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Abstract

In the adversarial training framework of Carmon et al. (2019); Gowal et al. (2021),
people use generated/real unlabeled data with pseudolabels to improve adversarial
robustness. We provide statistical insights to explain why the artificially generated
data improve adversarial training. In particular, we study how the attack strength
and the quality of the unlabeled data affect adversarial robustness in this framework.
Our results show that with a high-quality unlabeled data generator, adversarial
training can benefit greatly from this framework under large attack strength, while
a poor generator can still help to some extent. To make adaptions concerning the
quality of generated data, we propose an algorithm that performs online adjustment
to the weight between the labeled real data and the generated data, aiming to
optimize the adversarial risk. Numerical studies are conducted to verify our
theories and show the effectiveness of the proposed algorithm.

1 Introduction

Adversarial training is a popular and simple way to improve the adversarial robustness of modern
machine learning models. There are fruitful results in the theoretical justification and methodology
development. Among various research directions, one interesting aspect is to use extra unlabeled
data to assist adversarial training. Recent works successfully demonstrate a great improvement in the
adversarial robustness with additional unlabeled data. For example, Carmon et al. (2019); Xing et al.
(2021b, 2022), show that additional external real data help improve adversarial robustness; Gowal
et al. (2021) uses synthetically generated data to improve the adversarial robustness and achieves
the highest 66% adversarial testing accuracy for CIFAR-10 dataset under AutoAttack (AA) in Croce
et al. (2020)1 in the literature. The algorithms utilizing real/generated unlabeled data in adversarial
training in Carmon et al. (2019); Gowal et al. (2021) are summarized in Figure 1. Note that to unify
the these two algorithms, we view the unlabeled real data used in Carmon et al. (2019) as synthetic
data generated from an ideal generator.

However, two fundamental questions about utilizing additional unlabeled data remain unclear.

First, as shown by Carmon et al. (2019), unlabeled data provide more information about the density of
the data near the decision boundary, leading to a more robust adversarial estimator (e.g., it increases
the robust test accuracy of CIFAR-10 from 53.08% to 59.53% for 8/255 L∞ attack). However, the
performance improvement of this training strategy is limited when the attack strength is small or zero.
Therefore, it is natural to ask

Q1: Compared to clean training, why and how can adversarial training significantly benefit from
unlabeled data under the framework of Figure 1?

1https://robustbench.github.io

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://robustbench.github.io


Figure 1: The procedure to do adversarial training with real/generated data. In Carmon et al. (2019),
a clean classifier is trained to impute the label for additional real unlabeled data to form S2. In Gowal
et al. (2021), the clean classifier and the unlabeled data generator are trained via clean training to form
S2. Obtaining S2, we use both S1 and S2 in the adversarial training. To unify the two algorithms, we
call the unlabeled real data in Carmon et al. (2019) as data generated from ideal generator.

Figure 2: Exact risk decomposition of θ̃(ϵ) and θ̂(ϵ) when n2 → ∞. The excess adversarial risk
is ER(θ, ϵ) − R(θϵ, ϵ) = E∥θ − θϵ∥2Σϵ

/2 + o for θ ∈ {θ̂(ϵ), θ̃(ϵ)} for some Σϵ. Ideal/good/poor
generator refers to the unlabeled data generator (Pa). If n2 is finite, the label cost gets smaller because
we use less noisy-label samples, but the generator cost gets larger because a smaller sample size gives
larger estimation variance.

Second, besides the ideal generator in Carmon et al. (2019), Gowal et al. (2021) observe two other
interesting phenomena regarding the quality of the generated unlabeled data. When the unlabeled data
are generated from a generative model trained from original labeled data, although they introduce no
more information beyond the original labeled data, the adversarial robustness gets enhanced. On the
other hand, they also generate synthetic data from a multivariate Gaussian, which is much different
from the real data. In this case, the generated data still slightly improve the robustness. Hence, it is
important to investigate that

Q2: How does the quality of the unlabeled data generator affect the adversarial robustness?

This work aims to provide mathematical answers for the above two questions. Existing literature,
(e.g., Alayrac et al., 2019; Uesato et al., 2019; Carmon et al., 2019; Zhai et al., 2019; Sehwag et al.,
2021; Xing et al., 2021b, 2022) provide a justification that adversarial training potentially benefit
from unlabeled/generated data and fail to explain that unlabeled data help little when attack strength
is small. In contrast, we explicitly explain why and how adversarial training can be improved via an
exact error decomposition rather than an upper bound statement.

For the convenience of our discussion below, we preliminarily introduce some notations, with detailed
explanations given later. Denote θ̃(ϵ) as the robust estimator utilizing additional unlabeled data as in
Figure 1, and θ̂(ϵ) as the estimator via vanilla adversarial training. Denote the true distribution of X
as P0, and the distribution of the generated unlabeled data as Pa. The true conditional distribution
of Y |X is Py, and Y |X − E[Y |X] has a distribution Pϵ. As defined in Figure 1, S1 is the set of
original labeled training data with sample size n1, and S2 is the set of generated data with size n2.
Denote α = n1/(n1 + n2) as the proportion of real data. Let lϵ be the adversarial loss function w.r.t.
attack strength ϵ, l0 be the clean loss (i.e., ϵ = 0), and θ0 be the parameter of the underlying true
clean model.
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Contributions We conduct theoretical analysis under some simple statistical setups. Through
studying the convergence of θ̃(ϵ) and θ̂(ϵ), we decompose the excess adversarial risk of θ̃(ϵ) into two
major components (and their cross product): label cost (related to the quality of the imputed labels of
generated unlabeled data) and generator cost (related to the quality of unlabeled data generator) as in
Figure 2. Using this decomposition, we can answer Q1 and Q2.

First, unlike θ̂(ϵ) whose risk noticeably affected as ϵ increases, since the adversarial risk is stable to
the imputation model, the label cost of θ̃(ϵ) is more insensitive w.r.t. ϵ. In consequence, although in
clean training, the label cost and the risk of θ̂(ϵ) are comparable, the former one becomes relatively
smaller as ϵ increases. As in Figure 2, when ϵ > 0, the label cost of θ̃(ϵ) is smaller than the risk of
θ̂(ϵ). Using infinite data from the ideal unlabeled data generator, the generator cost becomes zero,
and hence the overall cost of θ̃(ϵ) is smaller than θ̂(ϵ).

Second, we characterize how the quality of the unlabeled data generator affects the final adversarial
robustness. In general, a better data generator is always preferred. For the ideal generator, it will
always improve adversarial robustness effectively, i.e., the generator cost is negligible when n2 → ∞.
If the generator is learned from S1 and captures extra information, it may effectively help as well
when n2 → ∞. For a poor generator, it may slightly improve the performance for a large attack
when n2 is small, and the generator cost is always not negligible.

Finally, following Gowal et al. (2021), we balance the weights of S1 and S2 in the adversarial training
process in order to achieve the optimal adversarial robustness. We show that a larger n2 is always
preferred with a proper choice of weight, even if generated from non-ideal generators. Tuning the best
choice of weights via repeated trial-and-error runs can be infeasible due to the slow convergence of
adversarial training. We propose an algorithm that dynamically adapts the weight during the training
of neural networks and shows its promising performance in Section 5.

2 Adversarial Training

To formally introduce adversarial training, let l0 denote the loss function and fθ(x) be the model with
parameter θ. The adversarial loss function lϵ and the (population) adversarial risk are defined as

R(θ, ϵ) := EP0
[l0 (x+Aϵ(fθ, x, y), y, θ)] := EP0

[lϵ (x, y, θ)] ,

where Aϵ is an attack of strength ϵ > 0 and intends to deteriorate the loss in the following way
Aϵ(fθ, x, y) := argmax

z∈Bp(0,ϵ)

{l0(x+ z, y, θ)}, (1)

where Bp(x, r) is a Lp ball centering at x with radius r. Denote θϵ = argminθ R(θ, ϵ). Note that for
simplicity, we only consider p = 2 in our theorems and simulations, while in the numerical studies of
real-data experiment, we follow the routine setup and set p = ∞.

Given the data set S1 consisting of n1 i.i.d. labeled samples, the estimator θ̂(ϵ) from the vanilla
adversarial training aims to minimize the empirical version of R(θ, ϵ):

R̂(θ, ϵ) =
1

n1

∑
(x,y)∈S1

lϵ (x, y, θ) . (2)

To take the advantage of the extra unlabeled data, we first assign pseudo-response variable ŷ =
g(fθ̂(0)(x), ε) to them, where for regression, g(a, b) = a+ b and ε follows the true noise distribution;

for classification, g(a, b) = 1(a ≥ b) and ε ∼ Unif[0, 1]. Then θ̃(ϵ) aims to minimize

R̃(θ, ϵ) =
1

n1 + n2

 ∑
(x,y)∈S1

lϵ (x, y, θ) +
∑

(x,ŷ)∈S2

lϵ (x, ŷ, θ)

 . (3)

To evaluate the performance of an estimator θ, we use the excess adversarial risk ER(θ, ϵ)−R(θϵ, ϵ).

Besides the pseudolabel ŷ, we define the the imaginary “true” response for the unlabeled data
y = g(fθ0(x), ε), where ε is the same realization used in generating pseudolabels. These true
responses are not observable but will be used when analyzing the convergence rate of θ̃(ϵ). To
evaluate the size of vectors and matrices, we denote ∥ · ∥ as the L2 norm of vectors, operator norm of
matrices, and denote ∥a∥2A := a⊤Aa for any vector a and positive definite matrix A.
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3 Related Literature

Commonly used techniques (without extra data fed into training process) in adversarial training
include adversarial regularization Goodfellow et al. (2015); Zhang et al. (2019); Wang et al. (2019b),
curriculum-based algorithms Cai et al. (2018); Zhang et al. (2020a).

