Appendix of '"'Revisiting Realistic Test-Time Training:
Sequential Inference and Adaptation by Anchored
Clustering"

Yongyi Su'* Xun Xu?'*T  Kui Jia'3f
!South China University of Technology  ZInstitute for Infocomm Research
3Peng Cheng Laboratory
eesuyongyi@mail.scut.edu.cn
alex.xun.xu@gmail.com
kuijia@scut.edu.cn

In this appendix, we first provide more details for the derivation of iterative updating target domain
cluster parameters. We further provide more details of the hyperparameters used in TTAC. Finally,
we present evaluation of TTAC with transformer backbone, ViT [1]], additional evaluation of TTAC
update epochs, the stability of TTAC under different data streaming orders and compared alternative
target clustering updating strategies.

A Derivations of Efficient Iterative Updating

The mean and covariance for each target domain cluster can be naively estimated through Maximum
Likelihood Estimation (MLE) as below. The existing solution in TTT++ [4] stores the recent one
thousand testing samples and their features for MLE.
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When N is very large, it is inevitable that a very large memory space must be allocated to store all
features ' € RNV*P e.g. the VisDA dataset has 55k testing samples and a naive MLE prohibits
efficient test-time training. In the manuscript, we propose to online update target domain feature
distribution parameters without caching sample features as Eq. 8. The detailed derivations are now
presented as follows. Formally, we denote the running mean and covariance at step ¢t — 1 as !~ ! and
¥t~ and the test minibatch at step ¢ as Bt = {x;};=1...n,. The following is the derivation of s’.
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To simplify the expression, we denote §* = Yowepe (i) —p'=1), so pt = '~ + 6'. The
following is the derivation of . For the ease of calculation, we use the asymptotic unbiased estimator
of ¥t as shown as below.
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Furthermore, we give the formulations of the running mean !, and covariance 3¢, for the k" target
domain cluster as below.
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Similarly to N, for the threshold used to clip the N* protecting the gradient of new test samples,
we use Ny, 1 as the threshold to clip the 1V, ,2 for each target domain cluster.



Table 1: Hyper-parameters are used in our method.
Dataset | o Br No Ny € 7c¢ Tpp Neaip  Neipr A

CIFAR10-C 0.1 01 409 4 09 -0001 09 1280 128 1.0
CIFARI00-C | 0.01 001 4096 4 09 -0001 09 1280 64 1.0
CIFAR10.1 0.1 0.1 409 4 09 -0001 09 1280 128 1.0
VisDA-C = = 4096 4 09 -001 09 1536 128 1.0
ModelNet40-C | 0.025 0.025 409 6 09 -01 05 1280 128 1.0
ImageNet-C | 0.001 0.001 4096 2 09 -001 09 1280 64 10

Table 2: The results using ViT backbone on CIFAR10-C dataset.

Method \ Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom \ Avg Std
TEST 229 1624 483 945 1360 6.73 2452 1823 2448 12,63 7.63 1457 23.02 529 350 | 1247 736
BN 229 1624 483 945 1360 6.73 2452 1823 2448 12,63 7.63 1457 23.02 529 350 | 1247 736
TENT 1.84 355 331 701 557 409 6097 1020 61.12 972 493 3.87 2247 455 264 | 1372 19.19
SHOT 200 313 346 663 579 406 1165 939 1058 9.69 5.03 3.63 1005 435 270 | 6.14 3.15
TTT++ 191 414 383 658 627 400 1008 859 885 9.66 468 3.62 917 428 274 | 590 2.64

TTAC (Ours) | 2.15  4.05 391 662 567 375 926 795 797 855 475 387 824 393 294 | 557 224

B Hyperparameter Values

We provide the details of hyperparameters in this section. Hyperparameters are shared across multiple
TTT protocols except for No and NV, which are only applicable under one-pass adaptation protocols.
The details are shown as Tab.[I} «y and ) respectively represent the prevalence of each category,
here we set them to 1 over the number of categories. N¢ indicates the length of the testing sample
queue C under the sTTT protocol, and Ny, controls the update epochs on this queue. 70¢ and Tpp
are the thresholds used for pseudo label filtering. N.;;, and Ny, 1 are the upper bounds of sample
counts in the iterative updating of global statistics and target cluster statistics respectively. Finally
A is the coefficient of L,,, which takes the default value of 1. All models are implemented by the
PyTorch 1.10.2 framework, CUDA 11.3 with an NVIDIA RTX 3090 GPU.

C Additional Evaluation

C.1 Evaluation of TTAC with Transformer Backbone

In this section, we provide additional evaluation of TTAC with a transformer backbone, ViT [1]].
In specific, we pre-train ViT on CIFARI1O0 clean dataset and then follow the sTTT protocol to do
test-time training on CIFAR10-C. The results are presented in Tab.|2| We report the average (Avg) and
standard deviation (Std) of accuracy over all 15 categories of corruptions. Again, TTAC consistently
outperform all competing methods with transformer backbone.

