
Published as a conference paper at ICLR 2024

A UNIFIED SAMPLING FRAMEWORK FOR SOLVER
SEARCHING OF DIFFUSION PROBABILISTIC MODELS

Enshu Liu
Department of EE, Tsinghua University &
Infinigence-AI
les23@mails.tsinghua.edu.cn

Xuefei Ning∗, Huazhong Yang, Yu Wang∗
Department of EE, Tsinghua University
foxdoraame@gmail.com
yanghz@tsinghua.edu.cn
yu-wang@mail.tsinghua.edu.cn

ABSTRACT

Recent years have witnessed the rapid progress and broad application of diffusion
probabilistic models (DPMs). Sampling from DPMs can be viewed as solving
an ordinary differential equation (ODE). Despite the promising performance, the
generation of DPMs usually consumes much time due to the large number of
function evaluations (NFE). Though recent works have accelerated the sampling
to around 20 steps with high-order solvers, the sample quality with less than 10
NFE can still be improved. In this paper, we propose a unified sampling frame-
work (USF) to study the optional strategies for solver. Under this framework, we
further reveal that taking different solving strategies at different timesteps may
help further decrease the truncation error, and a carefully designed solver sched-
ule has the potential to improve the sample quality by a large margin. There-
fore, we propose a new sampling framework based on the exponential integral
formulation that allows free choices of solver strategy at each step and design spe-
cific decisions for the framework. Moreover, we propose S3, a predictor-based
search method that automatically optimizes the solver schedule to get a better
time-quality trade-off of sampling. We demonstrate that S3 can find outstand-
ing solver schedules which outperform the state-of-the-art sampling methods on
CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we
achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset,
outperforming the SOTA method significantly. We further apply S3 to Stable-
Diffusion model and get an acceleration ratio of 2×, showing the feasibility of
sampling in very few steps without retraining the neural network. Our code is
available at https://github.com/jsttlgdkycy/USF.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) have emerged as a new generative modeling paradigm in recent years. DPMs model the
probability distribution through training a neural network to estimate the score function or other
equivalent form along pre-defined forward diffusion stochastic differential equations (SDEs) (Song
et al., 2020b). Sampling from DPMs can be viewed as solving the corresponding reverse diffu-
sion SDEs (Song et al., 2020b; Ho et al., 2020) or the diffusion ODEs (Song et al., 2020b;a) by
discretizing the continuous timesteps.

Despite the high generation ability, the main drawback of DPMs is the slow sampling speed due to
the large number of discretized timesteps for the numerical accuracy of the DE solver (Song et al.,
2020b; Ho et al., 2020) with neural inference on each step. Therefore, accelerating the sampling
process of DPMs is very meaningful.

Current work focusing on decreasing the DPM sampling steps can be divided into two categories.
The first of them needs retraining of the neural network (Luhman & Luhman, 2021; Salimans & Ho,
2022; Meng et al., 2023; Song et al., 2023), which takes significant extra costs, especially for large
models like Rombach et al. (2022). The other branch of works attempts to design efficient solvers
of differential equations (DEs) to accelerate DPMs without retraining the existing off-the-shelf mod-
els (Song et al., 2020a; Watson et al., 2021; Bao et al., 2022; Liu et al., 2022; Lu et al., 2022a;b;

∗Corresponding Authors

1

https://github.com/jsttlgdkycy/USF

Published as a conference paper at ICLR 2024

Zhang & Chen, 2022; Zhang et al., 2022; Zhao et al., 2023). State-of-the-art methods utilize the
equivalent exponential integral form of the reverse diffusion ODE, accurately calculating the linear
term while estimating the integral term through various high-order numerical methods (Zhang &
Chen, 2022; Lu et al., 2022a;b; Zhao et al., 2023). These methods can reduce the number of steps
to 15∼20 steps, but the performance decreases rapidly with lower than 10 steps.