Theoretical investigations, besides the aforementioned works, have been conduct for adversarial
training from different perspectives. For instance, Chen et al. (2020); Javanmard et al. (2020);
Javanmard & Soltanolkotabi (2020); Taheri et al. (2021); Yin et al. (2018); Raghunathan et al. (2019);
Najafi et al. (2019); Min et al. (2020); Hendrycks et al. (2019); Wu et al. (2020b); Xing et al. (2021a)
studied the statistical properties of adversarial training, Sinha et al. (2017); Wang et al. (2019a)
studied the optimization convergence of adversarial training, Zhang et al. (2020b); Allen-Zhu & Li
(2020); Wu et al. (2020a); Xiao et al. (2021) studied theoretical issues related to adversarial training
with Deep learning models.

4 Main Result

In this section, we present the main theorem, answer the two key questions, and show that balancing
the weights of S1 and S2 leads to the better utility of the generated data. Due to the page limit, we
postpone the whole simulation study section to Appendix B. Briefly speaking, our simulation
results justify all the theoretical results below.

4.1 General Convergence Result

To present our theoretical investigations in θ̃(ϵ), we first introduce some assumptions:
Assumption 1. The loss function satisfies the following conditions:

A1. The clean loss function l0 is the square loss or logistic loss. The attributes X ∈ Rd follow
a sub-Gaussian distribution. The true clean model θ0 is defined as E[Y |X = x] = x⊤θ0
for regression and P (Y = 1|X = x) = 1/(1 + exp(x⊤θ0)) for classification. In addition,
it satisfies that ∥θ0∥ ≤ b0 for some constant b0 > 0 and the noise in regression has finite
variance. The distribution Pa is sub-Gaussian as well.

A2. The distribution Pa and n2 satisfy ∥EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ)∥ = o((n1 + n2)/(n2 log n1)),
where Pa ⊗ Py denotes the joint distribution induced by a marginal distribution Pa and a
conditional distribution Py .

Assumption A1 is for the simplicity of derivation. When doing Taylor expansion as in (4), the
remainder term o (if exists) does not explode under A1. Under Assumption A2, if Pa is of poor
quality, i.e., ∥EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ)∥ is not vanishing, then one can only take a relatively small n2

compared to n1. Vice versa, to allow a large n2, the generator Pa need to be almost “unbiased”. It is
possible to relax Assumptions A1 and A2 as discussed in Section E in the appendix. However, the
relaxations are technical and tailored to the derivations of Theorem 1.

The following theorem is a general result to decompose ER(θ̃(ϵ), ϵ)−R(θϵ, ϵ):
Theorem 1. Under Assumption A1 to A2, assuming the unlabeled data generator is independent to
S1, when n1 → ∞, the excess adversarial risk using θ̃(ϵ) is

ER(θ̃(ϵ), ϵ)−R(θϵ, ϵ) =
1

2
E
∥∥∥θ̃(ϵ)− θϵ

∥∥∥2
Σϵ

+ o, (4)

where θϵ − θ̃(ϵ) is dominated by

n2Σ
−1
ϵ

n1 + n2
EPa⊗Py

(
∂

∂θϵ
lϵ(X, Ŷ , θϵ)−

∂

∂θϵ
lϵ(X,Y, θϵ)

)
︸ ︷︷ ︸

=
n2

n1+n2
Σ−1

ϵ Σ̃ϵ(θ̂(0)−θ0)+o:=E1

+
Σ−1

ϵ

n1 + n2

∑
S1,S2

∂

∂θϵ
lϵ(x, y, θϵ)


︸ ︷︷ ︸

:=E2

,

and

Σϵ =
∂2

∂θ2ϵ
EP0⊗Py

lϵ(X,Y, θϵ), Σ̃ϵ =
∂2

∂θϵ∂θ0
EPaEεlϵ(X, g(fθ0(X), ε), θϵ).
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The term “o” represents the remainder terms which are not dominant.

Therefore, taking the decomposition of θ̃(0) into ER(θ̃(ϵ), ϵ), the excess adversarial risk becomes

ER(θ̃(ϵ), ϵ)−R(θϵ, ϵ) =
1

2
Eθ̂(0)∥E1∥2Σϵ

+
1

2
ES1,S2

∥E2∥2Σϵ
+ ES1,S2

E⊤
1 ΣϵE2 + o,

where Eθ̂(0)∥E1∥2Σϵ
/2 quantifies how the quality of pseudolabel affects the excess risk (label cost),

and ES1,S2
∥E2∥2Σϵ

/2 quantifies how the quality of Pa affects the excess risk (generator cost).

Meanwhile, the vanilla adversarial training estimate θ̂(ϵ) satisfies

θϵ − θ̂(ϵ) = Σ−1
ϵ

[
1

n1

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)]
+ o.

A proof sketch can be found in Section 6, while the detailed proof is postponed to the appendix. For
simplicity of the derivation, Pa in Theorem 1 is independent to S1. A case-by-case study is essential
if Pa is trained from S1. In Example 2 later, we provide a case where Pa is trained from S1.

Based on Theorem 1, as shown in Figure 2 in the introduction, the error of θ̃(ϵ) consists of two parts
and their cross terms:

Label cost, Eθ̂(0)∥E1∥2Σϵ
/2: It is mainly due to the discrepancy between the pseudolabel ŷ and “true”

label y of the generated data. The label cost depends on both clean training error θ̂(0)− θ0 and the
matrix Σ−1

ϵ Σ̃ϵ, and is maximized when n2 → ∞. It measures the quality of the pseudolabel.

Generator cost, ES1,S2
∥E2∥2Σϵ

/2: By the definition of θϵ, i.e. the global minima of the adversarial
risk, the expectation of ∂

∂θϵ
lϵ(x, y, θϵ) under P0 ⊗ Py is 0, thus

∑
S1

∂
∂θϵ

lϵ(x, y, θϵ) = Op(
√
n1).

Consequently, the generator cost mostly rely on the term
∑

S2

∂
∂θϵ

lϵ(x, y, θϵ), which depends on the
quality of the unlabeled data generator Pa. For ideal Pa, i.e., Pa = P0, EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ) = 0,
and the generator cost goes to zero when n2 → ∞. For non-ideal Pa, ∥EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ)∥
may be vanishing, but not exact zero.

Besides Figure 2, we also provide graphical illustration on how the label cost and generator cost
change along n2/n1 in Section F to ease the understanding.

4.2 Discrepancy between Clean and Adversarial Training with Unlabeled Data

We provide some intuitions to explain the discrepancy in the algorithm performance between ϵ = 0
and ϵ > 0 from two aspects, the loss function aspect and information (minimax lower bound) aspect.
The following discussion assumes that the ideal data generator is used.

Figure 3: The ratio between label cost
of θ̃(ϵ) and E∥θ̂(ϵ)− θϵ∥2Σϵ

in linear re-
gression, n2 → ∞. Solid line: theory.
Dashed line: simulation. Derivations are
in Appendix H.

Loss function and label cost We rewrite the adversarial
loss as Rϵ(θ, θ0) = Elϵ(X, g(fθ0(X), ε), θ) to explicitly
reveal its dependency on the true parameter θ0. A crucial
difference between clean training and adversarial training
is the roles of the θ and θ0 in the loss functions. For
clean loss, e.g. linear regression, the loss function can
be rewritten as (x⊤θ − x⊤θ0 − ε)2, where θ and θ0 play
symmetric roles. In contrast, for adversarial loss, the loss
becomes ((x+Aϵ(fθ, x, y))

⊤θ− x⊤θ0 − ε)2, thus θ and
θ0 have asymmetric roles. The adversarial loss is more
sensitive to θ than θ0. Consequently, when θ̂(0) is treated
as true parameter and used to impute labels for S2, the
impact of the error in θ̂(0) is much less influential for
adversarial training than clean training.

In Theorem 1, the matrix Σ̃ϵ reflects the sensitivity men-
tioned in the above illustration. Assume ϵ = 0, for both
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Figure 4: Simulation: how the attack strength (ϵ), quality of data generator, and the proportion of real
data (α = n1/(n1+n2)) affect the convergence of the adversarial estimator. The y-axis represents the
excess adversarial risk ratio of θ̃(ϵ) and θ̂(ϵ), i.e., [ER(θ̃(ϵ), ϵ)−R(θϵ, ϵ)]/[ER(θ̂(ϵ), ϵ)−R(θϵ, ϵ)].
A smaller-than-one ratio implies better performance of θ̃(ϵ). Detailed model information is in
Appendix B: the left panel corresponds to the left panel of Figure B.1, and the right panel is for
ϵ = 0.5 from four different generators as in Figure B.1 and B.2.

linear regression and logistic regression, we have −Σ̃0 = Σ0, so when n2 → ∞,

θ̃(0)− θ0 = θ̂(0)− θ0 + o,

which means that clean training cannot be improved using S2 with pseudolabel.

On the other hand, for adversarial training, the matrix Σ−1
ϵ Σ̃ϵ is no longer −Id, and the singular

values get changed. As a consequence, the label cost is cheaper than the overall risk of θ̂(ϵ) even if
the label cost is maximized as n2 → ∞. A toy simulation in Figure 3 justifies this. In Figure 3, we
calculate the theoretical values of the label cost of θ̃(ϵ) and the risk of θ̂(ϵ) to compare them. When ϵ

gets larger, the label cost in θ̃(ϵ) becomes much smaller compared to the overall risk of θ̂(ϵ).