C.2 Impact of TTAC Update Epochs on Cached Testing Sample

Under the sTTT protocol, we perform multiple iterations of adaptation on cached testing sample
queue. Preserving a history of testing samples is a commonly practice in test-time training. For
example, T3A [2] preserves a support set, which contains testing samples and the pseudo labels, to
update classifier prototypes. TTT++ [4] preserves a testing sample queue to estimate global feature
distribution. For these methods, both raw testing samples and features must be cached simultaneously,
in comparison, we only cache the raw data samples and target domain clusters are estimated in an
online fashion.

Here, we analyze the impact of TTAC update epochs on cached testing samples. The results are
presented in Tab. [3] where we make the following observations. First, the error rate is decreasing as
the number of epochs increases, while at the cost of more computation time. But this can be solved
by allocating a separate device for model adaptation. Second, the error rate saturates at N;;,, = 4
suggesting only a few epochs is necessary to achieve good test-time training on target domain.



Table 3:

The impact of TTAC update epochs under the sTTT protocol.

Nyt | Bird  Contr  Defoc Elast Fog  Frost Gauss Glass Impul Jpeg Motn Pixel ~Shot Snow Zoom | Avg
I [ 657 820 857 1582 1161 1160 1746 22.66 2099 1197 1044 1379 1540 1096 749 | 1290
2 682 812 877 1596 1179 1117 1549 2353 1978 1228 10.19 1322 1628 1084 749 | 1278
3 /680 811 853 1594 1136 1089 1487 2267 1894 1177 9.83 1251 1591 1058 7.35 | 12.40
4 | 641 805 785 1481 1028 1051 13.06 1836 1735 1080 897 934 1161 1001 6.68 | 10.94
6 | 642 7.64 797 1466 1066 1059 1330 1829 17.61 1086 894 936 1176 1003 673 | 10.98

Table 4: The performance of TTAC under different data streaming orders.
Random Seed ‘ 0 10 20 200 300 3000 4000 40000 50000 500000 ‘ Avg
Error (%) | 10.01 1006 10.05 1029 1020 10.03 1031 1036 1037  10.13 | 10.18+0.13

C.3 Impact of Data Streaming Order

The proposed sTTT protocols assumes test samples arrive in a stream and inference is made instantly
on each test sample. The result for each test sample will not be affected by any following ones. In this
section, we investigate how the data streaming order will affect the results. Specifically, we randomly
shuffle all testing samples in CIFAR10-C for 10 times with different seeds and calculate the mean
and standard deviation of test accuracy under STTT protocol. The results in Tab. 4|suggest TTAC
maintains consistent performance regardless of data streaming order.

C.4 Alternative Strategies for Updating Target Domain Clusters

In the manuscript, we presented target domain clustering through pseudo labeling. A temporal
consistency approach is adopted to filter out confident samples to update target clusters. In this
section, we discuss two alternative strategies for updating target domain clusters. Firstly, each target
cluster can be updated with all samples assigned with respective pseudo label (Without Filtering).
This strategy will introduce many noisy samples into cluster updating and potentially harm test-time
feature learning. Secondly, we use a soft assignment of testing samples to each target cluster to
update target clusters (Soft Assignment). This strategy is equivalent to fitting a mixture of Gaussian
through EM algorithm. Finally, we compare these two alternative strategies with our temporal
consistency based filtering approach. The results are presented in Tab.[5] We find the results with
temporal consistency based filtering outperforms the other two strategies on 13 out of 15 categories
of corruptions, suggesting pseudo label filtering is necessary for estimating more accurate target
clusters.

C.5 Sensitivity to Hyperparameters

We evaluate the sensitivity to two thresholds during pseudo label filtering, namely the temporal
smoothness threshold 7r¢ and posterior threshold 7pp. 77¢ controls how much the maximal
probability deviate from the historical exponential moving average. If the current value is lower
than the ema below a threshold, we believe the prediction is not confident and the sample should be
excluded from estimating target domain cluster. 7pp controls the the minimal maximal probability
and below this threshold is considered as not confident enough. We evaluate 7p¢in the interval
between 0 and -1.0 and 7pp in the interval from 0.5 to 0.95 with results on CIFAR10-C level 5
glass blur corruption presented in Tab. [6] We draw the following conclusions on the evaluations.
i) There is a wide range of hyperparameters that give stable performance, e.g. 7rc € [0.5,0.0.9]
and Tpp € [—0.0001, —0.01]. ii) When temporal consistency filtering is turn off, i.e. 70¢ = —1.0,
because the probability is normalized to between 0 and 1, the performance drops substantially,
suggesting the necessity to apply temporal consistency filtering.