We notice that many solving strategies of these solvers are empirically set and kept constant along
the sampling process except for a few special timesteps, leading to suboptimal performance with
inadequate timesteps. In this paper, to systematically study the impact of these strategies, we propose
a unified sampling framework based on the exponential integral form of the diffusion ODE, named
USF, which splits the solving process of one step into independent decisions of several components,
including the choice of 1. timestep, 2. starting point of the current step, 3. prediction type of the
neural network, 4. order of Taylor expansion, 5. derivative estimation method, and 6. usage of
ODE correctors. Based on this framework, we reveal that the quality and efficiency of training-free
samplers can be further improved by designing appropriate solver schedules, motivated by the key
observation that the suitable solving strategies vary among different timesteps. Therefore, solver
schedules, which means the different solving strategies assigned to each timestep, is very important
for the sample quality. Our proposed framework can incorporate the existing diffusion solvers by
assigning corresponding decisions to those components and allows the ensemble of different solving
strategies in the timestep dimension, enabling sufficient potential to outperform existing sampling
methods. In addition, we also design new strategies different from existing diffusion solvers for the
derivative estimation component, making the proposed sampling framework more promising.

However, designing solver schedules is difficult due to the vast decision space. To address this
problem, we propose S3 to search for optimal solver schedules automatically. We construct a per-
formance predictor to enable the fast evaluation of one solver schedule and use it to guide a multi-
stage search process to find well-performing solver schedules under a certain budget of number of
function evaluation (NFE). Our contributions are summarized as follows:

• We propose a new sampling framework for DPMs, called USF, which unifies existing diffu-
sion ODE solvers based on exponential integral, to systematically and conveniently study the
strategies chosen for diffusion samplers. Based on this framework, we design some new solver
strategies, including using different solver strategies across timesteps, low-order estimation for
derivatives, more types of scaling methods and searchable timesteps.
• We propose a predictor-based multi-stage search algorithm, S3, to search for the well-

performing solver schedule under a certain NFE budget. Our method can directly utilize off-
the-shelf DPMs without any retraining of the diffusion neural network and find outstanding
solver schedules with a moderate search cost, demonstrating its practical applicability.
• We experimentally validate our method on plenty of unconditional datasets, including CIFAR-

10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), ImageNet-64 (Deng et al., 2009) and
LSUN-Bedroom (Yu et al., 2015). Our searched solver schedules outperform the SOTA diffu-
sion sampler (Lu et al., 2022b; Zhao et al., 2023) by a large margin with very few NFE, e.g., 6.86
v.s. 23.44 on CIFAR-10 with only 5 NFE. We further apply S3 to Stable-Diffusion (Rombach
et al., 2022) models, achieve 2× (from 10 NFE to 5 NFE) acceleration without sacrificing the
performance on text-to-image generation task on MS-COCO 256×256 dataset (Lin et al., 2014).
Based on the experimental results, we summarize some knowledge to guide future schedule de-
sign.

2 RELATED WORK

2.1 DIFFUSION PROBABILISTIC MODEL

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) are used to construct the probability distribution q(x0) of a D-dimension random variable
x0 ∈ RD. DPMs define a forward diffusion process to add noise to the random variable x0 (Song
et al., 2020b) progressively:

dxt = f(xt, t)dt+ g(t)dwt, (1)

where xt stands for the marginal distribution at time t for t ∈ [0, T], and x0 obeys the target distri-
bution q(x0). wt is the standard Wiener process. When f(xt, t) is a affine form of xt, the marginal

2

Published as a conference paper at ICLR 2024

distribution of xt given x0 can be written as (Song et al., 2020b):

q(xt|x0) = N (xt|αtx0, σ
2
t I), (2)

where α2
t /σ

2
t is called signal-to-noise ratio (SNR), which is a strictly decreasing function of t and

approximately equals 0 when t = T . The forward diffusion process Eq. (1) has a reverse probability
flow ODE (Song et al., 2020b;a):

dxt = [f(t)xt −
1

2
g2(t)∇xlogq(xt)]dt, (3)

where xT ∼ N (xt|0, I). The ODE has two equivalent forms w.r.t. noise prediction network ϵθ and
data prediction network xθ, which are more commonly used for fast sampling:

dxt = (f(t)xt +
g2(t)

2σt
ϵθ(xt, t))dt, (4)

dxt = ((f(t) +
g2(t)

2σ2
t

)xt −
αtg

2(t)

2σ2
t

xθ(xt, t))dt. (5)

It can be proved that the marginal distribution of xt in Eq. (1) equals the distribution of xt in
Eq. (3) (Anderson, 1982). Thus, sampling from DPMs can be viewed as solving the above ODEs.

