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Abstract: 3D perceptual representations are well suited for robot manipulation as1

they easily encode occlusions and simplify spatial reasoning. Many manipulation2

tasks require high spatial precision in end-effector pose prediction, typically de-3

manding high-resolution 3D perceptual grids that are computationally expensive4

to process. As a result, most manipulation policies operate directly in 2D, forego-5

ing 3D inductive biases. In this paper, we propose Act3D, a manipulation policy6

Transformer that casts 6-DoF keypose prediction as 3D detection with adaptive7

spatial computation. It takes as input 3D feature clouds projected from one or8

more camera views, iteratively samples 3D point grids in free space in a coarse-to-9

fine manner, featurizes them using relative spatial attention to the physical feature10

cloud, and selects one as the end-effector position. Act3D sets a new state-of-11

the-art in RLbench, an established robot manipulation benchmark. Specifically,12

our model achieves 10% absolute improvement over the previous SOTA multi-13

view policy on 74 RLbench tasks and 22% absolute improvement with 3x less14

compute over the previous SOTA 3D policy. In thorough ablations, we show the15

importance of relative spatial attention, large-scale vision-language pre-trained16

2D backbones, and weight tying across coarse-to-fine attentions. Our code and17

models will be publicly available upon publication.18

Keywords: Learning from Demonstrations, Manipulation, Transformers19

1 Introduction20

Solutions to many robotic manipulation tasks can be represented as a sequence of 6-DoF robot21

end-effector poses. Many recent methods train manipulation policies to predict such poses directly22

from 2D videos and language instructions using supervision from demonstrations [1, 2, 3, 4, 5].23

However, these methods are typically sample inefficient, often requiring thousands of trajectories,24

and cannot easily generalize across viewpoints and environments. Transporter networks [6] recently25

reformulated 4-DoF keypose prediction as pixel classification in a top-down scene image, inspired26

by object detection in computer vision [7, 8, 9]. This design choice of detecting end-effector poses in27

the scene using local features instead of regressing them from aggregated scene features, which we28

will call action detection, dramatically increased sample efficiency. However, Transporter Networks29

are limited to top-down 2D worlds and 4-DoF end-effector poses.30

A core challenge in detecting actions for general 6-DoF manipulation is that end-effector 3D posi-31

tions need to be predicted on 3D points in free space, not on 3D physical scene points. For example,32

end-effector 6 DoF poses relevant for a task, which we will call keyposes [10, 11], can be pre-grasp33

poses, back-off poses for articulated object interactions, or transition poses between different parts34

of a task. While it is straightforward to featurize 2D pixels or 3D physical points — we can featurize35

pixels with 2D backbones and back-project to 3D or use a 3D point cloud transformer [12] — it is36

less clear how to efficiently featurize points in free space to detect one as the end-effector position.37

3D voxelization at high resolution is computationally demanding since we cannot use sparse 3D con-38
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Figure 1: Act3D architecture. Act3D is a language-conditioned end-effector 6-DoF keypose pre-
dictor that learns 3D perceptual representations of arbitrary spatial resolution via recurrent coarse-
to-fine 3D point sampling and featurization. Act3D featurizes multi-view RGB images with a pre-
trained 2D backbone and lifts them in 3D using depth to obtain a multi-scale 3D scene feature cloud.
It then iteratively predicts 3D foci of attention in the free space, samples 3D point grids in their vicin-
ity, and featurizes the sampled 3D points using relative cross-attention to the physical scene feature
cloud, language tokens, and proprioception. Act3D detects the 3D point that corresponds to the
next best end-effector position using a detection Transformer head, and regresses the rotation, end-
effector opening, and planner collision avoidance from the decoder’s parametric query.

volutions [13, 14]: we do not know ahead of time which voxels will remain empty or would need39

to be featurized because they would contain the next end-effector pose. Recent work of PerAct [1]40

featurizes all 3D voxels (occupied or not) using the latent set bottlenecked self-attention operation41

of Perceiver [15], which is computationally expensive. Other methods work around this issue by42

avoiding featurizing points in free space and instead detecting a contact point and then regressing43

an offset from this contact point towards the end-effector predicted position [2, 16, 17]. This is a44

reasonable design choice but it does not fully exploit the action detection inductive bias.45