Table 5: Comparison of alternative strategies for updating target domain clusters.

Strategy \ Bird Contr Defoc Elast Fog  Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom \ Avg
i. Without filtering | 7.19 898  9.29 17.28 11.90 11.72 17.19 2247 20.83 1227 10.11 1239 13.85 11.56 7.97 | 13.00
ii. Soft Assignment | 6.77 8.02 793 1477 10.87 10.68 1365 18.69 17.58 1126 933 954 11.70 1056 693 | 11.22
Filtering (Ours) 641 805 785 1481 1028 1051 13.06 1836 17.35 10.80 8.97 934 11.61 10.01 6.68 | 10.94




Table 6: Evaluation of pseudo labeling thresholds on CIFARI10-C level 5 glass blur corruption.
Numbers are reported as classification error (%).

rre\tpp | 05 06 07 08 09 095

0.0 23.03 2226 2196 2250 21.14 28.55
-0.0001 | 20.03 20.53 2045 2040 19.49 27.00
-0.001 19.66 20.51 1949 2048 1942 26.83
-0.01 20.71 20.78 20.73 20.65 20.29 27.58
-0.1 24.10 21.47 2146 2236 2145 28.71
-1.0 30.75 24.08 2340 2433 2221 28.77

C.6 Improvement by KL-Divergence

Minimizing KL-Divergence between two Gaussian distributions is equivalent to matching the first
two moments of the true distributions [3l]. TFA or TTT++ aligns the first two moments through
minimizing the L2/F norm, referred to as L2 alignment hereafter. Although L2 alignment is derived
from Central Moment Discrepancy [3l], the original CMD advocates a higher order moment matching
and the weight applied to each moment is hard to estimate on real-world datasets. An empirical weight
could be applied to balance the mean and covariance terms in TTT++, at the cost of introducing
additional hyperparameters. We also provide a comparison between KL-Divergence and L2 alignment
on CIFAR10-C level 5 snow corruption in Tab. [7jusing the original code released by TTT++. The
performance gap empirically demonstrates the superiority of KL-Divergence. Nevertheless, we
believe a theoretical analysis into why KL-Divergence is superior under test-time training would be
inspirational and we leave it for future work.

Table 7: Comparing KL-Divergence and L2 alignment as test-time training loss with the original
code released by TTT++ (Y-M) on CIFARI10 level 5 snow corruption.

Feature Alignment Strategy | Error (%)

L2 alignment (original TTT++) 9.85
KL-Divergence 8.43

D Limitations and Failure Cases

We discuss the limitations of our method from two perspectives. First, we point out that TTAC
implements backpropagation to update models at test stage, therefore additional computation overhead
is required. Specifically, as Tab. ??, we carried out additional evaluations on the per-sample wall
clock time. Basically, we discovered that TTAC is 2-5 times computationally more expensive than BN
and TENT. However, contrary to usual recognition, BN and TENT are also very expensive compared
with no adaptation at all. Eventually, most test-time training methods might require an additional
device for test-time adaptation.

We further discuss the limitations on test-time training under more severe corruptions. Specifically,
we evaluate TENT, SHOT and TTAC under 1-5 levels of corruptions on CIFAR10-C with results
reported in Tab.[8] We observe generally a drop of performance from 1-5 level of corruption. Despite
consistently outperforming TENT and SHOT at all levels of corruptions, TTAC’s performance at
higher corruption levels are relatively worse, suggesting more attention must be paid to more severely
corrupted scenarios.

E Detailed results

We further provide details of test-time training on CIFAR10-C, CIFAR100-C and ModelNet40-C
datasets in Tab.[9} [T0]and [IT]respectively. The results in Tab.[9]and [I0|suggest TTAC has a powerful
ability to adapt to the corrupted images, and obtains the state-of-the-art performances on almost all
corruption categories.



Table 8: Classification error under different levels of snow corruption on CIFAR10-C dataset.

Level | 1 2 3 4 5

TEST | 9.46 1834 16.89 1931 21.93
TENT | 8.76 11.39 13.37 15.18 13.93
SHOT | 870 11.21 13.16 15.12 13.76
TTAC | 654 819 9.82 10.61 9.98

Table 9: The results of CIFAR10-C under the sTTT protocol

Method | Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom | Avg
TEST 7.00 1328 11.84 2338 29.42 2825 4873 5079 57.01 1946 2338 47.88 44.00 2193 10.84 | 29.15
BN 821 836 9.73 1943 20.16 13.72 1746 2634 28.11 1400 1390 1222 16.64 1600 8.03 15.49
TENT 822 807 993 1829 1565 14.14 1660 24.10 2580 13.39 1234 11.06 1475 1387 7.87 | 1427
T3A 8.33 870 9.70 19.51 20.26 13.83 1727 25.61 27.63 14.05 1426 12.12 1637 1578 8.13 15.44
SHOT 758 778 9.2 1776 1690 1256 1599 2330 2499 13.19 1259 1137 1485 1375 751 | 13.95
TTT++ 7.70 791 9.24 17.55 1639 1274 1549 2257 2286 13.02 1252 1146 1445 1390 7.51 13.69
TTAC (Ours) 641 805 7.85 14.81 1028 10.51 13.06 1836 17.35 10.80 897 934 11.61 10.01 6.68 | 10.94