Together with an ideal Pa that yields zero generator cost (n2 → ∞), we obtain that θ̃(ϵ) is much
better than θ̂(ϵ). The simulation results in the left panel of Figure 4 verifies this as well. All these
theoretical insights and numerical observations under ϵ > 0, are summarized in Figure 2. Figures
2 and 3 jointly are the main answer towards Q1. Note that we assert adversarial training benefits
much more from unlabeled data than clean training, rather than that clean training cannot benefit
from unlabeled data. See the remark below:
Remark 1. It is possible to improve clean training using unlabeled data with pseudolabels. In Lee
et al. (2013); Sun et al. (2017), in each training iteration, pseudolabels are updated based on the model
of the current step. This is equivalent to a SGD with the gradient of

∑
S1

l(fθ(x), y)/n1 + L(θ, θ(t))
for some regularization term L that stabilizes the training process, where θ(t) as the current model.

Minimax lower bound Besides the exact decomposition of θ̃(ϵ) to answer Q1, we also provide
minimiax lower bound result to reveal another difference between clean and adversarial training.

Minimax rate refers to the best possible convergence rate that can be achieved by any estimator in
the worst case given finite samples. As mentioned in Dan et al. (2020), it represents the information-
theoretical limit given the data set.

In general, for the clean estimate without model misspecification, this information limit regards
mostly the uncertainty about the conditional distribution of Y given X = x, which completely
determines θ0. The additional information about the marginal distribution of X only affects the
multiplicative constant of the bound but not the rate of convergence.

However, the true robust model θϵ can depend on both Y |X and X for the adversarial estimate. The
following example demonstrates the difference between clean and adversarial training:
Example 1. Consider linear regression under Gaussian model Y = θ⊤0 X + ε where X ∼ N(0,Σ)
and ε ∼ N(0, σ2). Then θ0 is the best clean model, and θϵ = (I + λϵΣ

−1)−1θ0 for some λϵ > 0.

The derivation of Example 1 can be found in Appendix H. Based on Example 1, it is intuitive that the
minimax lower bound for the adversarially robust estimate is contributed by two sources, one for the
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uncertainty of θ0, and the other one for the distribution of X , where the additional unlabeled data can
improve the latter term. The following proposition reveals this difference theoretically:
Proposition 1. Under the setup of Example 1, assume ∥θ0∥ ≤ b0 and there are n2 unlabeled real
data. Assume R(θϵ, ϵ) is bounded from above and below, and ϵ ∈ [0, ϵ∗] with some constant ϵ∗ for
L2 attack. Assume Σ is unknown. Then for some positive constant c, for any estimator f̂ ,

inf
f̂

sup
P0⊗Py

E[R(f̂ , ϵ)−R(θϵ, ϵ)] ≥ cmax

(
inf
θ̂0

sup
θ0

E∥θ̂0 − θ0∥2, ϵ2b20 inf
Σ̂

sup
Σ

E∥Σ̂− Σ∥2
)
.

4.3 Quality of Unlabeled Data Matters

We study how the quality of a non-ideal unlabeled data generator affects adversarial training. Unsur-
prisingly, we always prefer a high-quality/ideal Pa. In addition, when there is some extra information
of the marginal distribution of X (such as parametric modeling assumptions) which cannot be di-
rectly utilized in the vanilla adversarial training process, training Pa from S1 can potentially give
a high-quality adversarially robust model. On the other hand, given a poor Pa, via bias-variance
trade-off, it is still possible to reduce the error of θ̃(ϵ). Note that the discussion in the section assumes
that the unlabeled data generator (Pa) is independent to the training data S1, as assumed in Theorem
1, unless stated otherwise.

A high-quality Pa is preferred The term E2 in Theorem 1 satisfies

EE2E
⊤
2 =

n2
2

(n1 + n2)2

[
EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)

] [
EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)

]⊤
︸ ︷︷ ︸

Square bias

(5)

+
n1

(n1 + n2)2
V arP0⊗Py

(
∂

∂θϵ
lϵ(X,Y, θϵ)

)
+

n2

(n1 + n2)2
V arPa⊗Py

(
∂

∂θϵ
lϵ(X,Y, θϵ)

)
︸ ︷︷ ︸

Variance

.

For the variance term in (5), when n2 → ∞, it is always negligible for reasonable Pa.

For the square bias in (5), it is in general nonzero if Pa ̸= P0, and is similar to the maximum mean
discrepancy (MMD, Gretton et al., 2012) that measures the dissimilarity between Pa and P0. There
exists some function class F such that ∂lϵ/∂θϵ ∈ F and∥∥∥∥EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)

∥∥∥∥ =

∥∥∥∥EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)− EP0⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)︸ ︷︷ ︸

=0

∥∥∥∥
≤

√
dMMD(F ,Pa,P0).

Based on the above decomposition, a higher quality of the unlabeled data generator is preferred
because it leads to small generator cost. And as shown in Figure 2, with the ideal Pa, the generator cost
can be zero when n2 → ∞. Using an ideal/good Pa, we can have E∥θ̃(ϵ)−θϵ∥2Σϵ

< E∥θ̂(ϵ)−θϵ∥2Σϵ
.

A graphical illustration can be found in the right panel of Figure 4. When ϵ is large, we know that
the ideal Pa will efficiently improve the adversarial robustness. When Pa gets worse, there is less
improvement in the adversarial robustness. This is the main answer towards Q2, and we illustrate
some specific cases in the following discussions.

Training data generator from S1 For the vanilla adversarial training, there is no trivial way to
incorporate the extra information of the marginal distribution of X into the optimization of (2). In
contrast, θ̃(ϵ) can use the extra information to train a good unlabeled data generator from S1.
Example 2 (Sparse Covariance Matrix Estimate). Assume X ∼ N(0,Σ) and Σ is unknown.

We follow Cai et al. (2010) to consider a family of sparse covariance matrix as follows:

Fβ =

{
Σ : max

j

∑
{i:|i−j|>k}

|σij | ≤ Mk−β ∀k, λmax(Σ) ≤ M0, λmin(Σ) ≥ m0 > 0

}
.

If we use the sparse estimator proposed in Cai et al. (2010), then E∥Σ̂sparse−Σ∥2 = O(n
−2β/(2β+1)
1 ).
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Besides, when Σ̂ is either the sample covariance matrix or Σ̂sparse, with probability tending to 1 over
the generation of S1, the decomposition of θ̃(ϵ) in Theorem 1 still holds, and the bias in (5) satisfies

n2
2

(n1 + n2)2

∥∥∥∥EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ)

∥∥∥∥2 = O

(
n2
2∥Σ̂− Σ∥2

(n1 + n2)2

)
. (6)

If Σ ∈ Fβ and d ≫ n1/(2β+1), when n2 → ∞, θ̃(ϵ) with Σ̂sparse leads to a rate of o(d/n1) for the
generator cost, which is negligible compared to the label cost.

Compared to Theorem 1, a difference in the assumption is that in Example 2, the generator is not
independent to S1. Therefore, the proof of (6), presented in Appendix G, is more involved.

Bias-variance trade-off in poor Pa For a poor unlabeled data generator, when n2 → ∞, it leads
to a poor θ̃(ϵ) as shown in Figure 2. However, based on the bias-variance trade-off of E2, for a
relatively n2, it is still possible to obtain a θ̃(ϵ) better than θ̂(ϵ).
Proposition 2 (Bias-variance trade-off). Assume the conditions of Theorem 1 hold, n2 ≪ n1 and the
unlabeled data generator is independent to S1, then

∥Eθ̃(ϵ)− θϵ∥2Σϵ
= O

(
dn2

2

(n1 + n2)2

)
, tr(V ar[Σϵ

1/2(θ̃(ϵ)− θϵ)]) = O

(
d

n1 + n2

)
.

As shown by Proposition 2, there is a trade-off between bias and variance w.r.t. the size of S2. This
implies a U-shaped curve of the generator cost w.r.t. S2, and there exists some small n2 that strikes
the balance of this trade-off and can improve the adversarial robustness.

4.4 Balancing the Weights between S1 and S2

Following Gowal et al. (2021) and Carmon et al. (2019), we try to improve the performance of θ̃(ϵ)
via balancing the weights of S1 and S2 in (3), and consider the weighted minimization,

R̃(θ, w, ϵ) =
1

n1 + wn2

 ∑
(x,y)∈S1

lϵ (x, y, θ) + w
∑

(x,ŷ)∈S2

lϵ (x, ŷ, θ)

 . (7)

When using the ideal Pa and assuming θ̂(0) ≡ θ0 (i.e., we can generate extra independent labeled real
data), trivially the optimal w minimizing the risk of θ̃(ϵ) is 1. When using non-ideal Pa or θ̂(0) ̸= θ0,
intuitively, one need to downweight the generated data and the best w < 1. We demonstrate this
observation in the simulation in Figure B.3 as well.

In addition, as stated in the following proposition, through taking the optimal choice of w, for any
Pa, a larger n2 always leads to better θ̃ when ϵ > 0.
Proposition 3. We assume the assumptions of Theorem 1 hold, and consider a fixed (ϵ > 0, n1).
Denote θ̃(w, n2) as the minimizer of (7), and w∗(n2) minimizes the excess adversarial risk of θ̃(w, n2)

w.r.t. w. Then for n′
2 > n2, taking w′ such that w′n′

2 = w∗(n2)n2, the risk of θ̃(w′, n′
2) is smaller

than θ̃(w∗(n2), n2), and the risk of θ̃(w∗(n′
2), n

′
2) is further smaller than θ̃(w′, n′

2). As a result, a
larger n2 always gives a better θ̃.

4.5 Summary of Numerical Experiments

Due to the space limit, we postpone simulations and most real experiments to Appendix B, C.
Below is a summary of simulation and empirical studies.