2.2 TRAINING-FREE SAMPLERS

One major drawback of DPMs is the large number of discretized timesteps needed for numerical
solvers to ensure the sample quality. To handle such an issue, training-free samplers for the ODE
Eq. (3) are proposed to achieve quicker convergence (Song et al., 2020b;a; Liu et al., 2022; Zhang
& Chen, 2022; Lu et al., 2022a;b; Zhao et al., 2023).

2.2.1 LOW ORDER SAMPLERS

The early samplers can be viewed as low-order solvers of the diffusion ODE (Song et al., 2020a; Liu
et al., 2022). DDIM (Song et al., 2020a) proposes the following formula for the update of one step:
xt =

√
αt

xs−
√
1−αsϵθ(xs,s)√

αs
+
√
1− αtϵθ(xs, s). PNDM (Liu et al., 2022) proposes to replace the

neural term ϵθ(xs, s) in the DDIM formula with a new term 1
24 (55ϵs− 59ϵs−δ +37ϵs−2δ − 9ϵs−3δ)

inspired by Adams method. The DDIM formula is a 1-st order discretization to the diffusion ODE
Eq. (3) and thus is not efficient enough due to the inadequate utilization of high-order information.

2.2.2 EXPONENTIAL-INTEGRAL-BASED SAMPLERS

The solution xt of the diffusion ODE Eq. (3) at timestep t from timestep s can be analytically
computed using the following exponentially weighted integral (Lu et al., 2022a)

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵθ(xλ, λ)dλ. (6)

The linear term αt

αs
xs can be accurately computed and the high order numerical methods can be

applied to the integral term αt

∫ λt

λs
e−λϵθ(xλ, λ)dλ, improving the sample speed dramatically than

low-order formulas. The following methods apply different strategies to estimate the integral term.

DEIS (Zhang & Chen, 2022) uses Lagrange outer interpolation to estimate the integrand. Then, the
exponential integral can be computed approximately since the integral of a polynomial can be easily
computed. Additionally, DEIS computes this integral in t domain rather than λ.

DPM-Solver (Lu et al., 2022a) utilizes the Taylor expansion of the exponential integral as follows
to estimate this term.

xt =
αt

αs
xs − αt

k−1∑
n=0

ϵ
(n)
θ (xλs

, λs)

∫ λt

λs

e−λ (λ− λs)
n

n!
dλ+O((λt − λs)

k+1). (7)

Additionally, Lu et al. (2022a) proposes to discretize the timesteps with uniform logSNR, which has
empirically better performance. DPM-Solver++ (Lu et al., 2022b) introduces different strategies
under the same Taylor expansion framework, e.g., multi-step solver and data prediction neural term.

3

Published as a conference paper at ICLR 2024

Figure 1: The sampling process of USF and all searchable strategies.
UniPC (Zhao et al., 2023) introduces correcting strategy to the Taylor expansion framework. After
computing xt through Eq. (7), UniPC uses the newly computed function evaluation ϵθ(xt, λt) to
correct the value of xt, which does not consume extra NFE as ϵθ(xt, λt) is calculated only once.

2.3 AUTOML

AutoML methods aim to automatically decide the optimal configurations for machine learning
systems. The decidable elements in AutoML works include training hyperparameters (Jaderberg
et al., 2017), model selection (Yang et al., 2019; Liu et al., 2023), neural architecture (Zoph & Le,
2016), etc. Predictor-based search methods (Snoek et al., 2012) are widely used in the AutoML
field to accelerate the optimization. In predictor-based search, a predictor is trained with evaluated
configuration-objective pairs, and then used to predict the objectives for new configurations.

3 A UNIFIED SAMPLING FRAMEWORK

In this section, we propose a unified sampling framework called USF based on exponential integral
in the λ domain. We introduce our framework by describing the steps of solving the diffusion ODE
Eq. (3) and listing all optional strategies and tunable hyperparameters of the sampling process.

3.1 SOLVING STRATEGY

To solve the diffusion ODE Eq. (3) without closed-form solutions, one should discretize the con-
tinuous time into timesteps and calculate the trajectory values at each timestep. Therefore, the first
step of solving the diffusion ODE is to determine a discretization scheme [t0, t1, · · · , tN], where
ε = t0 < t1 < · · · < tN = T . Then consider a timestep t ∈ [t0, · · · , tN−1], exponential integral
has been validated to be an effective method of computing xt due to the semi-linear property (Zhang
& Chen, 2022; Lu et al., 2022a;b; Zhao et al., 2023), especially in the λ domain. We follow the Tay-
lor expansion of Eq. (6) in λ domain (Lu et al., 2022a) to estimate the integral term, and summarize
the strategies that can be applied to numerically compute the expansion as follows.

