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Abstract1

In computer-aided drug discovery, quantitative structure activity relation models2

are trained to predict biological activity from chemical structure. Despite the3

recent success of applying graph neural networks to this task, important chemical4

information such as molecular chirality is ignored. To fill this crucial gap, we5

propose Molecular-Kernel Graph Neural Network (MolKGNN) for molecular rep-6

resentation learning, which features conformation invariance, chirality-awareness,7

and interpretability. For MolKGNN, we first design a molecular graph convolution8

to capture the chemical pattern by comparing the atom’s similarity with learnable9

molecular kernels. Furthermore, we propagate the similarity score to capture the10

higher-order chemical pattern. To assess the method, we conduct a comprehensive11

evaluation with nine well-curated datasets spanning numerous important drug12

targets that feature realistically high class imbalance. Meanwhile, the learned ker-13

nels identify patterns that agree with domain knowledge, confirming MolKGNN’s14

pragmatic interpretability.15

1 Introduction16

Developing new drugs is time-consuming and expensive, e.g., it took cabozantinib, an oncologic17

drug, 8.8 years and $1.9 billion to get on the market [1]. To assist this process, computer-aided drug18

discovery (CADD) has been widely used. One branch of CADD constructs Quantitative Structure19

Activity Relationship (QSAR) models to predict the biological activity of molecules based on their20

chemical structure [2].21

Graph Neural Networks (GNNs) have successfully been applied in many fields. As molecules can22

be viewed as graphs with atoms as nodes and chemical bonds as edges, GNNs are a logical choice23

to construct QSAR models [3]. A typical GNN architecture for graph classification begins with an24

encoder extracting node representations by passing neighborhood information followed by pooling25

operations that integrate node representations into graph representations, which are fed into a classifier26

to predict graph classes [4].27

Despite the promise of GNN models applied to molecular representation learning, existing GNN mod-28

els either blindly follow the message passing framework without considering molecular constraints on29

graphs [5], fail to integrate chirality [6], or lack interpretability [7]. To address these limitations, we30

develop a GNN model named MolKGNN that features conformation invariance, chirality-awareness31

and provides a form of interpretability. Our contributions are:32

• Interpretable Molecular Convolution: We design a new convolution operation to capture chemi-33

cal pattern of each atom by quantifying the similarity between the atom’s neighboring subgraph34

and the learnable molecular kernel, which is inherently interpretable.35

• Chirality Characterization: Rather than listing all permutations of neighbors for a chiral center [8],36

or using dihedral angles [7], the chirality calculation module in MolKGNN uses a lightweight37

linear algebra calculation.38

• Realistic Benchmark: We perform a comprehensive evaluation using well-curated datasets39

spanning numerous important drug targets (that feature realistic high class imbalance) and metrics40

that bias predicted active molecules for actual experimental validation. Ultimately, we demonstrate41

the superiority of MolKGNN over other GNNs in CADD.42
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Figure 1: (A) An overview of the proposed MolKGNN. (B) An illustration of the molecular
convolution that captures three aspects of similarities. (C) An illustration of the chirality calculation.

2 Related Work and Preliminaries43

Several attempts have been made to leverage GNNs for molecular representation learning. Early44

models capture the 2D connectivity (i.e., molecular constitution) [9, 10]. However, molecules45

are not planar but 3D entities and bond lengths/angles/dihedral angles need thus to be taken into46

considerations [6, 11, 12]. To account for chirality, reflection-sensitive models are designed [8, 13].47

In this work, a molecule is represented as an attributed and undirected graph G = (VG, EG) where48

VG, EG are the set of nodes (atoms) and edges (chemical bonds). Let v ∈ VG denote the node49

v and evu ∈ EG denote an edge between v and u. Moreover, we represent the node attribute50

matrix as XG ∈ R|VG|×dv and edge attribute matrix as EG ∈ R|VG|×|VG|×de where dv, de are the51

dimension of node and edge features. The node coordinate matrix is represented as PG ∈ R|VG|×352

and PG
v denotes the 3D coordinates of v. The graph topology is described by its adjacency matrix53