In this paper, we propose Act3D, a Transformer policy architecture for language-conditioned multi-46

task robot manipulation that casts 6-DoF end-effector keypose prediction as 3D detection with adap-47

tive spatial computation. Act3D learns 3D perceptual representations of arbitrary spatial resolution48

via recurrent coarse-to-fine 3D point grid sampling and featurization. It first computes a physical49

scene 3D feature cloud by lifting 2D pre-trained features from one or more views using sensed50

depth. At each iteration, the model then samples 3D point grids in free space and featurizes them51

using relative spatial cross-attention [18] to the 3D physical feature cloud. The featurized 3D points52

are classified with a detection Transformer head [9, 19] to predict the grid center for the next iter-53

ation. All iterations share attention weights. Act3D detects the 3D point that corresponds to the54

end-effector’s 3D position using a detection transformer head [9, 19], then regresses the 3D rotation55

and opening of the end-effector from the contextualized parametric query. At inference time, we56

can trade-off compute for higher spatial precision and task performance by sampling more points in57

free space than the model ever saw at training time.58

We test Act3D in RLBench [20], an established benchmark for learning diverse robot manipulation59

policies from demonstrations. We set a new state-of-the-art in the benchmark in both single-task60

and multi-task settings. Specifically, we achieve a 10% absolute improvement over prior SOTA on61

the single-task setting introduced by HiveFormer [2] with 74 tasks and a 22% absolute improvement62

over prior SOTA in the multi-task setting introduced by PerAct [1] with 18 tasks and 249 variations.63

We also validate our approach on a Franka Panda with a multi-task agent trained from scratch on64

8 real-world tasks with a total of just 100 demonstrations (see Figure 2). In thorough ablations,65

we show the importance of relative spatial attention, large-scale vision-language pre-trained 2D66

backbones, and weight tying across coarse-to-fine attentions.67
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2 Related Work68

Learning robot manipulation from demonstrations Many recent work train multi-task manip-69

ulation policies that leverage Transformer architectures [1, 2, 3, 5, 21, 22] to predict robot actions70

from video input and language instructions. End-to-end image-to-action policy models, such as RT-71

1 [5], GATO [22], BC-Z [23], and InstructRL [3], directly predict 6-DoF end-effector poses from72

2D video and language inputs. They require many thousands of demonstrations to learn spatial73

reasoning and generalize to new scene arrangements and environments. Transporter networks [6]74

and their subsequent variants [24, 25] formulate 4-DoF end-effector pose prediction as pixel classi-75

fication in 2D overhead images. Their action detection inductive bias — parametrizing the action76

implicitly [26] by detecting end-effector poses in the scene using local features with translation and77

rotation equivariances [27] — dramatically increased sample efficiency over previous methods that78

regress end-effector poses by aggregating global scene features. However, they are limited to top-79

down 2D planar worlds with simple pick-and-place primitives. 3D policy models of C2F-ARM [4]80

and PerAct [1] voxelize the robot’s workspace and are trained to detect the 3D voxel that contains81

the next end-effector keypose. Spatially precise 3D pose prediction requires the 3D voxel grid to82

be high resolution, which comes at a high computational cost. C2F-ARM [4] uses a coarse-to-fine83

voxelization in convolutional grids to handle computational complexity, while PerAct [1] uses Per-84

ceiver’s latent bottleneck [15] to avoid voxel-to-voxel self-attention operations. Act3D avoids 3D85

voxelization altogether and instead represents the scene as a 3D feature cloud. It samples 3D points86

in the empty workspace and featurizes them using cross-attentions to the physical 3D point features.87

Feature pre-training for robot manipulation Many 2D policy architectures bootstrap learning88

from demonstrations from frozen or finetuned 2D image backbones [28, 29, 23, 30] to increase ex-89

perience data sample efficiency. Pretrained vision-language backbones can enable generalization to90

new instructions, objects, and scenes [31, 25]. In contrast, SOTA 3D policy models are typically91

trained from scratch from colored point clouds input [1, 4]. Act3D uses CLIP pre-trained 2D back-92

bones [32] to featurize 2D image views and lifts the 2D features in 3D using depth information. We93

show that 2D feature pretraining gives a considerable performance boost over training from scratch.94