Prediction type of neural network. Typically, the neural network is trained with denoising objec-
tive (Ho et al., 2020) and the corresponding diffusion ODE writes as Eq. (4). It can be proved that
Eq. (6) is the accurate solution of Eq. (4) (see App. H). Denote that s is another timestep before t
and h = λt − λs, the Taylor expansion of Eq. (6) can be written as (Lu et al., 2022a):

xt =
αt

αs
xs − σt

n∑
k=0

hk+1φϵ
k+1(h)ϵ

(k)
θ (xs, s) +O(hn+2), (8)

where φϵ
k satisfies φϵ

k+1(h) =
φϵ

k(h)−1/k!
h , and φϵ

0(h) = eh. Alternatively, the neural network can
be a data prediction model xθ(xt, t), whose relationship with the noise prediction model ϵθ(xt, t)

is given by xθ(xt, t) := xt−σtϵθ(xt,t)
αt

(Kingma et al., 2021; Lu et al., 2022b). The corresponding
diffusion ODE w.r.t. data prediction model writes as Eq. (5), whose Taylor expansion is given below:

xt =
σt

σs
xs + αt

n∑
k=0

hk+1φx
k+1(h)x

(k)
θ (xs, s) +O(hn+2), (9)

4

Published as a conference paper at ICLR 2024

where φx
k satisfies φx

k+1(h) =
1/k!−φx

k(h)
h , and φx

0(h) = e−h. See App. H for detailed derivations.
Since the linear term and the integral to estimate are different between the two prediction types, the
numerical solutions of Eq. (8) and Eq. (9) are essentially different except for n = 1.
Starting point s. s can be any timestep larger than t. Multistep solvers (Lu et al., 2022b; Zhao
et al., 2023) always choose the previous timestep of t while single-step solvers (Lu et al., 2022a)
choose more distant timesteps.

Order of the Taylor expansion. To compute the Taylor expansion Eq. (8) or Eq. (9), the number of
order retained should be decided. Low retained order may result in higher truncation error. However,
the estimation of high-order derivatives need extra information from other timesteps other than the
starting point s, which may not be accurate enough for calculation. Therefore, the choice of Taylor
expansion order may have a strong influence on the sample quality.

Derivative estimation method. After determining the prediction type and the retained order n, the
last thing is to numerically calculate all unknown derivative terms ϵ(k)θ (xs, s) (take noise prediction
model as an example), where k ≤ n, to obtain the final solution xt. The strategies of this component
are very flexible since many off-the-shelf numerical differential methods can be used. To simplify
the workflow, we utilize the system of linear equations consisting of m ≥ k Taylor expansions
from the starting point s to other timesteps, the k-order derivative can be approximately calculated
by eliminating derivatives of other orders (Zhao et al., 2023), which we call m-th Taylor-difference
method (see Def. B.1 for its formal definition). Inspired by the 2-nd solver of Lu et al. (2022a;b), we
note that for a derivative estimation result ϵ̃(k)θ (xs, s), rescaling the estimated value by multiplying
a coefficient 1 + R(h) has the potential to further correct this numerical estimation. To sum up, we
formulate the estimation of k-th order derivative as the following two steps: (1). choose at least k
other timesteps ti ̸= s, i ∈ [1, · · · , k] with pre-computed function evaluation ϵθ(xti , ti) to calculate
the estimation value through Taylor-difference method, and (2). rescale the estimation value with
a coefficient 1 + R(h). In the search space used in our experiments, we allow low-order Taylor-
difference estimation to be taken for the 1-st derivative in high-order Taylor expansions (i.e., m
can be smaller than n) and design five types of scale coefficients Ri(h), i = 0, · · · , 4 for the 1-st
derivative. See App. B for details.