AG ∈ {1, 0}|VG|×|VG| where AG
vu = 1 if evu ∈ EG, and AG

vu = 0 otherwise. Note that bond types54

are encoded as edge features.55

3 Molecular-Kernel Graph Neural Network56

In this section, we introduce the framework of MolKGNN, shown in Figure 1 (A). Next, we describe57

our molecular convolution involving three aspects of similarity along with being chirality-aware, and58

then highlight the entire model architecture.59

3.1 Molecular Convolution60

In 2D images, convolution operation can be regarded as calculating the similarity between the image61

patch and the image kernel. Larger output values indicate higher visual similarity patterns such as62

edges, strips, curves [14]. Inspired by that, we design a molecular convolution that outputs higher63

values when a molecular neighborhood and kernels are more chemically similar.64

However, performing convolution on irregular neighborhood subgraphs requires the learnable molec-65

ular kernels to have correspondingly different geometrical structures, which is computationally66

prohibitive. To handle this challenge, for each atom v of degree d in G, we only consider its 1-hop67

star-like neighborhood subgraph S = (VS , ES) where VS = {v} ∪ NG
v and ES = {evu|u ∈ NG

v }.68

To make the molecular convolution feasible, we initialize the molecular kernel to also follow star-69

structure and denote it as S′ = (VS′
, ES′

) where VS′
= {v′} ∪ N S′

v′ with v′ being the central node70

without loss of generality and ES′
= {ev′u′ |u′ ∈ N S′

v′ }. Let the learnable feature matrix and edge71

feature matrix of S′ be XS′ ∈ R(d+1)×dn and ES′ ∈ Rd×de , respectively.72

Then we define the operation of molecular convolution between the atom v and the molecular73

kernel S′ as quantifying the similarity ϕ between v’s neighborhood subgraph S and the kernel S′:74

ϕ(S, S′) = wcsϕcs(S, S
′)+wnsϕns(S, S

′)+wesϕes(S, S
′). where ϕcs, ϕns, ϕes quantify the similarity75
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from three different aspects: the central similarity, neighborhood similarity, and edge similarity. We76

combine them together with learnable weights wcs, wns, wes ∈ [0, 1] after softmax-normalization.77

Central Similarity. We first capture the chemical property of atom v itself in S by computing its78

similarity to the central node v′ in the kernel S′: ϕcs(S, S
′) = sim(XS

v ,X
S′

v′ ). where XS
v ,X

S′

v′ are79

attributes of the central atom v in the subgraph S and the central node v′ in the kernel S′. The sim(·, ·)80

is the function measuring vector similarity and we use cosine similarity throughout this work.81

Neighboring Node and Edge Similarity. Besides the central node, the chemical property of an atom82

is also impacted by its neighborhood context, which motivates us to further quantify the similarity83

between 1) the neighboring nodes N S
v in S and N S′

v′ in S′, and 2) the edges ES and ES′
.84

Before calculating ϕns, ϕes between S and S′, we face a matching problem. For example, in85

Figure 1(B), the node u1 in S has more than one matching candidates, i.e., {u′
1, u

′
2, u

′
3} in86

S′. Here we seek a bijective matching χ∗ : N S
v → NS′

v′ such that the average attribute sim-87

ilarity between u ∈ NS
v and χ∗(u) ∈ NS′

v′ over all neighbors can be maximized: χ∗ =88

argmaxχ
1

|NS
v |

∑
u∈NS

v
sim(XS

u ,X
S′

χ(u)). Given that exhausting all |N S
v |! possible matchings to89

find the optimal one is computationally infeasible, we significantly simplify this computation by90

constraining the searching space according to the inherent structure of molecules, which are: 1)91

node degrees in drug-like molecule graphs are usually less than 5, with most atoms having a de-92

gree of 1 and few nodes having a degree of 4 [15]; 2) for nodes of degree 4, only 12 among the93

total 24 possible matchings are valid after considering chirality [8]. After the node matching, the94

bijective edge matching is defined as: χe,∗ : ES → ES′
such that the edge evu ∈ ES if and only95

if ev′χ∗(u) ∈ ES′
. Then, we compute ϕns and ϕes as:ϕns = 1

|NS
v |

∑
u∈NS

v
sim(XS

u ,X
S′

χ∗(u)) and96

ϕes =
1

|NS
v |

∑
u∈NS

v
sim(ES

vu,E
S′

v′χe,∗(u)).97

Chirality Characterization. Chirality is a key determinant of a molecule’s biological activity98