Relative attention layers Relative attentions have shown improved performance in many 2D vi-95

sual understanding tasks and language tasks [33, 34]. Rotary embeddings [35] implement relative96

attention efficiently by casting it as an inner-product in an extended position feature space. In 3D,97

relative attention is imperative as the coordinate system is arbitrary. 3D relative attentions have been98

used before in 3D Transformer architectures for object detection and point labelling [36, 37]. We99

show in Section 4 that relative attentions significantly boost performance of our model.100

3 Act3D101

The architecture of Act3D is shown in Figure 1. It is a Transformer policy that, at each timestep t,102

predicts a 6-DoF end-effector pose from one or more RGB-D images, a language instruction, and103

proprioception information regarding the robot’s current end-effector pose. The key idea is to detect104

6 DoF end-effector future poses in the robot’s workspace by learning 3D perceptual representations105

of free space of arbitrary spatial resolution via recurrent coarse-to-fine 3D point grid sampling and106

featurization. 3D point candidates (which we will call ghost points) are sampled, featurized and107

scored iteratively through relative cross-attention [18] to the physical 3D scene feature cloud, lifted108

from 2D feature maps of the input image views.109

Following prior work [11, 1, 2, 3], instead of predicting an end-effector pose at each timestep, we110

extract a set of keyposes that capture bottleneck end-effector poses in a demonstration. A pose is111

a keypose if (1) the end-effector changes state (something is grasped or released) or (2) velocities112

approach near zero (a common occurrence when entering pre-grasp poses or entering a new phase113

of a task). The prediction problem then boils down to predicting the next (best) keypose action114
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given the current observation. At inference time, Act3D iteratively predicts the next best keypose115

and reaches it with a motion planner, following previous works [1, 2].116

We assume access to a dataset of n demonstration trajectories. Each demonstration is a sequence of
observations O = {o1, o2, .., ot} paired with continuous actions A = {a1, a2, .., at} and, optionally,
a language instruction l that describes the task. Each observation ot consists of RGB-D images from
one or more camera views; more details are in Appendix 6.2. An action at consists of the 3D
position and 3D orientation (represented as a quaternion) of the robot’s end-effector, its binary open
or closed state, and whether the motion planner needs to avoid collisions to reach the pose:

a = {apos ∈ R3, arot ∈ H, aopen ∈ {0, 1}, acol ∈ {0, 1}}

Next, we go into details on the modules of Act3D.117

Visual and language encoder Our visual encoder map multi-view RGB-D images into a multi-118

scale 3D scene feature cloud. We use a large-scale pre-trained 2D feature extractor followed by a119

feature pyramid network [38] to extract multi-scale visual tokens for each camera view. We then lift120

these 2D visual tokens to 3D by interpolating their depth values. The language encoder featurizes in-121

structions with a large-scale pre-trained language feature extractor. We use the CLIP ResNet50 [32]122

visual encoder and the corresponding language encoder to exploit their common vision-language123

feature space for interpreting instructions and referential grounding. Our pre-trained visual and124

language encoders are frozen, not finetuned, during training of Act3D.125

Iterative ghost point sampling and featurization To enable precise and computationally126

tractable keypose detection, we sample, featurize and select ghost points iteratively, first coarsely127

across the entire workspace, then finely in the vicinity of the ghost point selected as the focus of128

attention in the previous iteration. The coarsest ghost points attend to a global coarse scene feature129

cloud, whereas finer ghost points attend to a local fine scene feature cloud.130

Relative 3D cross-attentions We featurize each of the 3D ghost points and a parametric query131

(used to select via inner-product one of the ghost points as the next best end-effector position in the132

decoder) independently through cross-attentions to the multi-scale 3D scene feature cloud, language133

tokens, and proprioception. Featurizing ghost points independently, without self-attentions to one134

another, enables sampling more ghost points at inference time to improve performance, as we show135

in Section 4. Our cross-attentions use relative 3D position information and are implemented effi-136

ciently with rotary positional embeddings [18]. Given a point p = (x, y, z) ∈ R3 and its feature137

x ∈ Rd, the rotary position encoding function PE is defined as:138

PE(p,x) = M(p)x =

[
M1

. . .
Md/6

]
x, Mk =


cos xθk − sin xθk 0 0 0 0
sin xθk cos xθk 0 0 0 0

0 0 cos yθk − sin yθk 0 0
0 0 sin yθk cos yθk 0 0
0 0 0 0 cos zθk − sin zθk
0 0 0 0 sin zθk cos zθk


