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Introduction

We introduce a method capable of likelihood-free state approximation
and state prediction in discrete-time state-space models (SSMs),
where observed measurements x, € R" are emitted given a series of
simulator parameters 6, € R™. The simulator parameters follow
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Methods

We follow a Bayesian optimization for LFI (BOLFI) approach [1], in
which a Gaussian Process (GP) is used as a surrogate for discrepancy
between observed measurements and simulated datasets. This way,
the likelihood can be approximated through:
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where F is a normal CDF with mean 0 and variance 1, ¢ is a
user-defined threshold, u(.) and v(.) are GP mean and variance
respectively, and ¢ is a Gaussian likelihood noise.
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To estimate state values 6, given x, we employ a multi-objective
surrogate d, for discrepancies, and then extract the LFI posterior with
(1). At the same time, we form pairs of consecutive posterior samples
and train a non-parametric surrogate for the state transition EQ, whose
predictive posterior proposes candidates for future simulations:
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In the experiments, we use a Linear Model of Coregionalization (LMC)
as §,, and a Bayesian Neural Network (BNN) as h,.
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Experiments

We simulated behavioural data from humans that completed a certain
task. For the UMAP task, the user evaluated dataset embeddings for a
classification problem. During the Gaze task, the user searched for a
target on a display. Our goal in the experiments was to track the
changing parameters of user models and learn their dynamics.
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We also compare transition dynamics models (rows) in SSMs with
tractable likelihoods (columns). The performance was measured with
95% confidence interval (Cl) of the RMSE between sampled vs ground
truth trajectories of length 50.

Methods Linear Non-linear Stochastic
Gaussian Non-Gaussian Volatility
LMC-BNN 205+ 9 165+ 15 135 £ 22
LMC-BLR 64 7 258 + 37 100 + 37
GP-SSM 284 + 71 2204 = 1111 3206 £ 1175
PR-SSM 253 + 68 610 £ 510 1378 £ 740

Take-Home Messages

e Current LFI methods assume simplified transition dynamics,
which do not work with non-linear and non-Gaussian SSMs;

e \We use samples from LF| posterior approximations to learn a
deep learning model of transition dynamics, and use it to
determine where to run simulations next.

e By leveraging time-series information, we improve upon current
LFI methods for the state inference task.

e \Ne demonstrate the proposed method is needed in a crucial case
of user modelling, where user models are non-stationary because
user’s preferences and abilities change over time.
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