[16], but only exists when the central atom has four unique neighboring substructures. Given the99

neighborhood subgraph of an atom S forming the tetrahedron shown in Figure 1 (C) where the four100

unique neighboring atoms are N S
v = {u1, u2, u3, u4}, we select u1 without loss of generality as101

the anchor neighbor to define the three concurrent sides of the tetrahedron aS = PS
u2

−PS
u1
,bS =102

PS
u3
−PS

u1
, cS = PS

u4
−PS

u1
and further calculate the tetrahedral volume of S as: ξS = 1

6∗a
S×bS ·cS103

Similarly, we calculate ξS
′

for the kernel S′. Notice, that the sign of the tetrahedron volume of the104

molecule ξS defines its vertices ordering [16]. The simliarity ϕ(S, S′) is then updated with chirality105

as ϕ(S, S′) =
(
sgn(ξS)sgn(ξS

′
)
)
ϕ(S, S′) with sgn(·) being the sign function.106

3.2 Model Architecture107

Suppose the set of K kernels at layer l be S ′l = {S′l
k }Kk=1, the proposed molecular convolution is108

applied with the molecular kernel S′l
k ∈ S ′l over the node representation Hl−1 at the previous layer109

l − 1 to obtain the node similarity matrix at layer l as Φl ∈ R|V|×K , where Φl
ik = ϕ(Sl−1

vi , S′
k
l−1)110

defines the similarity between the neighborhood subgraph around the atom vi and the kth kernel at111

layer l − 1. We note that ϕ(Sl−1
vi , S′

k
l−1) is set to 0 if Sl−1

vi and S′
k
l−1 have different degrees so112

that back-propagation keeps the parameters in kernels of different degree untouched. The new node113

representation Hl = AΦl. After recursively alternating between the molecular convolution and the114

message-passing L layers, the final atom representation HL describes the chemical pattern up to L115

hops away of each atom. Molecular representation G is obtained via global-sum. Ultimately, graph116

classification is performed using Ŷ = σf(G) with classifier f(.), e.g., Multi-Layer Perceptron, and117

softmax normalization σ. Computational complexities for MolKGNN is given in Appendix A.6.118

4 Experiments119

4.1 Experimental Settings120

A Realistic Drug Discovery Scenario. We benchmark MolKGNN in its predictive ability to binary121

classification of active/inactive. Models are trained on High-Throughput Screening (HTS) results to122

screen molecules virtually and prioritize acquisition [17]. HTS datasets are of large sizes, have high123

label imbalance (many more inactive molecules) and often contain false positives [18]. Moreover, an124

evaluation metric that biases towards molecules with the highest predicted activities is of interest as125

only these will be acquired or synthesized and tested.126
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Table 1: Results on logAUC[0.001,0.1] (summarized AUC - details in Appendix A.7) over five runs.

PubChem AID MolKGNN (ours) SchNet SphereNet DimeNet++ ChiRo KerGNN
435008 0.255 ± 0.014 0.187 ± 0.027 0.215 ± 0.024 0.203 ± 0.047 0.168 ± 0.019 0.147 ± 0.015
1798 0.174 ± 0.029 0.195 ± 0.025 0.196 ± 0.035 0.208 ± 0.035 0.165 ± 0.040 0.078 ± 0.042
435034 0.227 ± 0.022 0.246 ± 0.020 0.230 ± 0.034 0.235 ± 0.044 0.211 ± 0.023 0.179 ± 0.045
1843 0.362 ± 0.033 0.358 ± 0.037 0.258 ± 0.048 0.284 ± 0.034 0.326 ± 0.010 0.292 ± 0.027
2258 0.301 ± 0.028 0.240 ± 0.037 0.380 ± 0.037 0.340 ± 0.032 0.251 ± 0.010 0.195 ± 0.020
463087 0.390 ± 0.056 0.332 ± 0.022 0.399 ± 0.011 0.389 ± 0.026 0.258 ± 0.019 0.150 ± 0.011
488997 0.303 ± 0.027 0.319 ± 0.017 0.309 ± 0.029 0.315 ± 0.011 0.193 ± 0.029 0.081 ± 0.023
2689 0.415 ± 0.020 0.324 ± 0.020 0.401 ± 0.016 0.367 ± 0.049 0.351 ± 0.048 0.264 ± 0.017
485290 0.498 ± 0.015 0.333 ± 0.047 0.450 ± 0.039 0.463 ± 0.040 0.295 ± 0.068 0.223 ± 0.026
Average 0.325 0.282 0.315 0.312 0.247 0.179
Avg. Rank 2.333 3.222 2.556 2.556 4.556 5.778
AUC Average 0.843 0.844 0.826 0.823 0.823 0.816
AUC Avg. Rank 2.889 2.111 3.778 3.889 4.000 4.222

