δ
√

1− β2

(
β1,t − β1,t+1

(1− β1,t)(1− β1,t+1)

)
+

β1,t

1− β1,t
α̂t−1

√
nG∞

(1− β1)δ
√

1− β2
+ α̂t

√
nG∞

δ
√

1− β2

≤
√
nG∞

δ
√

1− β2

(
α̂tβ1,t

(1− β1)3
+

α̂t−1β1,t

(1− β1)2
+ α̂t

)
,

‖ut+1 − ut‖2 ≤
3nG2

∞
δ2(1− β2)

(
α̂2
tβ

2
1,t

(1− β1)6
+

α̂2
t−1β

2
1,t

(1− β1)4
+ α̂2

t

)
,

where the last inequality follows from Cauchy-Schwartz inequality. This completes the proof.

Now we bound P1, P2, P3 and P4 of Equation 12 separately. By assumptions 1, 2, Equation 8 and
Lemma 4, we have

P1 ≤ α̂t
(

1

1− β1,t
− 1

1− β1,t+1

)
E

[
‖∇f(wt)‖‖

mt

vt
‖
]

≤ α̂t
(

β1,t − β1,t+1

(1− β1,t)(1− β1,t+1)

)
nG2
∞

δ
√

1− β2(1− β1)
≤ nG2

∞
(1− β1)3δ

√
1− β2

α̂t(β1,t − β1,t+1),

P2 ≤ E

[
‖∇f(wt)‖‖

(
α̂t−1

vt−1
− α̂t
vt

)
mt−1‖

]
≤ G2

∞
1− β1

‖ α̂t−1

vt−1
− α̂t
vt
‖ ≤ G2

∞
1− β1

n∑
i=1

(
α̂t−1

vt−1,i
− α̂t
vt,i

),

P3 ≤ E [‖∇f(ut)−∇f(wt)‖‖ut+1 − ut‖] ≤ LE [‖ut −wt‖‖ut+1 − ut‖]

= Lα̂t−1
β1,t

1− β1,t
E

[
‖mt−1

vt−1
‖‖ut+1 − ut‖

]
≤ LnG2

∞
(1− β1)2δ2(1− β2)

(
α̂t−1α̂tβ

2
1,t

(1− β1)3
+

α̂2
t−1β

2
1,t

(1− β1)2
+ α̂t−1α̂tβ1,t

)

<
LnG2

∞
(1− β1)2δ2(1− β2)

(
α̂2
t−1

(1− β1)3
+

α̂2
t−1

(1− β1)2
+ α̂2

t−1

)
<

3LnG2
∞

(1− β1)5δ2(1− β2)
α̂2
t−1,

P4 ≤
3nG2

∞
δ2(1− β2)

(
α̂2
tβ

2
1,t

(1− β1)6
+

α̂2
t−1β

2
1,t

(1− β1)4
+ α̂2

t

)
<

3nG2
∞

δ2(1− β2)

(
α̂2
t

(1− β1)6
+

α̂2
t−1

(1− β1)4
+ α̂2

t

)
<

9nG2
∞

(1− β1)6δ2(1− β2)
α̂2
t−1.

(13)
Replacing P1, P2, P3 and P4 of Equation 12 with Equation 13 and telescoping Equation 12 for t = 2
to T , we have

T∑
t=2

(1− β1)2α̂t
2G∞

E
[
‖∇f(wt)‖2

]
< E [f(u2)− f(uT+1)] +

nG2
∞

(1− β1)3δ
√

1− β2

T∑
t=2

α̂t(β1,t − β1,t+1)

+
β1G

2
∞

(1− β1)2

n∑
i=1

(
α̂1

v1,i
− α̂T
vT,i

)
+

3LnG2
∞

(1− β1)5δ2(1− β2)

T∑
t=2

α̂2
t−1 +

9LnG2
∞

2(1− β1)6δ2(1− β2)

T∑
t=2

α̂2
t−1

<E [f(u2)]− f(w∗) +
nG2
∞

(1− β1)3δ
√

1− β2

T∑
t=1

α̂t(β1,t − β1,t+1) +
αβ1nG

2
∞

(1− β1)3δ

+
15LnG2

∞
2(1− β1)6δ2(1− β2)

T∑
t=1

α̂2
t .

