
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PROOF OF THEOREM 1

Following the proof of f -DP central limit theorem in (Bu et al., 2020), we have the following
definitions given a function f :

kl(f) , −
∫ 1

0

log |f ′(x)|dx, (17)

k̃l(f) ,
∫ 1

0

|f ′(x)| log |f ′(x)|dx, (18)

κ2(f) ,
∫ 1

0

log2 |f ′(x)|dx, (19)

κ̃2(f) ,
∫ 1

0

|f ′(x)| log2 |f ′(x)|dx, (20)

κ3(f) ,
∫ 1

0

| log |f ′(x)||3dx, (21)

κ̃3(f) ,
∫ 1

0

|f ′(x)| · | log |f ′(x)||3dx. (22)

Let {fni : 1 6 i 6 n}∞n=1 be a triangular array of trade-off functions and assume the following limits
for some constants K > 0 and s > 0 as n→∞:

1.
∑n
i=1 kl (fni) + k̃l (fni)→ K,

2. max16i6n kl (fni)→ 0, max16i6n k̃1 (fni)→ 0,

3.
∑n
i=1 κ2 (fni)→ s2,

∑n
i=1 κ̃2 (fni)→ s2,

4.
∑n
i=1 κ3 (fni)→ 0,

∑n
i=1 κ̃3 (fni)→ 0,

it is shown in (Bu et al., 2020) that

lim
n→∞

fn1 ⊗ fn2 ⊗ · · · ⊗ fnn(α) = GK/s(α) (23)

uniformly for all α ∈ [0, 1]. Let gt(x) = −G′µt
− 1 =

∣∣G′µt

∣∣− 1, where the second equation is due
to the shape of the tradoff function. Then equations from (17) to (22) are reformulated as:

kl (fp,t) = −
∫ 1

0

log(1 + pgt(x))dx, (24)

k̃l (fp,t) =

∫ 1

0

(1 + pgt(x)) log(1 + pgt(x))dx, (25)

κ2 (fp,t) =

∫ 1

0

[log(1 + pgt(x))]2dx, (26)

κ̃2 (fp,t) =

∫ 1

0

(1 + pgt(x))[log(1 + pgt(x))]2dx, (27)

κ3 (fp,t) =

∫ 1

0

[log(1 + pgt(x))]3dx, (28)

κ̃3 (fp,t) =

∫ 1

0

(1 + pgt(x))[log(1 + pgt(x))]3dx. (29)

12

Under review as a conference paper at ICLR 2022

According to (23), we need to compute
∑T
t=1

(
kl (fp,t) + k̃l (fp,t)

)
and

∑T
t=1 κ2 (fp,t) to obtain

the CLT. Let p
√
T → v and p→ 0+, we compute K by

K = lim
p→0+

p
√
T→v

T∑
t=1

(
kl (fp,t) + k̃l (fp,t)

)

= lim
p→0+

p
√
T→v

T∑
t=1

p

∫ 1

0

gt(x) · log(1 + pgt(x))dx

=

T∑
t=1

∫ 1

0

v2

T
· gt(x) · lim

p→0+

1

p
log(1 + pgt(x))dx

=
v2

T

T∑
t=1

∫ 1

0

gt(x)2dx

=
v2

T

T∑
t=1

(
eµ

2
t − 1

)
.

(30)

We further compute s following the same procedure:

s2 =

T∑
t=1

κ2 (fp,t)

=
v2

T

T∑
t=1

∫ 1

0

lim
p→0+

[
1

p
log(1 + pgt(x))

]2
dx

=
v2

T

T∑
t=1

∫ 1

0

gt(x)2dx

=
v2

T

T∑
t=1

(
eµ

2
t − 1

)
.

(31)

Substituting (30) and (31) into (23), we have

lim
T→∞

fp,t⊗Tt=1 = Gµ(α) (32)

with

µ =
K

s
= p

√√√√ T∑
t=1

(
eµ2

t − 1
)
. (33)

A.2 DATA SETS AND SETTINGS

MNIST (Lecun & Bottou, 1998) that contains 60000 training samples and 10,000 testing samples
with ten balanced classes. Each grayscale sample is stored as a 28× 28 matrix. The classification
model used in our experiments consists of two convolutional layers and two fully connected layers.
Following each convolutional layer is a max-pooling layer with a pooling size of 2×2. For activations,
we use ReLU and for classification, we use softmax. Cross-entropy loss is used.