Figure 2: (A) Visualization of a learned kernel and three examples. (B) Ablation study result for
ϕ(S, S′) components. (C) Performance for different kernel numbers.

Datasets. Well-curated datasets used are from [19, 20]. Details can be found in Appendix A.1.127

Baselines. SchNet [6], DimeNet++ [21], SphereNet [13], ChIRo [7] and KerGNN [5] are used.128

The first four are GNNs for molecular representation learning and the last one is a GNN that is129

architecturally similar to ours. Further details introducing the baselines is provided in Appendix A.11.130

Evaluation Metrics. Two metrics are used, detailed in Appendix A.10: Logarithmic Receiver-131

Operating-Characteristic Area Under the Curve with the False Positive Rate in [0.001, 0.1]132

(logAUC[0.001,0.1]) [22]: This is used because only a small percentage of molecules predicted133

with high activity can be selected for experimental tests in consideration of cost in a real-world drug134

campaign [19]. Receiver-Operating-Characteristic Area Under the Curve (AUC): AUC is included135

since it has historically been used as a general purpose evaluation metric for graph classification [23].136

4.2 Experimental Results137

From Table 1, we can see MolKGNN achieves superior results in recovering the active molecules138

with a high decision threshold. This highlights the ability of the proposed model to perform well in139

the application-related metric. Moreover, we find MolKGNN also performs on par with other GNN140

in terms of AUC, which demonstrates its applicability beyond drug discovery in a general setting. It141

is worth noting that different ranking of models are observed in the two tables. This demonstrates that142

a generally good performing model measured by AUC could potentially perform bad in a specific143

false positive rate region. Moreover, the learned kernel shown in Figure 2 (A) reveals a pattern of a144

center atom of carbon surrounded by neighboring three fluorine and another carbon. This pattern145

is known as the trifluoromethyl group in medicinal chemistry and has been used in several drugs146

[24]. The details of interpretability can be found in Appendix A.8. We also perform an additional147

experiment to exhibit MolKGNN’s ability to distinguish chirality in Appendix A.5.148

Ablation Studies. Component of ϕ(S, S′): Results show in Figure 2 (B). Kernel Number: Results149

show in Figure 2 (C). We provide a discussion on these results in Appendix A.9.150

5 Conclusion151

We introduce a new GNN model named MolKGNN to address the QSAR model construction for152

CADD. MolKGNN utilizes a newly-designed molecular convolution, where a molecular neighbor-153

hood is compared with a molecular kernel to output a similarity score. Comprehensive benchmarking154

is conducted to evaluate MolKGNN to show its superiority over existing GNN baselines.155
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A Appendix261

A.1 Datasets262

PubChem [25] is a database supported by National Institute of Health (NIH) that contains biological263

activities for millions of drug-like molecules, often from HTS experiments. However, the raw primary264

screening data from PubChem have a high false positive rate [19, 20]. We benchmark our model265

using nine high-quality HTS experiments from PubChem that cover all important protein classes for266

drug discovery [19, 20] (statistics in Table 2 where each dataset was carefully curated to have lists of267

inactive and confirmed active molecules from secondary experimental screens).268

Table 2: Statistics of datasets used in the experiment. The datasets feature in the large data size,
highly imbalanced labels, and diverse protein targets. Datasets are identified by their PubChem Assay
ID (AID).