where θk = 1

100006(k−1)/d . The dot product of two positionally encoded features is then

PE(pi,xi)
TPE(pj ,xj) = xT

i M(pi)
TM(pj)xj = xT

i M(pj − pi)xj

which depends only on the relative positions of points pi and pj .139

Detection Transformer decoder Once ghost points and the parametric query are featurized, the140

detection transformer head scores ghost point tokens via inner product with the parametric query to141

select one as the next best end-effector position apos. We then regress the end-effector orientation142

arot and opening aopen, as well as whether the motion planner needs to avoid collisions to reach the143

pose acol, from the parametric query with a simple multi-layer perceptron (MLP).144

Training Act3D is trained supervised from input-action tuples from a dataset of manipulation145

demonstrations. These tuples are composed of RGB-D observations, language goals, and keypose146

actions {(o1, l1, k1), (o2, l2, k2), ...}. During training, we randomly sample a tuple and supervise147
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Figure 2: Tasks. We conduct experiments on 92 simulated tasks in RLBench [20] (only 10 shown),
and 8 real-world tasks (only 5 shown). Please see the supplementary video for video results of our
model in simulation and in the real world.

Act3D to predict the keypose action k given the observation and goal (o, l). We supervise position148

prediction apos at every round of coarse-to-fine with a softmax cross-entropy loss over ghost points,149

rotation prediction arot with a MSE loss on the quaternion prediction, and binary end-effector open-150

ing aopen and whether the planner needs to avoid collisions acol with binary cross-entropy losses.151

Implementation details We extract two feature maps per 256x256 input image view: 32x32152

coarse visual tokens and 64x64 fine visual tokens. We use three ghost point sampling stages: first153

across the entire workspace (roughly 1 meter cube), then in a 16 centimeter diameter ball, and fi-154

nally in a 4 centimeter diameter ball. The coarsest ghost points attend to a global coarse scene155

feature cloud (32x32xncam coarse visual tokens) whereas finer ghost points attend to a local fine156

scene feature cloud (the closest 32x32xncam out of the total 64x64xncam fine visual tokens). Dur-157

ing training, we sample 1000 ghost points in total split equally across the three stages. At inference158

time, we can trade-off extra prediction precision and task performance for additional compute by159

sampling more ghost points than the model ever saw at training time (10, 000 in our experiments).160

We’ll show in ablations in Section 4 that our framework is robust to these hyper-parameters but tying161

weights across sampling stages and relative 3D cross-attention are both crucial for generalization.162

We use 2 layers of cross-attention and an embedding size 60 for single-task experiments and 120 for163

multi-task experiments. Training samples are augmented with random crops of RGB-D images and164

±45.0 yaw rotation perturbations (only in the real world as this degrades performance in simulation165

as we’ll show in Section 4). We use a batch size 16 on a Nvidia 32GB V100 GPU for 200k steps166

(one day) for single-task experiments, and a batch size 48 on 8 Nvidia 32GB V100 GPUs for 600K167

steps (5 days) for language-conditioned multi-task experiments.168

4 Experiments169

We test Act3D in learning from demonstrations single-task and multi-task manipulation policies in170

simulation and the real world. In the multi-task setting, task and goal conditioning are given as171

input through language instructions. We conduct our simulated experiments in RLBench [20], an172

established simulation benchmark for learning manipulation policies, for the sake of reproducibility173

and benchmarking. Our experiments aim to answer the following questions: 1. How does Act3D174
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compare against SOTA 2D multiview and 3D manipulation policies in single-task and multi-task175

settings? 2. How does the test performance change with varying number of training demonstrations?176

3. How does Act3D generalize across camera viewpoints in comparison to existing 2D multiview177

policies? 4. How do design choices such as relative 3D attention, pre-trained 2D backbones, weight-178

tied attention layers, and the number of coarse-to-fine sampling stages impact performance?179

4.1 Evaluation in simulation180

Datasets We test Act3D in RLbench in two settings to ensure a clear comparison with prior work:181

a single-task setting with 74 tasks proposed by HiveFormer [2] and a multi-task multi-variation182

setting with 18 tasks and 249 variations proposed by PerAct [1]; more details are in Appendix 6.3.183

