
6 Appendix494

6.1 Noise schedulers for Local Trajectory Diffuser495

We model local trajectory optimization as a discrete-time diffusion process, which we implement496

using the DDPM sampler [20]. DDPM uses a non-parametric time-dependent noise variance sched-497

uler �k, which defines how much noise is added at each time step. We adopt the cosine schedule of498

GLIDE [79] as our choice for �k:499

�k =
1� cos

�
k+1.008
1.008 ⇤ ⇡

2

�2

cos
�
k+0.008
1.008 ⇤ ⇡

2

�2 (6)

By defining ↵k = 1� �k, and ↵̄k =
Qk

i=1 ↵i, we can now obtain the analytical form of �k, �k,�k500

in Equation 1 as follows:501

�k =
1

p
↵k

(7)

�k =
1� ↵kp
1� ↵̄k

(8)

�k =
1� ↵̄k+1

1� ↵̄k
�k (9)

where k is the diffusion denoising timestep.502

6.2 Act3D Background and Implementation Details503

Act3D is a language-conditioned end-effector 6-DoF keypose predictor that learns 3D perceptual504

representations of arbitrary spatial resolution via recurrent coarse-to-fine 3D point sampling and505

featurization. Act3D featurizes multi-view RGB images with a pre-trained 2D backbone and lifts506

them in 3D using depth to obtain a multi-scale 3D scene feature cloud. It then iteratively predicts 3D507

foci of attention in the empty 3D workspace, samples 3D point grids in their vicinity, and featurizes508

the sampled 3D points using relative cross-attention to the physical scene feature cloud, language509

tokens, and proprioception. Act3D detects the 3D point that corresponds to the next best end-effector510

position using a detection Transformer head, and regresses the rotation, end-effector opening, and511

planner collision avoidance from the decoder’s parametric query.512

We extract two feature maps per 256 ⇥ 256 input image view: 32 ⇥ 32 coarse visual tokens and513

64⇥64 fine visual tokens. We use three ghost point sampling stages: first across the entire workspace514

(roughly 1 meter cube), then in a 16 centimeter diameter ball, and finally in a 4 centimeter diameter515

ball. The coarsest ghost points attend to a global coarse scene feature cloud (32⇥ 32⇥ncam coarse516

visual tokens) whereas finer ghost points attend to a local fine scene feature cloud (the closest 32⇥517

32⇥ncam out of the total 64⇥64⇥mcam fine visual tokens). During training, we sample 1000 ghost518

points in total split equally across the three stages. At inference time, we trade-off extra performance519

for additional compute by sampling more ghost points than the model ever saw at training time520

(20, 000). We use 2 layers of cross-attention and an embedding size 60 for single-task experiments521

and 120 for multi-task experiments. Training samples are augmented with random crops of RGB-D522

images and ±45.0 yaw rotation perturbations (only in the real world as this degrades performance523

in simulation).524

6.3 Simulation Setup in RLBench525

The RLBench simulation environment uses a Franka Panda robotic arm on a table-top setting. We526

consider m = 4 camera inputs: left shoulder, right shoulder, wrist, and front, as shown in Figure527

3. The wrist camera is attached to the robot’s end-effector and moves together with the robot. The528

other 3 are static. To ensure a fair comparison, when comparing with PerAct, we use all 4 cameras529

following PerAct setting, and use the first 3 cameras when compared with other baselines.530

14



Figure 3: Simulation setup.

6.4 Real-world Setup531

Figure 4: Real-world setup.

Our real-robot setup contains a real Franka532

Panda robotic arm equipped with a parallel jaw533

gripper, as shown in Figure 4. We use a single534

Azure Kinect sensor to provide RGB-D input535

signal from the front view at 30Hz. The image536

input is of resolution 1280 ⇥ 720, and we crop537

and downsample it to 256 ⇥ 256 before feed-538

ing it to our model. We calibrate the extrinsics539

of the camera with respect to the robot base us-540

ing the easy handeye1 ROS package. Our full541

model generates dense trajectories, thus we do542

not use low-level motion planners. We collect543

6-DoF human demonstrations by tele-operating544

the robot using a SpaceMouse2 at 30Hz, follow-545

ing [16]. We use the same strategy for keyframe546

extraction as in simulation. Our real-world547

multi-task policy is trained on 4 A100 GPUs548

for 3 days. Inference is done on a desktop with549

a single RTX4090 GPU, running Ubuntu 20.04550

and ROS Noetic. For robot control, we use the551

open-source frankapy3 package to send real-552

time position-control commands to the robot.553

1https://github.com/IFL-CAMP/easy_handeye
2https://3dconnexion.com/us/product/spacemouse-compact/
3https://github.com/iamlab-cmu/frankapy

15

https://github.com/IFL-CAMP/easy_handeye
https://3dconnexion.com/us/product/spacemouse-compact/
https://github.com/iamlab-cmu/frankapy

	Introduction
	Related Work
	ChainedDiffuser
	Overview
	Macro-Action Detector
	Local Trajectory Diffuser
	Implementation and Training Details

	Experiments
	Simulation Experiments
	Real-world Experiments
	Limitations

	Conclusion
	Appendix
	Noise schedulers for Local Trajectory Diffuser
	Act3D Background and Implementation Details
	Simulation Setup in RLBench
	Real-world Setup