(14)
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Since

T∑
t=2

α̂t =

T∑
t=2

α√
t

√
1− βt2

1− βt1,t
≥ α

√
1− β2

T∑
t=2

1√
t

=α
√

1− β2

(∫ 3

2

1√
2
ds+ · · ·+

∫ T

T−1

1√
T
ds

)
> α

√
1− β2

∫ T

2

1√
s
ds

=2α
√

1− β2

(√
T −
√

2
)
,

T∑
t=1

α̂2
t =

T∑
t=1

α2

t

1− βt2
(1− β1,t)2

≤ α2

(1− β1)2

T∑
t=1

1

t

=
α2

(1− β1)2

(
1 +

∫ 3

2

1

2
ds+ · · ·+

∫ T

T−1

1

T
ds

)
<

α2

(1− β1)2

(
1 +

∫ 3

2

1

s− 1
ds

)
=

α2

(1− β1)2
(log(T − 1) + 1) <

α2

(1− β1)2
(log T + 1) ,

E [f(u2)] ≤f(w1) + E [〈∇f(w1),u2 −w1〉] +
L

2
E
[
‖u2 −w1‖2

]
=f(w1)− α̂1

1− β1,2
E

[〈
∇f(w1),

m1

v1

〉]
+

Lα̂2
1

2(1− β1,2)2
E

[
‖m1

v1
‖2
]

≤f(w1) +
α
√

1− β2

(1− β1)2
E

[
‖∇f(w1)‖‖m1

v1
‖
]

+
Lα2(1− β2)

2(1− β1)4
E

[
‖m1

v1
‖2
]

≤f(w1) +
αnG2

∞
(1− β1)2δ

+
Lα2nG2

∞
2(1− β1)4δ2

≤ f(w1) +
nG2
∞α

2(1− β1)4δ2
(2δ + Lα),

(15)
substituting Equation 15 into Equation 14, we have

min
t∈[T ]

E
[
‖∇f(wt)‖2

]
<

2G∞

(1− β1)2
∑T
t=2 α̂t

(
E [f(u2)]− f(w∗) +

nG2
∞

(1− β1)3δ
√

1− β2

T∑
t=1

α̂t(β1,t − β1,t+1)

+
αβ1nG

2
∞

(1− β1)3δ
+

15LnG2
∞

2(1− β1)6δ2(1− β2)

T∑
t=1

α̂2
t

)
<

G∞

α(1− β1)2(1− β2)2(
√
T −
√

2)

(
f(w1)− f(w∗) +

nG2
∞α

2(1− β1)4δ2
(2δ + Lα)

+
nG2
∞

(1− β1)3δ

T∑
t=1

α̂t(β1,t − β1,t+1) +
αβ1nG

2
∞

(1− β1)3δ
+

15LnG2
∞α

2

2(1− β1)8δ2
(log T + 1)

)
≤ G∞
α(1− β1)2(1− β2)2

(
f(w1)− f(w∗) +

nG2
∞α

(1− β1)8δ2
(δ + 8Lα) +

αβ1nG
2
∞

(1− β1)3δ

)
1√

T −
√

2

+
15LnG3

∞α

2(1− β2)2(1− β1)10δ2

log T√
T −
√

2
+

nG3
∞

α(1− β1)5(1− β2)2δ

∑T
t=1 α̂t(β1,t − β1,t+1)√

T −
√

2
.

(16)
This completes the proof.

17



Under review as a conference paper at ICLR 2023

D PROOF OF COROLLARY 2

Proof. Since β1,t = β1/
√
t, we have

T∑
t=1

α̂t(β1,t − β1,t+1) ≤
T∑
t=1

α̂tβ1,t =

T∑
t=1

α√
t

√
1− βt2

1− βt1,t
β1,t <

α

1− β1

T∑
t=1

1

t
<

α

1− β1
(log T + 1).

(17)
Substituting Equation 17 into Equation 16, we have

min
t∈[T ]

E
[
‖∇f(wt)‖2

]
<

G∞
α(1− β1)2(1− β2)2

(
f(w1)− f(w∗) +

nG2
∞α

(1− β1)8δ2
(2δ + 8Lα)

+
αβ1nG

2
∞

(1− β1)3δ

)
1√

T −
√

2
+

nG3
∞

(1− β2)2(1− β1)10δ2

(
15

2
Lα+ δ

)
log T√
T −
√

2
.

This completes the proof.

E DETAILS OF EXPERIMENTS

E.1 NUMERICAL EXPERIMENTS

We use the same reasonable learning rate across optimizers in numerical experiments, mainly because
larger learning rate usually gives an extra edge to the rate of convergence, as shown in Figures 5a
and 5b. Another observation is that larger learning rate makes training unstable. So we search for
the largest lr each optimizer can get in {1e-5, 1e-4, ..., 1, 10} for Beale function. The optimization
trajectory is shown in Figure 5c, and AdaDQH has a slightly better performance. Regardless, we
believe the learning rate choice in Section 2.3 is a more appropriate representation.
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Figure 5: Optimization trajectories on Beale function using various learning rates.