In the experiment, initial clipping value is set to 1.5 and learning rate is set to 0.15. We set p = 250
60000

for the subsampling with independent Bernoulli trial. All the results are the average over 5 times
repeated experiments.

FashionMNIST is a dataset of Zalando’s article images, serving as an alternative to MNIST dataset
for benchmarking machine learning algorithms. It shares the same image size and structure of training
and testing splits. As a result, we use the same experimental setup as MNIST. The only difference is
that we specified a clipping value of 4 as the initial value.

13

Under review as a conference paper at ICLR 2022

IMDB For natural language processing or text analytics, the IMDB dataset contains 50K movie
reviews. This is a binary sentiment classification dataset. We use a three-layer network with one
embedding layer and two fully connected layers; this can be viewed as an MLP model because the
embedding layer is a special implementation of fully connected layers. We train for 25 epochs with
the Adam optimizer, with the initial clipping value set to be 2.

Please keep in mind that the DP-SGD and proposed dynamic DP-SGD can also be used to obtain the
DP-Adam counterparts of Adam due to DP’s postprocessing properties.

NAME is a name classification dataset containing person names from 18 countries. It is available on
Pytorch NLP tutorials4. We train a LSTM model to determine which country the given name belongs
to. The name is treated as a sequence, and the characters are fed into LSTM one by one. We use a
one-layer LSTM with hidden size 128 and embedding size 64 followed by a fully connected layer,
an SGD optimizer with learning rate 2 and we train 50 epochs for each experiment, and the initial
clipping value is set to be 1.5.

InfiniteMNIST and Federated Learning InfiniteMNIST is a dataset consisting of massive training
samples derived from origin MNIST by applying different types of transformations. Such large scale
dataset is suitable for a federated setting. We extract 250K and 500K images as two training data sets
and simulate identical number of clients. Thus each client is not enough to train the model, but they
can cooperatively learn a model via federated learning. We use the same network structure as in the
experiment for MNIST for each client.

Federated Learning Algorithm Fed-SGD algorithm is used for optimization. For each round,
we randomly sample clients with sampling rate p = 1 × 10−3 for the case of MNIST-250K and
p = 5× 10−4 for the case of MNIST-500K. Gradients are computed on each selected client and then
sent to the server for aggregation. In this setting, local DP mechanism is required to protect client side
gradients, and each client apply clipping and additive noise on local gradients before transmission.
The server will aggregate noised gradients, which achieves central DP. The details is provided in the
following Algorithm 3.

Algorithm 3 Federated Dynamic DP Algorithm

Require: Clients set S, DP budget (ε, δ), client sampling rate p, dataset X = (X1, X2...X|S|),
training rounds T , hyper-parameters: ρµ, ρc and C0.

1: Compute µ0 in Algorithm 1
2: for t = 0, . . . , T − 1 do
3: Compute Ct = (ρc)

− t
T · C0 according to (14)

4: Calibrate noise : σt = C0

µ0
(ρµ · ρc)−

t
T

5: Sample clients for the t-th iteration, i.e., St ∈ S with Poisson sampling rate p.
6: for k ∈ St do
7: gk,t = 1

|St|
(∑

x∈St (gx;Ct) + ξk,t
)

with ξk,t ∼ N (0, σ2I)

8: Send gk,t to the server.
9: end for

10: Server computes: θt = θt−1 − η 1
|St|

(∑
k∈St gk

)
11: end for

4https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

14

	Introduction
	Related Work
	An Inspiring Case of the Unstable DP-SGD
	Dynamic DP-SGD
	Extended CLT for GDP
	Growing-t Method
	Sensitivity-Decay Method
	Dynamic DP

	Experiments
	Datasets, Models and Benchmarks
	Results Analysis
	Hyper-parameter sensitivity
	Exact Privacy Cost

	Conclusions
	Appendix
	Proof of Theorem 1
	Data Sets and Settings