Baselines We compare Act3D with the following state-of-the-art manipulation policy learning184

methods: 1. InstructRL [3], a 2D policy that directly predicts 6 DoF poses from image and language185

conditioning with a pre-trained vision-and-language backbone. 2. PerAct [1], a 3D policy that186

voxelizes the workspace and detects the next best voxel action through global self-attention. 3.187

HiveFormer [2] and Auto-λ [16], hybrid methods that detect a contact point within an image input,188

then regress an offset from this contact point. We report numbers from the papers when available.189

Evaluation metric We evaluate policies by task completion success rate, the proportion of execu-190

tion trajectories that lead to goal conditions specified in language instructions.191

Single-task manipulation results We consider 74 tasks grouped into 9 categories, as proposed192

by HiveFormer [2]. Each method is trained with 100 demonstrations and evaluated on 500 unseen193

episodes. We show single-task quantitative results of our model and baselines in Figure 3. Act3D194

reaches 83% success rate, an absolute improvement of 10% over InstructRL [3], prior SOTA195

in this setting, and consistently outperforms it across all 9 categories of tasks. With only 10 demon-196

strations per task, Act3D is competitive with prior SOTA using 100 demonstrations per task.197

Multi-task manipulation results We consider 18 tasks with 249 variations, as proposed by Per-198

Act [1]. Each task includes 2-60 variations, which test generalization to test goal configurations that199

involve novel object colors, shapes, sizes, and categories. This is a more challenging setup than200

before, since the previous setting only tested generalization to novel arrangements of the same ob-201

jects. Each method is trained with 100 demonstrations per task split across variations, and evaluated202

on 500 unseen episodes per task. We show multi-task quantitative results of our model and PerAct203

in Figure 3. Act3D reaches 65% success rate, an absolute improvement of 22% over PerAct, prior204

SOTA in this setting, consistently outperforming it across most tasks. With only 10 demonstra-205

tions per task, Act3D outperforms PerAct using 100 demonstrations per task. Note that Act3D206

also uses less than a third of PerAct’s training computation budget: PerAct was trained for 16 days207

on 8 Nvidia V100 GPUs while we train for 5 days on the same hardware.208

4.2 Evaluation in real-world209

Task # Train Success

reach target 10 10/10
duck in oven 15 6/10
wipe coffee 15 7/10
fruits in bowl 10 8/10
stack cups 15 6/10
transfer beans 15 5/10
press handsan 10 10/10
uncrew cap 10 8/10

Table 1: Real-world tasks.

In our real-world setup, we conduct experiments with a Franka210

Emika Panda robot and a single Azure Kinect RGB-D sensor;211

more details are in Appendix 6.1. We designed 8 tasks (Figure212

2) involving interactions with multiple types of objects, span-213

ning liquid, articulated objects, and deformable objects. For each214

task, we collected 10 to 15 human demonstrations and trained a215

languaged-conditioned multi-task model on all data. We report216

the success rate on 10 episodes per task in Table 1. Act3D can217

capture semantic knowledge in demonstration well and performs reasonably well on all tasks, even218

with a single camera input. One major failure case comes from noisy depth sensing: when the depth219

image is not accurate, the selected point results in imprecise action prediction. Leveraging multi-220
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Figure 3: Single-task performance. On 74 RLBench tasks across 9 categories, Act3D reaches 83%
success rate, an absolute improvement of 10% over InstructRL [3], prior SOTA in this setting.

Figure 4: Multi-task performance. On 18 RLBench tasks with 249 variations, Act3D reaches 65%
success rate, an absolute improvement of 22% over PerAct [1], prior SOTA in this setting.

view input for error correction could improve this, and we leave this for future work. Please refer to221

our supplementary video for more qualitative videos of the robot executing the tasks.222

4.3 Ablations223

We ablate design choices of Act3D. We perform most ablations in the single-task setting on 5 tasks:224

pick cup, put knife on chopping board, put money in safe, slide block to target, take umbrella out of225

stand; ablate whether to predict if the motion planner needs to avoid collisions to reach of the pose226

on all 74 tasks; and the choice of pre-trained 2D backbone in the multi-task setting with all 18 tasks.227

Generalization across camera viewpoints: We vary camera viewpoints at test time for both Act3D228

and HiveFormer [2]. The success rate drops to 20.4% for HiveFormer, a relative 77% drop, while229