In Appendix B, we aim to use simple models to numerically verify: (1) given the ideal data generator,
the performance of θ̃(ϵ) is better than θ̂(ϵ) when ϵ deviates from zero; (2) the better quality of the
data generator implies the better performance of θ̃(ϵ); and (3) balancing the weight between S1 and
S2 improves the performance. We observe all (1) to (3) in the simulations.
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In Appendix C, we aim to verify that the label cost and the generator cost are important factors in
deep learning. We aim to show (1) adding more unlabeled samples from the ideal generator will
improve adversarial robustness, and (2) adding unlabeled samples from a poor generator with a small
n2 will slightly improve the performance. We perform an experiment on the CIFAR-10 data set.
We take a part of the samples as labeled training data and remove the label of the other samples.
Therefore, if we train a classifier to classify airplanes and cars, then (i) the unlabeled airplane and car
pictures can be viewed as ideal unlabeled samples, and (ii) the unlabeled samples from other classes
are viewed as from a poor generator. Our empirical results verify (1) and (2). Besides, we also find
that the unlabeled data with the pseudo label can improve the adversarial training as much as labeled
data of the same sample size (the middle panel of Figure C.1). This observation further verifies the
effectiveness of unlabeled data and implies that the label cost is small in adversarial training.

5 How to Decide a Proper w

To determine a proper w, it is possible to conduct cross validation for simple models. However,
due to the heavy computation of adversarial training under DNN models, this is infeasible for real
applications. Our proposed algorithm in below aims to simplify the tuning process of w.

To design a proper metric to tune w, denote b as the average adversarial loss difference in S1 and S2,
v1 and v2 as the variance of the adversarial loss for S1 and S2 respectively. Since in real practice one
can often obtains a high-quality clean classifier (i.e., low label cost), we tune w based on the generator
cost only. Inspired by the variance-bias trade-off in (5), we define a surrogate of the generator loss as

κ(b, v1, v2, n1, n2, w, wbias) = wbias
b2(wn2)

2

(n1 + wn2)2
+

v1n1 + w2v1n2

(n1 + wn2)2
.

Due to over-parameterization, the mean and variance of the gradient are volatile in neural networks.
Hence, instead of using the gradient of loss (i.e., ∂lϵ/∂θϵ) as suggested by (5), we use the adversarial
loss to construct κ and introduce wbias to balance b and (v1, v2). To control over-fitting problem, we
tune w during the first 20% iterations in the experiment. The algorithm is shown in Algorithm 1.

Algorithm 1 Select α during Training
Input: Training dataset S1 and S2 with size n1 and n2, optimizer OPT, total number of iterations
T , number of iteration per weight τ , initial weight w0, bias weight wbias, decay factor δ, number of
epochs K to train weight.
Initialize the model parameters θ, take w = w0.
for k = 1, . . . , T/τ do
b = v1 = v2 = 0.
for t = 1, . . . , τ do

Calculate the mean and variance of adversarial loss for the samples from S1 and S2 in this
batch as bt1, bt2, vt1, vt2.
Update b = b ∗ δ + bt2 − bt1, v1 = v1 ∗ δ + vt1, v2 = v2 ∗ δ + vt2.
Update θ using OPT.

end for
Update b = b/(1− δ), v1 = v1/(1− δ), v2 = v2/(1− δ).
if k ≤ K then

Update w to reduce κ.
end if

end for
Output: θ.

In the experiment, we consider binary classification for the CIFAR-10 dataset to classify airplane and
car. The implementation for all real-data experiments is modified from Rice et al. (2020)2. We take
500 samples from each class as labeled data, i.e., n1 = 1, 000. To form S2, we sample n2/2 data from
the other 9,000 airplane and car pictures, and n2/2 data from other classes, i.e., the unlabeled data
generator generates both ideal and poor samples. The experiment setups are postponed to Appendix
C. We repeat the experiment for 10 times to get the average robust testing accuracy and its standard
error. The details of how to tune wbias and how to update w using κ are in Appendix C.

2https://github.com/locuslab/robust_overfitting
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The results are summarized in Table 1. One can see that adjusting w using Algorithm 1 can always
lead to a better performance than the unweighted training and is as good as the best fixed w obtained
by grid search. We found that 75% of the total epochs are needed for each fixed w to reveal the
performance difference among w’s (Figure C.3), leading to long computing time for grid search of w.
In contrast, our proposed method only needs several epochs to tune wbias.

Table 1: Adversarial test accuracy using unweighted training (w = 1), Algorithm 1, and best fixed w.
The latter two methods reaches similar performance.

n2 200 2000 4000 18000

w = 1 0.7847(0.0041) 0.7612(0.0168) 0.8170(0.0096) 0.8622(0.0057)
Algorithm 1 0.7870(0.0090) 0.7942(0.0126) 0.8407(0.0070) 0.8765(0.0038)
Best fixed w 0.7868(0.0091) 0.7957(0.0128) 0.8429(0.0068) 0.8754(0.0027)

We also evaluate the performance of Algorithm 1 using the full CIFAR-10, CIFAR-100, and SVHN
with the additional data generated by Gowal et al. (2021). The results are postponed to Appendix C.

6 Proof Sketch of Theorem 1

We assume θ̃(ϵ) is consistent to θϵ and start from the first-order optimality condition of θ̃(ϵ) and
obtain that

0 =
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ)) +
∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
(8)

=
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=A1

+
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
︸ ︷︷ ︸

:=A2

+
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=A3

+
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ) +
∑
S2

lϵ(x, y, θϵ)

)
.

We observe that, when θ̃(ϵ) is consistent, i.e., ∥θ̃(ϵ)− θϵ∥
P−→ 0, with probability tending to 1,

A1 +A3 = Σϵ(θ̃(ϵ)− θϵ) + o,

A2 =
n2

n1 + n2
Σ̃ϵ(θ̂(0)− θ0) + o.

As a result, rearranging the terms in (8), we can prove Theorem 1. One the other hand, one can also
show that ∥θ̃(ϵ)− θϵ∥

P−→ 0 because R̃(θ, ϵ) → R(θ, ϵ) for any reasonable θ.

7 Conclusion

This paper studies how adversarial training benefits from unlabeled (generated) data. We show that
(i) the label cost of θ̃(ϵ) is small in adversarial training; (ii) with a high-quality data generator, a large
S2 leads to a negligible generator cost. These two facts together indicate that adversarial training
benefits a lot from unlabeled (generated) data. Motivated by these observations and our theory, we
balance the weights between S1 and S2 to improve the performance and propose an algorithm to
determine the weight automatically during training.
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The following is the list of contents for the appendix:

• Section A: limitations of this work.
• Section B: simulation study.
• Section C: deep learning experiments.
• Section D: some basic results in empirical process.
• Section E: discussions about Assumptions A1 and A2.
• Section F: discussions about the effect of n2/n1 on the label cost and the generator cost.
• Section G: proof of Theorem 1 and other examples/propositions.
• Section H: derivations for linear regression under Gaussian design.

A Limitations of this Work

In this study, we aim to provide theoretical justification on why adversarial training can benefit more
from generated data than clean training, which potentially improves the adversarial robustness of
machine learning methods. We mainly focus on the intuitions, theories in simple statistical models,
and numerical verification.

Major limitations of the scope of this work include: (1) We focus on justifying how the quality of the
data generator affects the final adversarial robustness, rather than how to design better generators,
while designing better generators is an interesting and important practical problem; (2) Our theoretical
investigation only focuses on simple models. For deep neural networks that are used in real data
sciences, we only provide empirical justifications, and an exact theory of how neural networks
balances the label cost and generator cost is not currently available.

Regarding social impacts, our paper mainly focuses on the theories and uses public data sets in our
real-data experiments. We are not aware of any direct negative social impact by our results. However,
we still suggest people be cautious when applying any machine learning algorithm to real applications,
e.g., auto-drive, in which safety is essential. Based on our knowledge, there is only limited literature
interpreting how machine learning algorithms work.

B Simulation Study

In the simulation, we aim to numerically verify: (1) given the ideal data generator, the performance
of θ̃(ϵ) is better than θ̂(ϵ) when ϵ deviates from zero; (2) the better quality of the data generator
implies the better performance of θ̃(ϵ); and (3) balancing the weight between S1 and S2 improves the
performance.

We first present the results and analysis under L2 attack, and then present the corresponding L∞
attack version in a later section.

B.1 Simulations under L2 Attack

The simulation model is as follows. Assume X ∼ N(0, I10), θ0 = [1/
√
10, . . . , 1/

√
10]⊤, and the

response is generated via Y = θ⊤0 X + ε where the noise ε follows N(0, 0.1). The unlabeled data are
generated from N(0,Σ), where Σ can be I10, 3I10, Σ̂sparse in Example 2 or sample covariance matrix
Σ̂. We take L2 attack, n1 = 50, and repeat the experiment for 100 times to obtain the MSE of θ̃(ϵ).

We first verify (1) and (2) when the data generator is not related to S1. The results are shown in
Figure B.1. In the left panel, we use the ideal data generator and change the value of ϵ. With a larger
attack, it is more likely that adding more data will help reduce the MSE of θ̃(ϵ). In the right panel,
when using a poor generator N(0, 3Id) to generate S2, the reduction of MSE of θ̃(ϵ) is limited. In
addition, when ϵ = 0.5, the best performance is obtained when n2 is a finite value. This verifies the
observation in Proposition 2.

For the case where the data generator is learned from S1, the simulation results are summarized in
Figure B.2. As discussed in Example 2, the performance of Σ̂sparse should be theoretically better than
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Figure B.1: Simulation: how the attack strength, quality of data generator, and the proportion of
real data (α) affect the convergence of the adversarial estimator. Left: ideal generator. Right: other
generator.