After calculating xt, correctors can be used to improve the accuracy of xt through involving the
newly computed ϵθ(xt, t) in the re-computation of xt (Griffiths & Higham, 2010). Specifically, the
Taylor expansion Eq. (8) or Eq. (9) is estimated again with t as one other timestep for derivative es-
timation. Typically, ϵθ(xt, t) also have to be evaluated again after recomputing xt and the correcting
process can be iteratively conducted. However, in practice, re-evaluations and iterative correctors
are not used to save NFE budgets. Since our goal is to improve the sample quality with very few
NFE, we follow Zhao et al. (2023) to use no additional neural inference for correctors.

In summary, all decidable components in our framework are: (1). timestep discretization scheme,
(2). prediction type of the neural term, (3). starting point of the current step, (4). retained order
of Taylor expansion, (5). derivative estimation methods, and (6). whether to use corrector. Our
sampling framework is summarized in Alg. 1 and demonstrated in Fig. 1.

3.2 SOLVER SCHEDULE: PER-STEP SOLVING STRATEGY SCHEME

In this section, we demonstrate the phenomenon that the proper solving strategies appropriate for
different timesteps are different. We construct a ’ground-truth’ trajectory c = [xt0 , xt1 , · · · , xtN]
using 1000-step DDIM (Song et al., 2020a) sampler (i.e., N = 1000). We choose a serials of
target timesteps [ttar0 , · · · , ttarS] where ttari ∈ [t0, · · · , tN], and estimate the value x̃ttari

with k

previous timesteps [ts1 , · · · , tsj , · · · , tsk], where sj ∈ [1, N] and tsj > ttari . Then we calculate
the distance between the ground-truth trajectory value and the estimated value, given by L(ttari) =
|x̃ttari

− xttari
|. We compare different solving strategies by showing their L(ttari)-ttari curve in

Fig. 2. The key observation is that the suitable strategies for most components varies among
timesteps. For example, the loss of the 3-rd solver with noise prediction network is smaller than
the 2-nd solver at 400-700 timesteps but larger at the rest timesteps (see the green and red curves of
’Orders and Prediction Types’).

This phenomenon reveals the potential of using different solving strategies in different timesteps.
We call the decision sequence of solving strategies for every timestep solver schedule.

5

Published as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700 800
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
lo

ss

Orders and Prediction Types

2-nd solver, data prediction
3-rd solver, data prediction
2-nd solver, noise prediction
3-rd solver, noise prediction

0 100 200 300 400 500 600 700 800
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
lo

ss

Low Order Derivative Estimation

full-order estimate, data prediction
low-order estimate, data prediction
full-order estimate, noise prediction
low-order estimate, noise prediction

0 100 200 300 400 500 600 700 800
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
lo

ss

Derivative Scale Methods
Data Prediction

R0(h) (No Scaling)
R1(h)
R2(h)
R3(h)
R4(h)

0 100 200 300 400 500 600 700 800
Timesteps

1

0

1

2

3

No
rm

al
ize

d
lo

ss

Noise Prediction

R0(h) (No Scaling)
R1(h)
R2(h)
R3(h)
R4(h)

0 100 200 300 400 500 600 700 800
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
lo

ss

Correcting Methods
Data Prediction

order 3, with corrector
order 3, without corrector
order 2, with corrector
order 2, without corrector

0 100 200 300 400 500 600 700 800
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
lo

ss

Noise Prediction

order 3, with corrector
order 3, without corrector
order 2, with corrector
order 2, without corrector

0 100 200 300 400 500 600 700
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
lo

ss

Starting points
Data Prediction

Multi step, 2-nd solver
Multi step, 3-rd solver
Single step, 2-nd solver
Single step, 3-rd solver

0 100 200 300 400 500 600 700
Timesteps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
lo

ss

Noise Prediction

Multi step, 2-nd solver
Multi step, 3-rd solver
Single step, 2-nd solver
Single step, 3-rd solver

Figure 2: Losses with ground-truth trajectory using different strategies. (i). For the losses in ’Orders
and Prediction Types’, we choose different expansion orders and prediction types for every update.
(ii). For the losses in ’Low Order Derivative Estimation’, we use the 3-rd Taylor expansion with both
prediction types and choose whether to apply the 1-st Taylor-difference method to estimate the 1-st
order derivative rather than the 2-nd Taylor-difference method. (iii). For the losses in ’Correcting
Methods’, we choose whether to use correctors after the update under different expansion orders and
prediction types. (iv). For the losses in ’Starting points’, we choose different indices of the starting
points, including ’Single step’ (all additional timesteps are between the starting point and the target
point) and ’Multi step’ (all additional timesteps are larger than the starting point). The ranks of all
strategies for all components are not constant at different timesteps.

