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Introduction

Methods

Experiments
Take-Home Messages

● Current LFI methods assume simplified transition dynamics, 
which do not work with non-linear and non-Gaussian SSMs;

● We use samples from LFI posterior approximations to learn a 
deep learning model of transition dynamics, and use it to 
determine where to run simulations next.

● By leveraging time-series information, we improve upon current 
LFI methods for the state inference task.

● We demonstrate the proposed method is needed in a crucial case 
of user modelling, where user models are non-stationary because 
user’s preferences and abilities change over time.

We introduce a method capable of likelihood-free state approximation 
and state prediction in discrete-time state-space models (SSMs), 
where observed measurements xt ∊ ℝn are emitted given a series of 
simulator parameters 𝜽t ∊ ℝm. The simulator parameters follow 
unknown transition dynamics h𝜃: 𝜽t+1~ h𝜃(𝜽t+1|𝜽t), and generate 
observations according to a black-box g𝜃: xt ~ g𝜃 (xt | 𝜽t).

We follow a Bayesian optimization for LFI (BOLFI) approach [1], in 
which a Gaussian Process (GP) is used as a surrogate for discrepancy 
between observed measurements and simulated datasets. This way, 
the likelihood can be approximated through:

where F is a normal CDF with mean 0 and variance 1, 𝜀 is a 
user-defined threshold, 𝜇(.) and 𝜈(.) are GP mean and variance 
respectively, and 𝜎 is a Gaussian likelihood noise.

To estimate state values 𝜽t, given xt, we employ a multi-objective 
surrogate 𝛿𝜃 for discrepancies, and then extract the LFI posterior with 
(1). At the same time, we form pairs of consecutive posterior samples 
and train a non-parametric surrogate for the state transition h𝜃, whose 
predictive posterior proposes candidates for future simulations:

 

In the experiments, we use a Linear Model of Coregionalization (LMC) 
as 𝛿𝜃, and a Bayesian Neural Network (BNN) as h𝜃.

We simulated behavioural data from humans that completed a certain 
task. For the UMAP task, the user evaluated dataset embeddings for a 
classification problem. During the Gaze task, the user searched for a 
target on a display. Our goal in the experiments was to track the 
changing parameters of user models and learn their dynamics.
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PR-SSM 253 ± 68 610 ± 510 1378 ± 740
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We also compare transition dynamics models (rows) in SSMs with 
tractable likelihoods (columns). The performance was measured with 
95% confidence interval (CI) of the RMSE between sampled vs ground 
truth trajectories of length 50.
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