Figure B.2: Simulation: how the attack strength, quality of data generator, and the proportion of real
data (α) affect the convergence of the adversarial estimator.

Σ̂. Figure B.2 and Figure B.1 together show that the ideal generator leads the MSE largest reduction,
the generator with Σ̂sparse has a slightly worse performance, and the generator with Σ̂ cannot work
well. These observations match our theoretical investigations.

Figure B.3: Simulation: how the weight and quality of data generator, and n2 affect the convergence
of the adversarial estimator. We take ϵ = 0.5.

In terms of (3) adjusting the weight, we fix ϵ = 0.5 and compare the performance while varying w.
The results are summarized in Figure B.3. When the data generator is of high quality (the left panel),
the best w is around 1. When the data generator is not good (the right panel), the best w has larger
deviation from 1. In addition, from both cases in Figure B.3, the minimal MSE ratio is smaller than 1
and keeps decreasing when enlarging n2, which verifies Proposition 3.

B.2 Simulations under L∞ Attack

We repeat the experiments in Section B.1 using L∞ attack. Since L∞ attack is stronger, we take
slightly smaller ϵ. From Figures B.4, B.5, B.6, all the observations are the same as in Section B.1.
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Figure B.4: L∞ version of Figure B.1: how the attack strength, quality of data generator, and the
proportion of real data (α) affect the convergence of the adversarial estimator. Left: ideal generator.
Right: other generator.

Figure B.5: L∞ version of Figure B.2: how the attack strength, quality of data generator, and the
proportion of real data (α) affect the convergence of the adversarial estimator.

Figure B.6: L∞ version of Figure B.3: how the weight and quality of data generator, and n2 affect
the convergence of the adversarial estimator. We take ϵ = 0.2.

C Deep Learning Experiments

C.1 General Configurations

We use the CIFAR-10 dataset for this experiment. We pick two classes, airplanes and cars, to do a
binary classification. Each class in CIFAR-10 contains 5,000 training samples. We randomly pick
500 from each class as labeled training data. For unlabeled data, we (i) sample from remaining
4,500*2 samples of airplanes and cars as an ideal data generator or (ii) sample from the images of the
other 8 classes as a poor generator. We repeat this experiment 10 times to obtain a boxplot for each
setup. We use a single NVIDIA Tesla V100 GPU to do the training.
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C.2 Quality of Data Generator Matters

In Section 4.1, we decompose the error of θ̃(ϵ) into a label cost and a generator cost. We want to
examine whether these two errors are the key factors in deep learning.

We vary the value of n2 and expect that (1) adding more unlabeled samples from the idea generator
will help improve adversarial robustness; (2) when adding unlabeled sample from the poor generator,
a small n2 will lead to slight improvement. For both adversarial training and clean training, the
learning rate is divided by ten at the 50% and 75% epochs. For each (n1, n2), we take the total
number of iterations as T = 100(n1 + n2)/128. Although small n2 leads to fewer training iterations,
some simple trials indicate that this choice of T is sufficient to get the best performance.

Figure C.1: Adversarial testing accuracy of the neural network trained from 500*2 labeled samples
with additional unlabeled data. The y-axis refers to adversarial testing accuracy for ϵ = 0 for clean
training, 4/255 or 8/255 for the corresponding adversarial training. Left: ideal generator. Middle:
ideal generator using real/imputed label for S2, 8/255 L∞ attack. Right: poor generator.

The results are shown in Figure C.1. For (1), from the left figure of Figure C.1, when n2 gets larger,
i.e. α gets smaller, for adversarial training with ϵ = 4/255, 8/255, the adversarial robustness of the
model gets improved. Clean training also benefits from S2, but not as much as adversarial training.

In addition, the middle figure in Figure C.1 compares the performance of using n1 labeled samples
and n2 unlabeled samples, against the performance of using n1 + n2 labeled samples (we still take
α = n1/(n1 + n2) to match the x-axis). Using extra unlabeled data improves the performance
significantly as n2 increases. Knowing the true labels of the unlabeled data can further improve the
performance, but this additional improvement is only marginal. These observations also verify the
hypothesis in Gowal et al. (2021) that it is critical to complement the original training data set with
additional (unlabeled) data in adversarial training.

In terms of (2), from the right figure of Figure C.1, for clean training and 4/255 L∞ adversarial
training, the testing performance does not improve. Only when ϵ = 8/255, the adversarial robustness
slightly gets better when α ∈ (0.75, 1). Based on our theory, adversarial training is more likely to
benefit from the poor generator when ϵ is large and n2 is small, and our experiment observations
match this result.

C.3 Weighted Sampling

We examine the performance of weighted sampling in adversarial training when n1 = 500. For S2,
we randomly select n2/2 from the remaining samples whose label is airplane/car, and n2/2 from
those with other labels.

How to implement weighted sampling Instead of performing a weighted optimization (7),
equivalently, we use stratified sampling to sample a batch of S1 and S2, such that the propor-
tion of S1 samples in the batch is n1/(n1 + wn2), and perform SGD for the unweighted objec-
tive over the random batch. This helps reduce the variance of the updating gradient. We take
n2 ∈ {200, 2000, 4000, 18000} and try different w for each n2. The results are shown in Figure C.2.
When changing w, S1 is larger, leading to more batches in each epoch. We keep the total number of
iterations unchanged as T = 100(n1 + n2)/128.
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Performance Based on the left panel of Figure C.2, through tuning the weight w, one can obtain a
better adversarial test accuracy.

Figure C.2: How w affects the testing robust accuracy. The generator outputs half true samples and
half samples from the other 8 classes in CIFAR-10. The x-axis of the left panel is log(w). The x-axis
of the right panel is n1/(n1 + wn2), corresponding to the definition of α in Gowal et al. (2021).

Configurations in Algorithm 1 We initialize w as w0 = n1/n2 and take δ = 0.9 in the experiments.
We check κ after every epoch and update 1/w with a magnitude of 1/(4w0), i.e., in the next epoch,
we take 1/wnext as 1/w, 1/w + 1/(4w0), or max(0, 1/w − 1/(4w0)) depending on which one gives
the smallest κ. Table 2 is the wbias we take in experiments. To choose wbias, we try five to six different
candidates to pick the one that is most stable in the first 20% iterations.

Table 2: The choice of wbias and the resulting final w for the experiment w.r.t Algorithm 1.

n2 200 2000 4000 18000
wbias 5 5 20 50

C.4 Full Real Datasets

For the generated data, we download from Gowal et al. (2021)3. The implementations of the training,
attack, and neural network architectures are the same as Rice et al. (2020). Detailed configurations
can be found in Table 4.

The results are summarized in Table 3. For all the data sets and neural network architectures, the
proposed algorithm leads to better performance than the vanilla adversarial training and w = 1.

On the other hand, for CIFAR-10, compared to the >10% improvement for binary classification,
there is only 3% to 6% improvement in the robust test accuracy. There are two possible explanations.
First, the model capacity of the neural network architectures may not be sufficient to learn the ten
classes. In our experiment as well as Gowal et al. (2021); Xie & Yuille (2019), we all observe that

3https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness

Figure C.3: Adversarial testing accuracy of one repetition when w = 1/5. The accuracy grows to the
highest level at around 75% total iterations for all choices of n2.
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wider neural networks lead to better robustness. Second, we are using ideal (real) data in the binary
classification but generated data in the ten-class classification task. The quality of generated data
deteriorates the performance.

Table 3: How unlabeled data help adversarial training. Vanilla: vanilla adversarial training(θ̂(ϵ))
without generated data, copied from Rice et al. (2020). Algorithm 1 gives better performance than
the vanilla adversarial training. Similar to Gowal et al. (2021), taking w = 1 possibly leads to poor
performance.

Dataset Architecture Method Adv Acc

CIFAR-10 PreActResNet18
Vanilla 0.5349
w = 1 0.5549

Algorithm 1 0.5625

CIFAR-10 WideResNet34-10
Vanilla 0.5680
w = 1 0.6029

Algorithm 1 0.6203

SVHN PreActResNet18
Vanilla 0.6104
w = 1 0.6147

Algorithm 1 0.6179

CIFAR-100 PreActResNet18
Vanilla 0.2780
w = 1 0.2793

Algorithm 1 0.3071

Table 4: Training configurations corresponding to Table 3.

Dataset Batch size Clean lr Clean iteration Adv lr Adv iteration wbias

CIFAR-10 128 0.1 200*50000/128 0.1 same 1000
SVHN 128 0.1 100*73257/128 0.01 same 2000

CIFAR-100 128 0.1 200*50000/128 0.1 same 20000

D Results on Empirical Process Theory

In this section, we present some results in Koltchinskii et al. (2006) which will be used in our proof.