3.3 ADVANTAGES OF THE FRAMEWORK

The contribution of USF lies in two ways. First, USF gives a unified perspective for all sampling
methods based on exponential integral. Second, USF allows different solving strategies in each
timestep, making the sampler more flexible. To demonstrate the universality and reliability of USF,
we show in Tab. 1 that almost all existing SOTA samplers based on exponential integral can be
incorporated by it through assigning corresponding strategies (more derivations can be found in
App. E). Note that since DEIS (Zhang & Chen, 2022) computes the integral in the t domain, it is
essentially different from other methods. However, when applying the core numerical method in
DEIS to the λ domain, we show that it can still be incorporated in USF (the last row in Tab. 1).

4 SEARCH FOR SOLVER SCHEDULE THROUGH S3

4.1 PROBLEM DEFINITION

Denote the si as the numerical solver to compute xti , we formulate the problem of deciding the
optimal solver schedule as below:

argmin
M≤L,

s1,s2,··· ,sM ,
t1,t2,··· ,tM

IF ∗ F([(s1, t1), (s2, t2), · · · , (sM , tM)]), s.t.M ≤ C,

where C is the given NFE budget, [(s1, t1), (s2, t2), · · · , (sM , tM)] is the solver schedule s, and F
is an arbitrary evaluation metric of diffusion models, and IF is an indicator coefficient which equals
to 1 when smaller F indicates better performance and equals to −1 otherwise.

As discussed in Sec. 3.2, the best solving strategies for different timesteps are different, which leads
to a search space that grows exponentially with the number of steps. Additionally, the decision of one
component may be coupled with the decision of other components. For example, as demonstrated
in Fig. 2, low-order estimation of derivatives almost consistently outperforms full-order estimation
method with data prediction network (see the orange and blue curves of ’Low Order Derivative

6

Published as a conference paper at ICLR 2024

Table 1: Relationship between USF and existing SOTA methods. The value of ‘starting point’
represents the index difference between the target point and the starting point. All methods use
Taylor-difference to estimate derivatives or all orders. The formulas in ‘Scale’ are the coefficients
for scaling the 1-st derivative. h′ equals h if prediction type is noise and equals −h if it is data.

Method Prediction Taylor order Starting point Scale Corrector

DPM-Solver-2S Noise 1,2 -1,-2
h
2 ∗(e

h−1)

eh−h−1
None

DPM-Solver-3S Noise 1,2,2 -1,-2,-3 None None

DPM-Solver++(2M) Data 2 -1
h
2 ∗(1+e−h)

e−h+h−1
None

UniPC-2-B1(h) Noise/Data 2 -1
h′2
2

eh′−h′−1
UniC-2

UniPC-2-B2(h) Noise/Data 2 -1
h′
2 (eh

′
−1)

eh′−h′−1
UniC-2

UniPC-p (p > 2) Noise/Data p -1 None UniC-p

DEIS-p (in the λ domain) Noise p -1 None None

Estimation’) while worse than it with noise prediction network at 500-700 timesteps (see the red
and green curves). Therefore, well-performing solver schedules are hard to design manually.

Inspired by AutoML works (Real et al., 2019; Ning et al., 2020; Liu et al., 2023), we attempt to auto-
matically search for solver schedules with good performance under certain NFE budgets. However,
the search space is extremely large, and evaluating a solver schedule is also time-consuming since
the standard calculation processes of most metrics need to generate a large number of images (Heusel
et al., 2017). Thus, random search with a regular metric evaluation method is inefficient in this case.
4.2 PREDICTOR-BASED MULTI-STAGE SEARCH FOR SOLVER SCHEDULE

To surmount the aforementioned challenges and accelerate the search process, we propose S3, a
predictor-based multi-stage evolutionary method. Specifically, we train a light predictor to predict
the performance of a solver schedule and use it to guide an evolutionary search process to sample
solver schedules. We can evaluate new solver schedules in the evolutionary search with negligible
cost with the help of the predictor. making the search process much more efficient.