Act3D achieves 74.2% success rate, a 24% relative drop. This shows detecting actions in 3D makes230

Act3D more robust to camera viewpoint changes than multiview 2D methods that regress offsets.231

Weight-tying and coarse-to-fine sampling: All 3 stages of coarse-to-fine sampling are necessary:232

a model with only 2 stages of sampling and regressing an offset from the position selected at the sec-233

ond stage suffers a 4.5% performance drop. Tying weights across stages and relative 3D positional234

embeddings are both crucial; we observed severe overfitting without, reflected in respective 17.5%235

and 42.7% performance drops. Fine ghost point sampling stages should attend to local fine visual236

features with precise positions: all stages attending to global coarse features leads to a 8.3% per-237

formance drop. Act3D can effectively trade off inference computation for performance: sampling238

10,000 ghost points, instead of the 1,000 the model was trained with, boosts performance by 4.9%.239

Pre-training 2D features: We investigate the effect of the pre-trained 2D backbone in the multi-240

task setting where language instructions are most needed. A ResNet50 [32] backbone pre-trained241
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Table 2: Ablations.
Average success rate in

Model single-task setting (5 tasks)

Core design choices

Best Act3D model (evaluated in Fig. 3) 98.1
Only 2 stages of coarse-to-fine sampling: 93.6full workspace, 16 cm ball, regress an offset
No weight tying across stages 80.6
Absolute 3D positional embeddings 55.4
Attention to only global coarse visual features 89.8
Only 1000 ghost points at inference time 93.2

Viewpoint changes Best Act3D model (evaluated in Fig. 3) 74.2
HiveFormer 20.4

Augmentations No image augmentations 91.6
With rotation augmentations 86.2

Hyperparameter sensitivity

Double sampling ball diameters: 32 cm and 8 cm 96.6
Halve sampling ball diameters: 8 cm and 2 cm 91.2
500 ghost points at training time 95.8
2000 ghost points at training time (need 2 GPUs) 98.4

Multi-task setting (18 tasks)

Backbone
CLIP ResNet50 backbone 65.1
ImageNet ResNet50 backbone 53.4
No backbone (raw RGB) 45.2

with CLIP improves success rate by 8.7% over a ResNet50 backbone pre-trained on ImageNet, and242

by 16.9% over using raw RGB as the visual token features.243

Augmentations: Random crops of RGB-D images boost success rate by 6.5%, but yaw rotation244

perturbations drop it by 11.9%. This is in line with PerAct [1] results in RLBench.245

Hyperparameter sensitivity: Act3D is robust to hyperparameters. Doubling the diameter of ghost246

point sampling balls from (16 cm, 4 cm) to (32 cm, 8 cm) drops success rate by 1.5% and halving it247

to (8 cm, 2 cm) by 6.9%. Halving the total number of ghost points sampled from 1,000 to 500 drops248

success rate by 2.3% whereas doubling it to 2,000 increases success rate by 0.3%. We use 1,000249

ghost points in our experiments to allow training with a single GPU per task.250

4.4 Limitations and future work251

Our framework currently has the following limitations: 1. Act3D sometimes fails in very high-252

precision tasks, like screwing and insertions, requiring temporally fine-grain closed-loop control.253

2. Act3D doesn’t handle manipulation of articulated object well, such as opening/closing doors,254

fridges, and ovens, which require a more precise trajectory than the one supplied by a motion planner255

that connects keyposes with collision-free straight lines. Learning-based trajectory prediction [39,256

40] would help. 3. Currently, for long horizon tasks our policy would need to predict all keyposes257

one by one. A hierarchical framework that would predict language subgoals for subtasks [41, 42, 43]258

and feed those to our action predictor would allow better re-usability of skills across tasks. All259

keypose prediction methods share the listed limitations. We leave these for future work.260

5 Conclusion261

We presented Act3D, a language-conditioned Transformer policy architecture to learn manipulation262

from demonstrations. From one or more posed RGB-D images and language instructions, it predicts263

6-DoF robot end-effector keyposes by iteratively selecting and featurizing 3D point grids in the264

robot’s workspace. Act3D sets a new state-of-the-art in RLBench, an established robot manipulation265

benchmark, and solves diverse manipulation tasks in the real world from a single RGB-D camera266

view and a handful of demonstrations. In thorough ablations, we showed the importance of relative267

3D attentions, 2D feature pre-training, and weight tying during coarse-to-fine iterations.268
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6 Appendix372

6.1 Real-world Setup373

Figure 5: Real-world setup.