Let σ2 = supf∈F Ef2, and |f(x)| ≤ F (x) ≤ U . Define Pn as the empirical measure and ∥Pn −
P∥F = supf∈F |Pnf − Pf |. If for some A > 0, V > 0,

∀ϵ > 0, N(ϵ, ∥ · ∥L2(Pn),F) ≤
(
A∥F∥L2(Pn)

ϵ

)V

,

then (2.2) in Koltchinskii et al. (2006) states that with some universal constant C > 0,

E∥Pn − P∥F ≤ C

[(
V

n

)1/2

σ(log
A∥F∥L2(P )

σ
)1/2 ∨ V U

n
log

A∥F∥L2(P )

σ

]
. (9)

Furthermore, a refined version of Talagrand’s concentration inequality states that for any countable
class of measureble functions F with elements mapping into some [−M,M ]. Combining Bousquet’s
bound and Klein’s bound together,

P

{
|∥Pn − P∥F − E∥Pn − P∥F | ≥

(
2t

n

(
σ2 + 2E∥Pn − P∥F

))1/2

+
8t

3n

}
≤ e−t. (10)

E How Does Assumptions A1 and A2 Affect the Theory

Assumptions A1 and A2 are imposed to regulate the behavior of the loss function, gradient, and
Hessian. The following discussion provides some details on how to possibly relax the conditions and
what are the potential observations if some conditions are violated.
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E.1 Assumption A1

Assumption A1 is a sufficient condition for Theorem 1, Lemma 1, 2, 3, and Example 2. It can be
relaxed to general distributions if the following conditions are satisfied. For some ϵ0 > 0, r > 0, for
any ϵ ∈ [0, ϵ0] and θ ∈ B2(0, r),

• With probability one, the loss function lϵ is smooth, and the gradient and Hessian exist.
• The loss function lϵ is convex.
• The loss function lϵ has a finite expectation and finite variance.
• The gradient ∂lϵ(X,Y, θ)/∂θ has finite expectation and finite variance.
• The eigenvalues of the expected Hessian EP0⊗Py

∂2lϵ(X,Y, θ)/∂θ2 are finite and bounded
away from zero.

• Considering the expectation over Y as a function of θ0, EP0⊗Py lϵ(X,Y, θ) is smooth in
θ0, the gradient ∂EP0⊗Py lϵ(X,Y, θ)/∂θ0 is finite, and ∂2EP0⊗Py lϵ(X,Y, θ)/∂θ0∂θ has
non-zero singular values.

E.2 Assumption A2

Assumption A2 is essential because the proof in Theorem 1 is based on the fact that θ̃(ϵ) is consistent
to θϵ.

E.3 If the Assumptions Do Not Hold

Multi-class classification, or other generalized linear models. In general, as long as the rela-
tionship between Y and X is well specified, and the loss function is convex and smooth enough,
Theorem 1 is valid. In addition, the intuitions of label cost and generator cost in Sections 4.2 and 4.3
still apply.

The distribution P0 has a heavy tail. It depends on the design of the loss function. If lϵ and its
gradient and Hessian are still well-behaved, we still have the convergence. Otherwise, θ̂(0) may not
be consistent, i.e., it is hard even for the clean model estimation.

The parameterization between Y and X is misspecified. In this case, θ0 is a biased model to
describe P (Y |X = x). If lϵ is smooth enough, the results in Theorem 1 will still hold. However, it is
more important to deal with the bias in this case.

Assumption A2 is violated. In this case, Theorem 1 may fail because θ̃(ϵ) may not be consistent
to θϵ.

F How n2/n1 Affects the Performance

In Figure 2, we explain how the quality of the generator affects the generator cost when n2 → ∞. In
this section, we discuss how n2/n1 affects the label cost and generator cost.

Based on the formula of E1 and E2, when n2 increases, EE2
1 is a monotone increasing function, and

EE2
2 could even decrease or increase depending on the quality of the generator. Figures F.1 and F.2

show how the costs are changed with an ideal generator or a poor generator.

G Proofs

G.1 Theorem 1

Since θ̃(ϵ) minimizes R̃(θ, ϵ) as in (3), we have

1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ)) +
∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
= 0,
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Figure F.1: How n2/n1 changes generator cost and label cost when using an ideal generator. With
n2/n1 increases, the generator cost becomes smaller and smaller because more samples lead to a
smaller variance in E2. The label cost will slightly increase.

Figure F.2: How n2/n1 changes generator cost and label cost when using a poor generator. With
n2/n1 increases, since E2 is biased away from zero, the generator cost cannot be efficiently reduced
even if large n2 leads to a small variance in E2.

using which we can get the following decomposition,

0 =
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ)) +
∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
(11)

=
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=A1

+
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
︸ ︷︷ ︸

:=A2

+
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=A3

+
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ) +
∑
S2

lϵ(x, y, θϵ)

)
.
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In the following, we present Lemma 1 to show the consistency of θ̃(ϵ), then show Lemma 2 and 3 to
bound some terms in A1 to A3, and finally present the main proof for Theorem 1.

Lemma 1 (Consistency of θ̃(ϵ)). Under the same assumptions as Theorem 1, θ̃(ϵ) converges to θϵ in
probability.

Proof of Lemma 1. Denote θ̄ϵ as the minimizer of n1EP0⊗Py
lϵ(X,Y, θ) + n2EPa⊗Py

lϵ(X,Y, θ).
Denote P as the weighted average of P0 and Pa. Under Assumption A2, we know that ∥θ̄ϵ−θϵ∥ → 0.

For both linear regression and logistic regression, one can check that lϵ is strongly convex in θ.
Therefore, we have for some C > 0, such that

inf
∥θ−θ̄ϵ∥>ξ

(EP⊗Py
lϵ(X,Y, θ)− EP⊗Py

lϵ(X,Y, θ̄ϵ)) ≥ Cξ2. (12)

Furthermore, when ∥θ∥ ≤ b0 for some large constant B, following the same arguments in Lemma 2,
there exists some C0 > 0,

P

(
sup

θ∈B(0,b0)

∣∣∣∣∣∣EP⊗Py lϵ(X,Y, θ)− 1

n1 + n2

∑
S1,S2

lϵ(x, y, θ)

∣∣∣∣∣∣
≥ C0

(√
t

n1 + n2
+

t

n1 + n2

))
≤ e−t, (13)

P

(
sup

θ∈B(0,b0)

∣∣∣∣∣EPa⊗Py
lϵ(X, Ŷ , θ)− 1

n2

∑
S2

lϵ(x, ŷ, θ)

∣∣∣∣∣ ≥ C0

(√
t

n2
+

t

n2

))
≤ e−t, (14)

and

P

(
sup

θ∈B(0,b0)

∣∣∣∣∣EPa⊗Py lϵ(X,Y, θ)− 1

n2

∑
S2

lϵ(x, y, θ)

∣∣∣∣∣ ≥ C0

(√
t

n2
+

t

n2

))
≤ e−t. (15)

From the definition of θ̃(ϵ), we know that

1

n1 + n2

[∑
S1

lϵ(x, y, θ̃(ϵ)) +
∑
S2

lϵ(x, ŷ, θ̃(ϵ))

]
≤ 1

n1 + n2

[∑
S1

lϵ(x, y, θ̄ϵ) +
∑
S2

lϵ(x, ŷ, θ̄ϵ)

]
,

then combining with (14), (15) and the fact that EPa⊗Py
lϵ(X, Ŷ , θ) → EPa⊗Py

lϵ(X,Y, θ) (θ̂(0) P−→
θ0), we have

1

n1 + n2

[∑
S1

lϵ(x, y, θ̃(ϵ)) +
∑
S2

lϵ(x, y, θ̃(ϵ))

]

≤ 1

n1 + n2

[∑
S1

lϵ(x, y, θ̄ϵ) +
∑
S2

lϵ(x, y, θ̄ϵ)

]
+ o. (16)

Combining (16) and (13), with probability tending to 1,

EP⊗Py
lϵ(X,Y, θ̃(ϵ)) ≤ EP⊗Py

lϵ(X,Y, θ̄ϵ) + o.

On the other hand, from the definition of θ̄ϵ, we have

EP⊗Py lϵ(X,Y, θ̃(ϵ)) ≥ EP⊗Py lϵ(X,Y, θ̄ϵ),

thus one can conclude that EP⊗Py lϵ(X,Y, θ̃(ϵ))− EP⊗Py lϵ(X,Y, θ̄ϵ) → 0.

Further using (12), we get ∥θ̃(ϵ)− θ̄ϵ∥ → 0 as well, and thus θ̃(ϵ) converges to θϵ.
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Lemma 2. Denoting

δ1(x, y, θ) =
∂

∂θϵ
lϵ(x, y, θ)−

∂

∂θϵ
lϵ(x, y, θϵ), (17)

under the same assumptions as in Theorem 1, there exists some ξ = o(1) such that

P

(
sup

θ∈B(θϵ,ξ)

∥∥∥∥∥ 1

n1

∑
S1

δ1(x, y, θ)− EP0⊗Py
δ1(X,Y, θ)

∥∥∥∥∥ ≥ C12

(√
t

n1
ξ +

t

n1

))
≤ e−t.

Proof of Lemma 2. Since ∂lϵ/∂θ is square integrable, based on Theorem 2.6.7 of Van Der Vaart &
Wellner (1996), taking F1 as the class of function of δ1 for θ ∈ B(θθ, ξ), we have for some C11 > 0,
V > 0,

∀ϵ > 0, N(ϵ, ∥ · ∥L2(P ),F1) ≤ C11

(
1

ϵ

)V

.

Based on Lemma 1, we know that there exists some ξ → 0 such that ∥θ̃(ϵ)− θϵ∥ ≤ ξ in probability.
As a result, with probability tending to 1, sup∥θ−θϵ∥≤ξ E∥∂lϵ/∂θ∥2 = o(ξ2). Following (9) and (10),
we know that there exists some positive constant C12 such that

P

(
sup

θ∈B(θϵ,ξ)

∥∥∥∥∥ 1

n1

∑
S1

δ1(x, y, θ)− EP0⊗Py
δ1(X,Y, θ)

∥∥∥∥∥ ≥ C12

(√
t

n1
ξ +

t

n1

))
≤ e−t.

Lemma 3. Define r0 such that r0 = o(1) and ∥θ̂(0)−θ0∥ ≤ r0 with probability tending to 1. Denote

δ2(x, θ, θ̂(0)) =
∂

∂θϵ
lϵ(x, ŷ, θ)−

∂

∂θϵ
lϵ(x, y, θ),

then under the same assumptions as Theorem 1, there exists some positive constants C21, C22 such
that

P

(
sup

θ∈B(θϵ,ξ),θ′∈B(θ0,r0)

∥∥∥∥∥ 1

n2

∑
S2

δ2(x, θ, θ
′)− EPa⊗Py

δ2(X, θ, θ′)

∥∥∥∥∥
≥ C22

(√
t

n2
max(ξ, r0) +

t

n2

))
≤ e−t.