E.2 CONFIGURATION OF OPTIMIZERS

Here, we give the details of the hyperparameters of optimizers on different tasks. We reuse most of
the configurations reported in the literature Yao et al. (2020); Zhuang et al. (2020).

CV

• SGD/Adam/AdamW: We adopt the same experimental setup in Yao et al. (2020). For SGD, the
initial learning rate is 0.1 and the momentum is set to 0.9. For Adam, the initial learning rate is set
to 0.001 and the epsilon is set to 1e-8. For AdamW, the initial learning rate is set to 0.005 and the
epsilon is set to 1e-8.

• AdaBelief: We explore the best learning rate for ResNet20/32 on Cifar10 and ResNet18 on
ImageNet, respectively. Finally, the initial learning rate is set to be 0.01 for ResNet20 on Cifar10
and 0.005 for ResNet32/ResNet18 on Cifar10/ImageNet. The epsilon is set to 1e-16.

• AdaHessian: We use as much as possible the recommended configuration from Yao et al. (2020).
The block size and the Hessian power are both 1. The initial learning rate is 0.15 when training on
Cifar10, whereas it causes the training to diverge on ImageNet, hence we search for the learning
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rate among {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1} and choose the best which is
0.0001. The epsilon is set to 1e-4.

• AdaDQH: We conduct a grid search of δ and the learning rate. The choice of δ is among {1e-8,
1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2} and the search range for the learning rate is from 1e-4 to 1e-2.
Finally, the chosen learning rate and δ is 0.007 and 1e-2 for Cifar10 task and 0.0004 and 1e-5 for
ImageNet task.

The weight decay for all optimizers is set to 0.0005 on Cifar10 and 0.0001 on ImageNet. β1 = 0.9
and β2 = 0.999 are for all adaptive optimizers.

NLP

• SGD/Adam/AdamW: For the NMT task, we report the results of SGD from Yao et al. (2020), while
setting learning rate as 5e-4 and epsilon as 1e-8 for Adam. For the LM task, we follow the settings
from Zhuang et al. (2020), setting learning rate to 30 for SGD and 0.001 for Adam/AdamW while
epsilon to 1e-12 for Adam/AdamW when training 1-layer LSTM. For 2,3-layer LSTM, learning
rate 0.01 and epsilon 1e-8 are used for Adam/AdamW.

• AdaBelief: For the NMT task we use the recommended configuration from the latest implementa-
tion2 for transformer, which sets learning rate as 5e-4 and epsilon as 1e-16. We adopt the same
LSTM experimental setup for the LM task and maintain the optimal settings provided by Zhuang
et al. (2020).

• AdaHessian: For the NMT task, we adopt the same experimental setup as in the official imple-
mentation3. For LM task, we search the learning rate among {1e-3, 1e-2, 0.1, 1} and hessian
power among {0.5, 1, 2}, and finally select 0.1/0.5 for learning rate and hessian power for 1-layer
LSTM, as well as 1.0/0.5 for 2,3-layer LSTM. Note that AdaHessian appears to overfit when using
learning rate 1.0. Accordingly, we also try to decay its learning rate in the 50/90 epoch, but it
achieves a similar PPL.

• AdaDQH: For the NMT task, we search learning rate among {5e-5, 1e-4, 5e-4, 1e-3} and δ among
{1e-16, 1e-14, 1e-12, 1e-10, 1e-8}. We report the best result with learning rate 5e-5 and δ as 1e-14
for AdaDQH. As for LM task, we search learning rate among {1e-4, 5e-4, 1e-3, 5e-3, 1e-2} and
δ from 1e-16 to 1e-4, and the best settings for learning rate/δ are 5e-4/1e-10 and 1e-3/1e-5 for
1-layer LSTM and 2,3-layer LSTM, respectively.

The weight decay is set to 1e-4/1.2e-6 for all optimizers in the NMT/LM task, respectively. For
adaptive optimizers, we set (β1, β2) to (0.9, 0.98) in the NMT task and (0.9, 0.999) in the LM task.

RecSys It is noteworthy that we reimplement the optimizers for training on our internal distributed
system.

• SGD: We search for the learning rate among {1e-4, 1e-3, 1e-2, 0.1, 1} and choose the best results,
which are 0.1 for Avazu task and 1e-3 for Criteo task.

• Adam/AdaBelief/AdaHessian: We search the learning rate among {1e-5, 1e-4, 1e-3, 1e-2} and
choose the best results which are 1e-4 for Avazu task and 1e-3 for Criteo task. The epsilon of
Adam, AdaBelief, and AdaHessian is set to 1e-8, 1e-16, and 1e-8 respectively. The block size and
the Hessian power of AdaHessian are both 1.