Protein
Target Class

Protein Target (PubChem AID) Total # of
Graphs

# of Active
Labels

Per Graph Avg. #
of Nodes (Edges)

Orexin1 Receptor (435008) 218,156 233 45.14 (94.37)

GPCR M1 Muscarinic Receptor Agonists
(1798) 61,832 187 43.60 (91.37)

M1 Muscarinic Receptor Antagonists
(435034) 61,755 362 43.61 (91.41)

Potassium Ion Channel Kir2.1 (1843) 301,490 172 44.41 (92.81)
Ion Channel KCNQ2 Potassium Channel (2258) 302,402 213 44.44 (92.88)

Cav3 T-type Calcium Channels
(463087) 100,874 703 43.75 (91.57)

Transporter Choline Transporter (488997) 302,303 252 44.46 (92.90)
Kinase Serine/Threonine Kinase 33 (2689) 319,789 172 44.85 (93.70)

Enzyme Tyrosyl-DNA
Phosphodiesterase (485290) 341,304 281 46.13 (96.50)

A.2 Experiment Details269

Data Preprocessing We preprocessed the input SMILES strings to Structure-Data Files (SDFs). Each270

dataset is specified by its PubChem BioAssay accession (AID) [26]. Prepossessing to the original271

data includes converting SMILES strings to 3D SDF files, generating 3D conformation, and filtering.272

Conversion from SMILES to SDF files is done using Open Babel [27], version 2.4.1. Conformations273

are generated using Corina [28], version 4.3. Molecules are further filtered with validity, duplicates274

with BioChemical Library (BCL) [29].275

Training Details The datasets are randomly split into 80%/10%/10% for training, validation, and276

testing respectively. We then shrink the training set to contain only 10,000 inactive-labeled molecules,277

while keeping all active-labeled molecules. This shrinking technique was previously used by [30]278

By shrinking the training data size, we can shorten the training time given the limited computational279

resources, while keeping most active signal that we’re interested in. We did an empirical study on the280

shrinking effect on AID 2258 (302,402 molecules). Results are shown in Table 3. We can see there is281

indeed a decrease of performance in terms of logAUC[0.001,0.1]. We leave the benchmarking of the282

full datasets in a future study.283

To overcome the highly-imbalanced problem, we sample the training data in each batch according to284

the inverse frequency of the label occurrence in the training set. For example, if the active label appear285

at 1% rate in the training set, it has a sampling weight of 1/0.01 =100, while if the inactive label286

appear 99% of time in the training set, it gets a sampling weight of 1/0.99 ≈ 1.01. The active-labeled287

data are thus roughly 100 times more likely to be sampled than inactive-labeled data in each batch.288

During the training, in the forward propagation, the kernels are convoluted with the atoms having289

the same degree. In the backward propagation, the parameters with degree d are only updated if290

the molecule has nodes of degree d. AdamW optimizer is used [31] for the training. The codes are291

implemented using PyTorch [32] and PyG [33].292

Hyperparameters Search Space See Table 4 for details.293
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Hyperparameters See Tables 5 for details for training MolKGNN. For other benchmarking models294

except KerGNN, we use the same hyperparameters from their codes.295

For KerGNN, we empirically observe that using the default hyperparameter setting achieves signifi-296

cantly low performance on our well-curated datasets and hence we further tune its hyperparamters as297

follows: batch size {64, 128}, the hidden unit of the linear layer {16, 32}.298

A.3 Featurization299

Different models have different ways of featurization. We use the original features reported in the300

original papers for each model used in the benchmarking. Our featurization is adapted from [10].301

Rdkit(version 2022.3.4) [34] is used for the featurization. See Table 6 and 7 for details.302

Table 3: Comparing sample and full training results on AID 2258 using MolKGNN over three runs.

Inactive
Training Size logAUC[0.001,0.1] AUC

10K Sample 0.296± 0.026 0.820± 0.021
Full 0.384± 0.003 0.816± 0.030

Table 4: Hyperparameter search space used for MolKGNN.