Figure 6: RLbench simulation setup.

Our real-robot setup contains a Franka Panda374

robotic arm equipped with a parallel jaw grip-375

per, as shown in Figure 5. We get RGB-D in-376

put from a single Azure Kinect sensor at a front377

view at 30Hz. The image input is of resolu-378

tion 1280 × 720, we crop and downsample it379

to 256 × 256. We calibrate the extrinsics of380

the camera with respect to the robot base us-381

ing the easy handeye1 ROS package. We ex-382

tract keyposes from demonstrations in the same383

was as in simulation. Our real-world multi-task384

policy is trained on 4 V100 GPUs for 3 days,385

and we run inference on a desktop with a single386

RTX4090 GPU. For robot control, we use the387

open-source frankapy2 package to send real-388

time position-control commands to the robot.389

6.2 RLBench Simulation Setup390

To ensure fair comparison with prior work, we391

use ncam ∈ {3, 4} cameras for simulated ex-392

periments depending on the evaluation setting.393

In our single-task evaluation setting first pro-394

posed by HiveFormer [2], we use the same 3395

cameras they do {Oleft, Oright, Owrist}. In our396

multi-task evaluation setting first proposed by397

PerAct [1], we use the same 4 cameras they do398

{Ofront, Oleft, Oright, Owrist}.399

1https://github.com/IFL-CAMP/easy_handeye
2https://github.com/iamlab-cmu/frankapy

12

https://github.com/IFL-CAMP/easy_handeye
https://github.com/iamlab-cmu/frankapy


6.3 RLBench Tasks400

Figure 7: PerAct [1] tasks. We adopt the multi-task multi-variation setting from PerAct [1] with 18
tasks and 249 unique variations across object placement, color, size, category, count, and shape.

We adapt the single-task setting of Hive-401

Former [2] with 74 tasks grouped into 9 cate-402

gories according to their key challenges. The 9403

task groups are defined as follows:404

• The Planning group contains tasks with multiple sub-goals (e.g. picking a basket ball and405

then throwing the ball). The included tasks are: basketball in hoop, put rubbish in bin, meat406

off grill, meat on grill, change channel, tv on, tower3, push buttons, stack wine.407

• The Tools group is a special case of planning where a robot must grasp an object to interact408

with the target object. The included tasks are: slide block to target, reach and drag, take409

frame off hanger, water plants, hang frame on hanger, scoop with spatula, place hanger on410

rack, move hanger, sweep to dustpan, take plate off colored dish rack, screw nail.411

• The Long term group requires more than 10 macro-steps to be completed. The included412

tasks are: wipe desk, stack blocks, take shoes out of box, slide cabinet open and place cups.413

• The Rotation-invariant group can be solved without changes in the gripper rotation. The414

included tasks are: reach target, push button, lamp on, lamp off, push buttons, pick and lift,415

take lid off saucepan.416

• The Motion planner group requires precise grasping. As observed in [81] such tasks often417

fail due to the motion planner. The included tasks are: toilet seat down, close laptop lid,418

open box, open drawer, close drawer, close box, phone on base, toilet seat up, put books on419

bookshelf.420

• The Multimodal group can have multiple possible trajectories to solve a task due to a large421

affordance area of the target object (e.g. the edge of a cup). The included tasks are: pick422

up cup, turn tap, lift numbered block, beat the buzz, stack cups.423

• The Precision group involves precise object manipulation. The included tasks are: take usb424

out of computer, play jenga, insert onto square peg, take umbrella out of umbrella stand,425

insert usb in computer, straighten rope, pick and lift small, put knife on chopping board,426

place shape in shape sorter, take toilet roll off stand, put umbrella in umbrella stand, setup427

checkers.428

• The Screw group requires screwing an object. The included tasks are: turn oven on, change429

clock, open window, open wine bottle.430
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• The Visual Occlusion group involves tasks with large objects and thus there are occlusions431

from certain views. The included tasks are: close microwave, close fridge, close grill, open432

grill, unplug charger, press switch, take money out safe, open microwave, put money in433

safe, open door, close door, open fridge, open oven, plug charger in power supply434
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