TTAC+SHOT (Ours) | 6.37 698 7.79 14.80 11.04 1052 1358 1834 17.68 1094 893 920 1181 10.01 6.79 | 10.99

Table 10: The results of CIFAR100-C under the sTTT protocol

Method \ Bird Contr Defoc Elast Fog  Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom \ Avg
TEST 28.84 50.87 39.61 5953 68.10 6021 80.77 8227 87.75 4998 5420 7227 77.84 5457 3836 | 60.34
BN 31.78 33.06 3386 48.65 54.23 4228 4802 57.08 60.14 39.09 4072 37.76 4583 4631 3191 | 43.38
TENT 3045 31.47 3248 4584 4485 4139 4559 5231 56.16 3894 3841 3555 4340 42.89 31.10 | 40.72
T3A 31.66 32.63 3362 47.60 53.06 4195 46.63 5551 5892 38.89 4026 3721 4532 46.08 3143 | 4272
SHOT 2936  30.49 3133 4341 45.14 3931 4335 5098 5375 36.07 36.11 3454 4216 4099 29.52 | 39.10
TTT++ 30.79 31.48 33.04 4495 47.74 40.19 4394 5206 54.08 3726 38.10 3540 4228 4297 30.58 | 40.32
TTAC (Ours) 28.13 3255 2945 4154 39.07 3695 40.01 4830 4921 3455 3329 3269 3862 37.69 27.61 | 36.64

TTAC+SHOT (Ours) | 27.73  32.19 29.25 41.26 38.67 36.67 40.01 47.87 4921 34.13 3298 32.52 38.62 37.35 27.36 | 36.39

Table 11: The results of ModelNet40-C under the sTTT protocol

Method | Background Cutout Density Inc.  Density Dec. Inv.RBF RBF FFD Gaussian Impulse LiDAR Occlusion Rotation Shear Uniform Upsampling | Avg
TEST 57.41 23.82 16.17 27.59 21.19 2285 19.89 27.07 37.48 85.21 65.24 41.61 16.33 2293 34.44 34.62
BN 52.88 18.07 13.25 20.42 16.57 17.50 1775 17.30 18.60 70.75 58.51 26.94 14.51 15.48 19.37 26.53
TENT 51.94 17.38 13.25 17.99 14.14 16.65 15.68 16.49 17.10 81.44 64.18 22.33 13.29 14.59 19.25 26.38
T3A 52.51 16.37 13.09 18.23 14.26 1548 15.88 14.14 15.68 69.12 54.82 24.80 13.01 14.14 17.06 24.57
SHOT 15.64 14.34 12.24 15.48 13.37 13.82  12.64 13.13 1343 66.05 47.41 18.80 11.79 12.44 15.11 19.71
TTAC (Ours) 24.88 17.14 12.44 19.12 15.07 1629 1645 14.95 16.37 63.49 52.19 22.41 13.70 13.78 16.21 22.30
TTAC+SHOT (Ours) 18.67 14.89 10.88 15.58 13.12 14.19  14.04 12.15 14.08 57.35 47.48 18.93 11.99 11.92 12.88 19.21
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas

(2]

(3]

(4]

(5]

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In /CLR, 2021.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic domain
generalization. In Advances in Neural Information Processing Systems, 2021.

Gerhard Kurz, Florian Pfaff, and Uwe D. Hanebeck. Kullback-leibler divergence and moment matching
for hyperspherical probability distributions. In 2016 19th International Conference on Information Fusion
(FUSION), 2016.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
Ttt++: When does self-supervised test-time training fail or thrive? In Advances in Neural Information
Processing Systems, 2021.

Werner Zellinger, Bernhard A. Moser, Thomas Grubinger, Edwin Lughofer, Thomas Natschlidger, and
Susanne Saminger-Platz. Robust unsupervised domain adaptation for neural networks via moment alignment.
Information Sciences, 2019.



	Derivations of Efficient Iterative Updating
	Hyperparameter Values
	Additional Evaluation
	Evaluation of TTAC with Transformer Backbone
	Impact of TTAC Update Epochs on Cached Testing Sample
	Impact of Data Streaming Order
	Alternative Strategies for Updating Target Domain Clusters 
	Sensitivity to Hyperparameters
	Improvement by KL-Divergence

	Limitations and Failure Cases
	Detailed results

