Leveraging Neuron Activation Patterns to Explain and Improve
Deep Learning Classifiers

1. Training of the Auxiliary Model
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Figure 1: Overview of the proposed performance improvement method and required steps for
training the auxiliary model.

We require a trained model to utilize the proposed auxiliary model-based deep learning model’s
performance enhancement. We start by splitting the data into 80% training data and 20% testing
data. We train a model with the training and testing data. Next, we extract the activation maps
(neuron activation for FCNN) of the trained model for only the training data. For, CNN we used the
activation of the last convolutional layer, and for FCNN, we used the activation of the last hidden
layer. Next, we use the activation maps to calculate the probability of activation of different neurons
for different classes. Then, using the activation probability matrix we calculate the activation
probability vector, i.e., the probabilities of a data belonging to different classes. Next, we calculate the
activation probability vector for the dataset. Finally, we combine the activation probability vector
and the prediction of the trained model to train the auxiliary model. In the auxiliary model, we use
the same training and testing data as the trained model.

Table 1: Details of the architecture of the deep learning models for different datasets.

Dataset 'Il;z(l:g;f Image Size Nlé;:::::f Iterations
MNIST 28 X 28
MNIST Mixed 28 X 28
Fashion MNIST FCNN 28 x 28 20
Fashll\zir;“le\/(liNIST 28 X 28 10
FCNN 32 %32
CIFAR-10 VGG-16 112 x 112 40
ResNet-50 64 X 64
CIFAR-100 InceptionV3 224 x 224 100 40
. FCNN 256 x 256 100
Plant Village ResNet-50 112 x 112 ) 40
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Figure 2: Graphical Representation of the FCNNs used in the study.

Table 2: Pearson correlation coefficient between the entropy and testing accuracy. We used FCNN
for MNIST, MNIST Mixed, Fashion MNIST, Fashion MNIST Mixed, ResNet-50 for CIFAR-10 and Plant
Village, and InceptionV3 for CIFAR-100. Darker blue represents higher values, and darker red

represents lower values.
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Figure 3: Change of normalized entropy, training and testing accuracy for different classes of the
MNIST dataset over different iterations.
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Figure 4: Change of normalized training and testing accuracy, and entropy of the MNIST Mixed
dataset over different iterations for different classes using FCNN.
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Figure 5: Change of normalized training and testing accuracy, and entropy of the CIFAR-10 dataset
over different iterations for different classes using the ResNet-50.

Table 3: Spearman and Pearson correlation coefficient between entropy and training accuracy for
individual classes. We used FCNN for MNIST, MNIST Mixed, Fashion MNIST, Fashion MNIST Mixed,
CIFAR-10 FCNN, Plant Village and ResNet-50 for CIFAR-10 ResNet-50. Darker blue represents
higher values, and darker red represents lower values.
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