Hyperparameter Search Space
Hidden Dimension {32, 64}
Batch Size {16, 32}
# Layers {1, 2, 3, 4, 5}
Peak Learning Rate {5e-1, 5e-2, 5e-3, 5e-4}
Dropout {0.1, 0.2, 0.3}

Table 5: Hyperparameters used for MolKGNN.

Hyperparameter Value
Node Feature Dimension 28
Edge Feature Dimension 7
Hidden Dimension 32
Batch Size 16
# Layers 4
# of Kernels of Degree 1 10
# of Kernels of Degree 2 20
# of Kernels of Degree 3 30
# of Kernels of Degree 4 50
Warmup Steps 300
Peak Learning Rate 5e-3
End Learning Rate 1e-10
Weight Decay 0.001
Epochs 20
Dropout 0.2

A.4 2.5D vs 3D303

While many previous work have attempted to develop 3D models by including distance, angles,304

torsions into their model designs [6, 11, 13], we demonstrated that 2.5D model can achieve comparable305

results in terms of AUC. We provide the explanation of why a model with seemly less information can306

accomplish this from a chemistry perspective. The bond lengths/angles have little variations given307

the certain involving atom identities and bond types [35, 36]. Moreover, different than determining308

bond lengths/angles experimentally, many programs such as Corina [28] that converts SMILES to309

3D SDF using standard bond lengths/angles 1, which stay the same in different molecules. Hence310

1This is explicitly mentioned in: https://mn-am.com/wp-content/uploads/2021/10/corina_classic_manual.pdf
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Table 6: Node features Xv for v

Indices Description

0-11 One-hot encoding of element type: H, C, N, O, F,
Si, P, S, Cl, Br, I, other

12-15 One-hot encoding of node degree: 1, 2, 3, 4
16 Formal charge
17 Is in a ring
18 Is aromatic
19 Explicit valence
20 Atom mass
21 Gasteiger charge
22 Gasteiger H charge
23 Crippen contribution to logP
24 Crippen contribution to molar refractivity
25 Total polar sufrace area contribution
26 Labute approximate surface area contribution
27 EState index

Table 7: Edge features Evu for evu
Indices Description
0 Is aromatic
1 Is conjugate
2 Is in a ring
3-6 One-hot encoding of bond type: 1, 1.5, 2, 3

bond lengths/angles provide little additional information in distinguishing different molecules. This311

can also been seen by the fact that an experienced chemist can just look at a molecular structure and312

know certain properties of the molecule, without the need to know the exact bond lengths/angles.313

Nevertheless since our model has the potential to integrate bond length and angles into the ϕ(S, S′),314

we plan to include those for comparison in the future studies.315

On the other hand, molecules can have different conformations as a result of the single bond rotation.316

The same molecule with different conformation consequently has different sets of torsions. However,317

the pharmacological activity is usually linked with few conformations (binding conformation) and318

hence related to certain sets torsions. It seems that knowing torsion could potentially be help the319

activity prediction. Nevertheless, knowing which conformation is the binding conformation is a320

challenging task. A set of torsions related with a wrong predicted binding conformation is detrimental321

to the model performance. Hence we decide to build a conformation-invariant model and exclude322

torsion to circumvent this problem.323

A.5 Ability to Distinguish Chirality324

We further experiment on the expressiveness of our model to determine whether it is able to distinguish325

chiral molecules. We use the CHIRAL1 dataset [8] that contains 102,389 enantiomer pairs for a326

single 1,3-dicyclohexylpropane skeletal scaffold with one chiral center. The data is labeled as R or S327

stereocenter and we use accuracy to evaluate the performance. For comparison, we use GCN [37] and328

a modified version of our model, MolKGNN-NoChi, that removes the chirality calculation module.329

Our experiments observed GCN and MolKGNN-NoChi achieve 50% accuracy while MolKGNN330

achieves nearly 100%, which empirically demonstrates our proposed method’s ability to distinguish331

chiral molecules.332

A.6 Computation Complexity333

It may seem to be formidable to enumerate all possible matchings described in Section 3.1. However,334

most nodes only have one neighbor (e.g., hydrogen, fluorine, chlorine, bromine and iodine). Take335

AID 1798 for example, 49.03%, 6.12%, 31.08% and 13.77% nodes are with one, two, three and four336

neighbors among all nodes, respectively. For nodes with four neighbors, only 12 out of 24 matchings337

need to be enumerated because of chirality [8].338

The computation complexity incurs from two operations: (1) kernel convolution and (2) message339

propagation. In the kernel convolution, as analyzed above, the permutation is bounded by up to four340

neighbors (12 matchings). Hence finding the optimal matching takes O(1) per node per kernel and341
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Table 8: Comparison of AUC between models. The performance is better when the value is higher.
Reported are the mean values over five runs, with standard deviation.