Proof of Lemma 3. The proof of Lemma 3 is the same as Lemma 2. Note that we do not assume S2

and θ̂(0) are independent. Instead, we consider changing both θ and θ̂(0) in δ2 to form the class of
functions.

Proof of Theorem 1. We start from studying A1 to A3. For A1,

A1 =
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)

=
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=B11

−E

[
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)]
︸ ︷︷ ︸

:=B12

+E

[
1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S1

lϵ(x, y, θϵ)

)]
.
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From the definition of Σϵ, we obtain that

B12 =
n1

n1 + n2
Σϵ(θ̃(ϵ)− θϵ),

and based on Lemma 2, (taking t = 2 log n1 in (17)) with probability tending to 1, ∥B11 −B12∥ =
o(∥B12∥).
In terms of A2, we have

A2 =
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ)

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)

=
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
︸ ︷︷ ︸

:=B21

−E

[
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)]
︸ ︷︷ ︸

:=B22

+E

[
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, ŷ, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)]
.

Similar to A1, from the definition of Σ̃ϵ,

B22 =
n2

n1 + n2

[
∂2

∂θϵ∂θ0
EPa⊗Pϵ lϵ(X,Y, θ̃(ϵ))

]
(θ̂(0)− θ0) + o

=
n2

n1 + n2

[
∂2

∂θϵ∂θ0
EPa⊗Pϵ lϵ(X,Y, θϵ)

]
(θ̂(0)− θ0) + o

=
n2

n1 + n2
Σ̃ϵ(θ̂(0)− θ0) + o,

and from Lemma 3, with probability tending to 1, ∥B21 −B22∥ = o(∥B22∥).
For A3, similar to A1, based on Lemma 2,

A3 = E

[
1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θ̃(ϵ))

)
− 1

n1 + n2

∂

∂θϵ

(∑
S2

lϵ(x, y, θϵ)

)]
+ o

=
n2

n1 + n2

[
EPa⊗Py

∂2lϵ(X,Y, θϵ)

∂θ2ϵ

]
(θ̃(ϵ)− θϵ) + o.

Under Assumption A2, although EPa⊗Py∂
2lϵ(X,Y, θϵ)/∂θ

2 is different from Σϵ, we still have

A1 +A3 = Σϵ(θ̃(ϵ)− θϵ) + o.

Finally, taking A1 to A3 back to the decomposition of θ̃(ϵ)− θϵ, we conclude that with probability
tending to 1,

θ̃(ϵ)− θϵ = −Σ−1
ϵ

 n2

n1 + n2
Σ̃ϵ(θ̂(0)− θ0) +

1

n1 + n2

∂

∂θϵ

∑
S1,S2

lϵ(x, y, θϵ)

+ o.

Remark 2. A converge-in-probability result and a Bahadur representation does not directly imply
L2 convergence, i.e., θ̃(ϵ) P−→ θϵ does not imply E∥θ̃(ϵ)− θϵ∥2 → 0. However, based on assumption
A1 and A2, due to the choice of P0 and the loss functions we take, one can obtain E∥θ̃(ϵ)− θϵ∥2 → 0.
As a result, we can use the terms in the Bahadur representation to discuss the label cost and the
generator cost. One can replace A1 and A2 with more general conditions in other models with proper
conditions.
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G.2 Proposition 1

The proof mainly follows Xing et al. (2021b). The definition of adversarial risk in Xing et al. (2021b)
is different to our scenario. Using our definition, in linear regression setup, we know that as long as
σ2 (V ar(Y |X)) and ϵ are nonzero, then θϵ will deviate from θ0. And one can obtain that,

θϵ = (λId +Σ)−1Σθ0,

and λ = Θ(ϵ) when ϵ ∈ [0, ϵ∗]. One can take this rate of λ into Lemma 5 of Xing et al. (2021b) to
obtain the rate Ω(ϵ2dR2/(n1 + n2)). The other term in the lower bound is obtained from Lemma 4
of Xing et al. (2021b) without any changes.

G.3 Proposition 2

From Theorem 1, θϵ − θ̃(ϵ) is decomposed into

θϵ − θ̃(ϵ) = E1 + E2 + o,

where

E1 =
n2

n1 + n2
Σ−1

ϵ Σ̃ϵ(θ̂(0)− θ0) + o, and E2 =
Σ−1

ϵ

n1 + n2

∑
S1,S2

∂

∂θϵ
lϵ(x, y, θϵ).

In terms of the variance of θϵ − θ̃(ϵ), we know that tr(V ar(E2)) = O(d/(n1 + n2)), and
tr(V ar(E1)) = O(dn2

2/(n1 + n2)
2n1). Therefore, the dominant part is tr(V ar(E2)).

In terms of the expectation of θϵ − θ̃(ϵ), since θϵ is the minimizer of EP0⊗Py
lϵ(X,Y, θ), we have

E
∑
S1

∂

∂θϵ
lϵ(x, y, θϵ) = 0.

As a result, the bias in E2 are all contributed by the samples in S2. When ∥EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ)∥ =

O(
√
d), we have ∥EE2∥ = O(

√
dn2/(n1 + n2)). Meanwhile, since θ̂(0) is unbiased to θ0, EE1 is

at most in O(
√
dn2/(n1 + n2)).

G.4 Proposition 3

The statement of Proposition 3 itself can be viewed as a simple sketch of the proof. We provide some
more details below:

Adding w into Theorem 1, we have

θϵ − θ̃(w, n2) =
wn2

n1 + wn2
Σ−1

ϵ Σ̃ϵ(θ̂(0)− θ0)︸ ︷︷ ︸
:=A(w,n2)

+
Σ−1

ϵ

n1 + wn2

(∑
S1

∂

∂θϵ
lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=B(w,n2)

+
wΣ−1

ϵ

n1 + wn2

(∑
S2

∂

∂θϵ
lϵ(x, y, θϵ)

)
︸ ︷︷ ︸

:=C(w,n2)

+o. (18)

∥∥∥θϵ − θ̃(w, n2)
∥∥∥2
Σϵ

= ∥A(w, n2) +B(w, n2)∥2Σϵ
+ ∥C(w, n2)∥2Σϵ

+2 (A(w, n2) +B(w, n2))
⊤
ΣϵC(w, n2)︸ ︷︷ ︸

:=D(w,n2)

+o.

Denote θ̃(w, n2) as the minimizer of (7), and w∗(n2) minimizes the excess adversarial risk of
θ̃(w, n2) w.r.t. w.

For n′
2 > n2, take w′ such that w′n′

2 = w∗(n2)n2, then
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• In (18), A(w∗(n2), n2) = A(w′, n′
2) and B(w∗(n2), n2) = B(w′, n′

2).

• Since n′
2 > n2, we have w′ < w∗(n2), and E∥C(w∗(n2), n2)∥2Σϵ

> E∥C(w′, n′
2)∥2Σϵ

.

• Since θ̂(0) is consistent, and data in S1 are real data, we have EA(w, n2) + B(w, n2) is
negligible, and thus ED(w, n2) is negligible.

As a result, the risk of θ̃(w′, n′
2) is smaller than θ̃(w∗(n2), n2).

On the other hand, by the definition of w∗(·), the risk of θ̃(w∗(n′
2), n

′
2) is further smaller than

θ̃(w′, n′
2).

Eventually, we obtain that a larger n2 always gives a better θ̃.

G.5 Derivation of Example 2

In Theorem 1, we assume the data generator and S1 are independent, which is different this scenario
where Σ̂ is learnt from S1. To show that the estimate in this example still converges, there are several
steps in the proof.

We firstly bound the difference between EPa⊗Py

∂
∂θϵ

lϵ(x, y, θϵ) and EP0⊗Py

∂
∂θϵ

lϵ(x, y, θϵ). Denote

fA as the density of (x, y) given a covariance matrix A, then given Σ̂,

EPa⊗Py

∂

∂θϵ
lϵ(X,Y, θϵ) (19)

=

∫
fΣ̂(x, y)

∂

∂θϵ
lϵ(x, y, θϵ)d(x, y)

=

∫
fΣ(x, y)

∂

∂θϵ
lϵ(x, y, θϵ)d(x, y)︸ ︷︷ ︸
=0

+

∫
(fΣ̂ − fΣ)(x, y)

∂

∂θϵ
lϵ(x, y, θϵ)d(x, y)

=

∫ 〈
Σ̂− Σ,

∂fΣ(x, y)

∂Σ

〉
∂

∂θϵ
lϵ(x, y, θϵ)d(x, y)

= O(∥Σ̂− Σ∥).

Since Σ̂ is consistent, EPa⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ) converges to EP0⊗Py

∂
∂θϵ

lϵ(X,Y, θϵ) as well, where
the latter one is a just zero vector.

Second, to show that θ̃(ϵ) is consistent as in Lemma 1, for some constant c0, with probability tending
to 1 over the generation of S1,

P

(
sup

θ∈B(0,b0)

∣∣∣∣∣EPa⊗Py lϵ(X,Y, θ)− 1

n2

∑
S2

lϵ(x, y, θ)

∣∣∣∣∣ ≥ c0

(√
t

n2
+

t

n2

) ∣∣∣∣S1

)
≤ e−t.