• AdaDQH: We conduct a grid search of the learning rate and epsilon. The choice of the learning
rate is among {1e-5, 1e-4, 1e-3} and δ is among {1e-12, 1e-10, 1e-8, 1e-6, 1e-4, 1e-2}. The best
settings for the learning rate/δ are 1e-4/1e-4 for Avazu task and 1e-4/1e-8 for Criteo task.

β1 = 0.9 and β2 = 0.999 are for all adaptive optimizers.

E.3 ADADQH WITH AMSGRAD CONDITION

Algorithm 2 gives the AdaDQH optimizer with AMSGrad condition. The AMSGrad condition is
usually used to ensure the convergence. We empirically prove that adding AMSGrad condition to

2https://github.com/juntang-zhuang/Adabelief-Optimizer
3https://github.com/amirgholami/adahessian
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AdaDQH will slightly degenerate AdaDQH’s performance, as listed in Table 7. For AdaDQH with
AMSGrad condition, we re-search for the learning rate among {0.001, 0.003, 0.005, 0.007, 0.01}
and for δ among {1e-2, 1e-4, 1e-6, 1e-8}, and find the best learning rate and δ are 0.007 and 1e-2
respectively, which are the same as AdaDQH without AMSGrad condition.

Algorithm 2 AdaDQH with AMSGrad condition

1: Input: parameters β1, β2, δ, w1 ∈ Rn, step size αt, initializem0 = 0, b0 = 0
2: for t = 1 to T do
3: gt = ∇ft(wt)
4: mt ← β1mt−1 + (1− β1)gt

5: st =

{
m1/(1− β1) t = 1
mt/(1− βt1)−mt−1/(1− βt−1

1 ) t > 1

6: bt ← β2bt−1 + (1− β2)s2
t

7: bt ← max(bt, bt−1) // AMSGrad condtion

8: wt+1 = wt − αt
√

1−βt
2

1−βt
1

mt

max(
√
bt,δ
√

1−βt
2)

9: end for

Table 7: Top-1 accuracy for AdaDQH without and with AMSGrad condition when trained with
ResNet20 on Cifar10.

Optimizer AdaDQH AdaDQH + AMSGrad

Accuracy 92.35± .24 92.25± 0.11

E.4 DISCUSSION OF IMAGENET EXPERIMENT

We compare our experimental results on ImageNet with other articles (Yao et al., 2020; Zhuang et al.,
2020; Chen et al., 2020). AdaHessian can achieve 70.08% top-1 accuracy in Yao et al. (2020) while
we report 69.94± 0.09%. We note that we have searched for the best learning rate of AdaHessian,
since using the recommended learning rate of 0.15 will cause the training to diverge, which may
account for this difference. Our reported top-1 accuracy of AdaBelief is 69.93± 0.09%, which is
slightly lower than what is reported in Zhuang et al. (2020), i.e. 70.08%. The differences in learning
rate scheduler and weight decay rate may account for this discrepancy. Our reported top-1 accuracy of
SGD is 69.85± 0.04%, significantly lower than 70.23% reported in Chen et al. (2020). We find that
the differences in training epochs, learning rate scheduler and weight decay rate are the main reason.
We also run the experiment using the same configuration as in Chen et al. (2020), and AdaDQH
can achieve 70.45% accuracy at lr = 4e-4 and δ = 1e-5, which is still better than the 70.23% result
reported in Chen et al. (2020).

E.5 ADADQH FOR RESNET18 ON CIFAR10

Since the SOTA accuracy 4 for ResNet18 on Cifar10 is 95.55% using SGD optimizer with a cosine
learning rate schedule, we also test the performance of AdaDQH for ResNet18 on Cifar10. We find
AdaDQH can achieve 95.79% accuracy at lr = 0.001 and δ = 1e-2 when using the same training
configuration as the experiment of SGD in Moreau et al. (2022), which exceeds the current SOTA
result.

E.6 ROBUSTNESS TO HYPERPARAMETERS

We test the performance of AdaDQH and Adam with respect to δ/ε and learning rate. The experiments
are performed with ResNet20 on Cifar10 and the results are shown in Figure 6. Compared to Adam,
AdaDQH shows better robustness to the change of hyperparameters.

4https://paperswithcode.com/sota/stochastic-optimization-on-cifar-10-resnet-18
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Figure 6: Testing accuracy of ResNet20 on Cifar10, trained with AdaDQH and Adam using different
δ/ε and learning rate. For (a) and (b), we choose learning rate as 0.007 and 0.001, respectively. For
(c) and (d), we set δ/ε to be 1e-2 and 1e-8, respectively.
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