PubChem AID MolKGNN (ours) SchNet SphereNet DimeNet++ ChiRo KerGNN
435008 0.836 ± 0.012 0.820 ± 0.009 0.794 ± 0.026 0.787 ± 0.028 0.797 ± 0.015 0.806 ± 0.017
1798 0.721 ± 0.027 0.707 ± 0.007 0.655 ± 0.025 0.649 ± 0.028 0.683 ± 0.052 0.663 ± 0.041
435034 0.816 ± 0.028 0.838 ± 0.009 0.836 ± 0.014 0.834 ± 0.019 0.822 ± 0.017 0.821 ± 0.016
1843 0.879 ± 0.025 0.896 ± 0.012 0.875 ± 0.021 0.857 ± 0.011 0.881 ± 0.010 0.906 ± 0.020
2258 0.806 ± 0.019 0.792 ± 0.020 0.801 ± 0.042 0.821 ± 0.025 0.782 ± 0.018 0.766 ± 0.024
463087 0.895 ± 0.003 0.910 ± 0.005 0.904 ± 0.005 0.902 ± 0.009 0.891 ± 0.004 0.859 ± 0.009
488997 0.866 ± 0.018 0.831 ± 0.012 0.822 ± 0.017 0.839 ± 0.023 0.817 ± 0.019 0.757 ± 0.044
2689 0.906 ± 0.019 0.905 ± 0.021 0.867 ± 0.021 0.832 ± 0.016 0.919 ± 0.017 0.912 ± 0.013
485290 0.866 ± 0.012 0.893 ± 0.011 0.879 ± 0.021 0.884 ± 0.016 0.816 ± 0.015 0.853 ± 0.009

Avgerage 0.843 0.844 0.826 0.823 0.823 0.816
Avg. Rank 2.889 2.111 3.778 3.889 4.000 4.222

O(|V|K) for the whole graph. In the message propagation, each edge passes the K-dimensional342

feature from its head to its tail node, taking O(K) time, and since we have |E| edges in total, the343

message propagation takes O(|E|K) time. Therefore, the total time complexity of the above two344

operations is O((|V|+ |E|)K), which is asymptotically equivalence to the time complexity of many345

existing graph convolutions considering no feature transformation and assuming the feature dimension346

there is also K.347

A.7 AUC Result348

See Table 8 for details.349

A.8 Investigation of Interpretability350

Because the atom features are transformed into a node embedding in the MolKGNN via batch351

normalization, the learned kernels are also in this node embedding space, which is not directly352

human-readable.353

To intepret the contents in kernels, we train an interpreting model to convert the node embedding in354

the learnable kernels back into human-readable atomic number that represents the element type. The355

interpreting model is of an autoencoder-like architecture, that contains an encoder and a decoder. The356

encoder is architecturally the same as the one in MolKGNN, which is a batch normalization. It takes357

in the atom embedding and outputs a node embedding. The decoder takes in the node embedding and358

outputs the human-readable atomic number.359

The training dataset is AID 1798. The input is the atom features from molecules in AID 1798. The360

ground truth is the atomic number of the atom, which can be extracted from the first 12 digits in361

the features (See Table 6). After the training, the decoder acquires the ability to convert a node362

embedding back to the atomic number.363

Finally, this encoder can be used to translate the node embedding in the kernels into atomic numbers.364