Since θ̂(0)
P−→ θ0, following the same arguments as in Lemma 1, we have

1

n1 + n2

∑
S2

lϵ(x, ŷ, θ) →
1

n1 + n2

∑
S2

lϵ(x, y, θ) + o.
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Furthermore, ∣∣∣∣∣∣EP0⊗Py
lϵ(X,Y, θ)− 1

n1 + n2

∑
S1,S2

lϵ(x, y, θ)

∣∣∣∣∣∣
≤

∣∣∣∣∣EP0⊗Py
lϵ(X,Y, θ)− 1

n1 + n2

∑
S1

lϵ(x, y, θ)−
n2

n1 + n2
EP0⊗Py

lϵ(X,Y, θ)

∣∣∣∣∣
+

n2

n1 + n2

∣∣∣∣∣ 1n2

∑
S2

lϵ(x, y, θ)− EP0⊗Py
lϵ(X,Y, θ)

∣∣∣∣∣
≤

∣∣∣∣∣EP0⊗Py
lϵ(X,Y, θ)− 1

n1 + n2

∑
S1

lϵ(x, y, θ)−
n2

n1 + n2
EP0⊗Py

lϵ(X,Y, θ)

∣∣∣∣∣︸ ︷︷ ︸
P−→0

+
n2

n1 + n2

∣∣EP0⊗Py
lϵ(X,Y, θ)− EPa⊗Py

lϵ(X,Y, θ)
∣∣︸ ︷︷ ︸

P−→0

+
n2

n1 + n2

∣∣∣∣∣ 1n2

∑
S2

lϵ(x, y, θ)− EPa⊗Py lϵ(X,Y, θ)

∣∣∣∣∣︸ ︷︷ ︸
P−→0

P−→ 0.

Thus following the same arguments as in Lemma 1, we get θ̃(ϵ) → θϵ in probability.

In terms of the Bahadur representation of θ̃(ϵ), from the decomposition in (11), we always deal with
S1 and S2 separately. The clean estimate θ̂(0) is related to Pa, but this does not affect Lemma 2 and
3 because their bounds are valid uniformly for proper θ. As a result, we obtain the same Bahadur
representation for θ̃(ϵ)− θϵ.

H Linear Regression with Gaussian Design

In this section, we present the derivation of label cost in θ̃(ϵ) and excess adversarial risk of θ̂(ϵ) in
linear regression with Gaussian design.

For Figure 3, we consider Y = X⊤θ0 + ε, θ0 = 1d/
√
d, X ∼ N(0, Id), ε ∼ N(0, 0.12).

The following is a list of contents in this section:

• Paragraph “formula of θϵ” describes how θϵ is related to Σ and θ0.

• Paragraph “label cost” and “vanilla adversarial training” present the formula of these two
costs under Gaussian design, using which we obtain the theoretical curves in Figure 3.

• Paragraph “simulation” presents the simulation setups to get the dashed curves in Figure 3.

Formula of R(θ, ϵ) Assume X ∼ N(0,Σ) and V ar(ε) = σ2, then in the adversarial loss:

lϵ(x, y, θ) = (x⊤θ − x⊤θ0 − ε)2 + ϵ2∥θ∥2 + 2ϵ∥θ∥|x⊤θ − x⊤θ0 − ε|.

We know that X⊤θ − X⊤θ0 − ε is also a Gaussian distribution with zero mean and variance as
∥θ − θ0∥2Σ + σ2, so the expectation of its absolute value is c0

√
∥θ − θ0∥2Σ + σ2 where c0 =

√
2/π.

As a result, the population adversarial risk is

R(θ, ϵ) = ∥θ − θ0∥2Σ + σ2 + ϵ2∥θ∥2 + 2ϵc0∥θ∥
√

∥θ − θ0∥2Σ + σ2,
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and its gradient becomes

∂R

∂θϵ
= 2Σ(θ − θ0) + 2ϵ2θ + 2ϵc0

θ

∥θ∥

√
∥θ − θ0∥2Σ + σ2 + 2ϵc0∥θ∥

Σ(θ − θ0)√
∥θ − θ0∥2Σ + σ2

:= 2
(
Σ(θ − θ0) + ϵ2θ + δ1θ + δ2Σ(θ − θ0)

)
.

One can solve θϵ numerically via solving ∂R/∂θ = 0 or minimizing R(θ, ϵ).

Formula of θϵ Under first-order optimality condition, we have

0 = Σ(θ − θ0) + ϵ2θ + δ1θ + δ2Σ(θ − θ0) = (Σ + δ2Σ)(θ − θ0) + (ϵ2 + δ1)θ,

which implies that

θϵ = (Σ + δ2Σ+ ϵ2I + δ1I)
−1(Σ + δ2Σ)θ0 := (Σ + λϵI)

−1Σθ0.

Remark 3. As in Javanmard et al. (2020); Xing et al. (2021b), when Σ = Id, λϵ is only a function of
(∥θ0∥, σ2, ϵ), regardless of d. However, in terms of the excess adversarial risk, it is related to d.

Label cost For E1,

∂2R

∂θ∂θ0
= −2Σ− 2ϵc0

θ(θ − θ0)
⊤Σ

∥θ∥
√

∥θ − θ0∥2Σ + σ2
− 2ϵc0∥θ∥

Σ√
∥θ − θ0∥2Σ + σ2

+2ϵc0∥θ∥
Σ(θ − θ0)(θ − θ0)

⊤Σ√
∥θ − θ0∥2Σ + σ2

3 .

For the term θ̂(0)− θ0 in E1, we know that,

θ̂(0)− θ0 =
Σ−1

0

n1

∑
S1

∂

∂θϵ
l0(x, y, θ).

When θ = θ0,

V ar

(
∂l0
∂θϵ

)
= 4σ2Σ, Σ0 = 2Σ.

As a result, the label cost becomes

E∥E1∥2Σϵ
=

1

n1
tr

(
Σ−1

ϵ

∂2R

∂θ∂θ0
Σ−1

0 (4σ2Σ)Σ−1
0

(
∂2R

∂θ∂θ0

)⊤)

=
1

n1
tr

(
Σ−1

ϵ

∂2R

∂θ∂θ0
(σ2Σ−1)

(
∂2R

∂θ∂θ0

)⊤)
.

The matrix Σϵ has an analytical form as

Σϵ = 2Σ + 2ϵ2Id + 2ϵc0

(
Id
∥θ∥

− θθ⊤

∥θ∥3

)√
∥θ − θ0∥2Σ + σ2

+2ϵc0
θ

∥θ∥
(Σ(θ − θ0)

⊤)√
∥θ − θ0∥2Σ + σ2

+ 2ϵc0
Σ(θ − θ0)√

∥θ − θ0∥2Σ + σ2

θ⊤

∥θ∥

+2ϵc0∥θ∥
Σ√

∥θ − θ0∥2Σ + σ2
+ 2ϵc0∥θ∥

(Σ(θ − θ0))(Σ(θ − θ0))
⊤√

∥θ − θ0∥2Σ + σ2
.

Vanilla adversarial training For the excess adversarial risk of θ̂(ϵ), we have

E∥θ̂(ϵ)− θϵ∥2Σϵ
=

1

n1
tr

(
Σ−1

ϵ V ar

(
∂

∂θϵ
lϵ(X,Y, θ)

))
,

28



where

∂lϵ
∂θϵ

= 2x(x⊤θ − x⊤θ0 − ε)︸ ︷︷ ︸
:=ξ1

+2ϵ2θ︸︷︷︸
:=ξ2

+2ϵ sgn (x⊤θ − x⊤θ0 − ε)∥θ∥x︸ ︷︷ ︸
:=ξ3

+2ϵ
θ

∥θ∥
|x⊤θ − x⊤θ0 − ε|︸ ︷︷ ︸

:=ξ4

.

Since E∂lϵ/∂θ = 0, we have

e2 = E
(

∂

∂θϵ
lϵ(X,Y, θ)

)(
∂

∂θϵ
lϵ(X,Y, θ)

)⊤

= E(ξ1 + ξ2 + ξ3 + ξ4)(ξ1 + ξ2 + ξ3 + ξ4)
⊤,

where

Eξ1ξ⊤1 = 4E[XX⊤(θ − θ0)
⊤XX⊤(θ − θ0)] + 4σ2Σ,

Eξ2ξ⊤2 = 4ϵ4θθ⊤,

Eξ3ξ⊤3 = 4ϵ2∥θ∥2Σ,

Eξ4ξ⊤4 = 4ϵ2
θθ⊤

∥θ∥2
(∥θ − θ0∥2Σ + σ2).

And some cross terms can be calculated as

Eξ1ξ⊤2 + Eξ2ξ⊤1 = 4ϵ2
(
Σ(θ − θ0)θ

⊤ + θ(θ − θ0)
⊤Σ
)
,

Eξ2ξ⊤4 + Eξ4ξ⊤2 = 8c0ϵ
3 θθ

⊤

∥θ∥

√
∥θ − θ0)∥2Σ + σ2

Eξ3ξ⊤4 + Eξ4ξ⊤3 = 4ϵ2
(
Σ(θ − θ0)θ

⊤ + θ(θ − θ0)
⊤Σ
)
.

For the other cross terms, ξ1ξ⊤3 , ξ1ξ⊤4 , ξ2ξ⊤3 , there is no closed-form formula for their expectation,
and we use simulation to approximate them.

Simulation To obtain an θ̃(ϵ) which does not involve generator cost, the procedure is slightly
different to other simulation studies in this paper. Rewrite R(θ, ϵ) = Rϵ(θ, θ0). We take n1 = 1, 000

to obtain θ̂(0), and directly numerically minimize Rϵ(θ, θ̂(0)) to get θ̃(ϵ). We repeat this procedure
for 1,000 times to get a stable estimate of the excess risk ratio.
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