We examine the learned kernels and Figure 2 (A) is one example that demonstrates the interpretability365

of our model from dataset AID 2689. Currently we only examine the first layer and the node attributes366

of the kernels, but our kernels offer the potentials for retrieving more complicated pattern and we367

leave the investigation of that for future works.368

A.9 Ablation Study Details369

From the result in Figure 2 (B) shows that the removal of any of the components has a negative impact370

on logAUC[0.001,0.1]. In fact, the impact is bigger for logAUC[0.001, 0.1] than AUC in terms of the371

percentage of performance change. Note that in some cases such as the removal of ϕes, there is an372

increase in performance according to AUC, but this would significantly hinder the logAUC[0.001,0.1]373

metric.374

Results in Figure 2 (C) shows that when the number of kernels is too small (< 5), it greatly impacts375

the performance. However, once it is large enough to a certain point, a larger number of kernels has376

little impact on the performance.377
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The ablation studies are conducted using dataset AID 435008. Reported are average values over three378

runs, with standard deviation. The number of kernels shown in Figure 2 (C) is the number of kernels379

per degree, instead of total number of kernels.380

A.10 Evaluation Metrics Details381

• Logarithmic Receiver-Operating-Characteristic Area Under the Curve with the False Positive Rate382

in [0.001, 0.1] (logAUC[0.001,0.1]): Ranged logAUC [22] is used because only a small percentage383

of molecules predicted with high activity can be selected for experimental tests in consideration of384

cost in a real-world drug campaign [19]. This high decision cutoff corresponds to the left side of the385

Receiver-Operating-Characteristic (ROC) curve, i.e., those False Positive Rates (FPRs) with small386

values. Also, because the threshold cannot be predetermined, the area under the curve is used to387

consolidate all possible thresholds within a certain FPR range. Finally, the logarithm is used to bias388

towards smaller FPRs. Following prior work [30, 38], we choose to use logAUC[0.001,0.1]. A perfect389

classifier achieves a logAUC[0.001,0.1] of 1, while a random classifier reaches a logAUC[0.001,0.1]390

of around 0.0215, as shown below:391 ∫ 0.1

0.001
xd log10 x∫ 0.1

0.001
1d log10 x

=

∫ −1

−3
10udu∫ −1

−3
1du

≈ 0.0215

392

0.0215(

∫ 0.1

0.001
xd log10 x∫ 0.1

0.001
1d log10 x

=

∫ −1

−3
10udu∫ −1

−3
1du

≈ 0.0215).

• Receiver-Operating-Characteristic Area Under the Curve (AUC): We include AUC since this393

has historically been used as a general purpose evaluation metric for graph classification [23].394

Comparison with AUC also highlights the fact that overall performance (ranking) of methods395

according to AUC may not align well with that of the domain specific evaluation metric, i.e.,396

logAUC[0.001,0.1]. Receiver-Operating-Characteristic Area Under the Curve (AUC)397

Plain AUC is included here to benchmark the methods’ performance for general purposes. It also398

serves as a comparison to the logAUC[0.001,0.1] to highlight the fact that the best general good399

performing may classifier may not be the best at a high threshold.400

A.11 Baseline Details401

SchNet [6] is one of the early attempts to extend convolution to molecular representation learning.402

The traditional convolution can only be applied to grid-like data such as images using discrete filters.403

This work proposes continuous-filter convolutional layers to be able to model local correlations404

without requiring the data to lie on a grid.405

DimeNet++ [21] builds on top on DimeNet [11], which resembles belief propagation. It integrates406

bond length and angles information into the message passing step by using spherical Bessel functions407

and spherical harmonics.408

SphereNet [13] proposes a spherical message passing (SMP) to include atom 3D coordinates. SMP409

captures relative atom position in the spherical coordinate system and hence enables the chirality410

characterization.411

ChIRo [7] designs a novel torsion encoder that is invariant to bond rotation, while being able to learn412

molecular chirality. This torsion encoder leverage the factor that rotating a bond will change coupled413

torsions together to achive the conformation-invariance. A phase shift is added to the torsion encoder414

to break the chirality symmertry.415

KerGNN [5] is different from the above four models that are specifically designed for molecular416

representation learning. KerGNN is architecturally similar to ours in the fact that it quantifies the417

similarity between a subgraph with a kernel via graph kernel method. However, we argue that this418

structural similarity is not as helpful as the semantic similarity in molecular representation learning419

tasks. This argument is verified by the experiment in Section 4.420
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