But training the predictor still needs a bunch of evaluated schedules, which is time consuming. To
decrease this part of cost, we propose the multi-stage workflow S3. In the early stage of the evo-
lutionary search, only the sub-space adjacent to the current population can be explored. Therefore,
the predictor is not required to generalize to the whole search space and can be trained with a small
amount of data. As the population expands, generalization ability to new sub-spaces is needed, and
thus the predictor should be trained with more sampled schedules. Moreover, the training data of
the predictor should also be selected carefully and efficiently.

Based on the above intuition, we propose the multi-stage workflow. Our workflow is summarized
in Alg. 2 and demonstrated in App. D.2, which contains three steps in every loop. (1). A set of
solver schedules are sampled from the search space through evolutionary search. The performances
needed to guide the evolutionary search are calculated by the predictor except for the first loop in
which all performances are truly evaluated. (2). The true metrics of all sampled solver schedules
are calculated. (3). All evaluated schedule-performance data pairs are used to update the weights
of the predictor. Compared to the single-stage method, which evaluates the true performance of all
schedules in one go and trains a predictor to search in the whole space, S3 accelerates the exploration
of schedules which have to be truly evaluated.

5 EXPERIMENTS

We choose several SOTA diffusion samplers, including DPM-Solver (Lu et al., 2022a), DPM-
Solver++ (Lu et al., 2022b), and UniPC (Zhao et al., 2023) as baseline methods. We use
FID↓ (Heusel et al., 2017) as the evaluation metric. Our method is validated on CIFAR-10, CelebA,
ImageNet-64, ImageNet-128 (guided), ImageNet-256 (guided), and LSUN-bedroom datasets and
outperforms baseline methods by a large margin on all of them. We further apply S3 to text-image
generation task with Stable Diffusion pre-trained models (Rombach et al., 2022) on MS-COCO2014
validation set. The models we use for all experiments are listed in App. F.1.

7

Published as a conference paper at ICLR 2024

Table 2: FIDs of the searched solver schedules on unconditional and label-guided generation tasks.

Dataset Method NFE
4 5 6 7 8 9 10

CIFAR-10

Baseline-W(S) 255.21 288.12 32.15 14.79 22.99 6.41 5.97
Baseline-W(M) 61.13 33.85 20.84 13.89 10.34 7.98 6.76

Baseline-B 57.52 23.44 10.33 6.47 5.16 4.30 3.90
Ours 11.50 6.86 5.18 3.81 3.41 3.02 2.69

CelebA

Baseline-W(S) 321.39 330.10 52.04 17.28 16.99 10.39 6.91
Baseline-W(M) 31.27 20.37 14.18 11.16 9.28 8.00 7.11

Baseline-B 26.32 8.38 6.72 6.72 5.17 4.21 4.02
Ours 12.31 5.17 3.65 3.80 3.62 3.16 2.73

ImageNet-64

Baseline-W(S) 364.60 366.66 72.47 47.84 54.21 28.22 27.99
Baseline-W(M) 93.98 69.08 50.35 40.99 34.80 30.56 27.96

Baseline-B 76.69 61.73 42.81 31.76 26.99 23.89 24.23
Ours 33.84 24.95 22.31 19.55 19.19 19.09 16.68

LSUN-Bedroom
Baseline-W(M) 44.29 24.33 15.96 12.41 10.87 9.99 8.89

Baseline-B 22.02 17.99 12.43 10.79 9.92 9.11 8.52
Ours 16.45 12.98 8.97 6.90 5.55 3.86 3.76

ImageNet-128
Baseline-W(M) 32.08 15.39 10.08 8.37 7.50 7.06 6.80

Baseline-B 25.77 13.16 8.89 7.13 6.28 6.06 6.03
Ours 18.61 8.93 6.68 5.71 5.28 4.81 4.69

ImageNet-256
Baseline-W(M) 80.46 54.00 38.67 29.35 22.06 16.74 13.66

Baseline-B 51.09 27.71 17.62 13.19 10.91 9.85 9.31
Ours 33.84 19.06 13.00 10.31 9.72 9.06 9.06

We evaluate 9 common settings in total of these SOTA methods. We list the best (Baseline-B in all
tables) and the worst (Baseline-W in all tables) results of all baseline methods we evaluate under
the same NFE budget. For the worst baseline, we distinguish singlestep methods (S) and multistep
methods (M) since the former is usually significantly worse with meager budgets. Detailed settings
and full results can be found in App. F.3 and App. G.1, correspondingly.

5.1 MAIN RESULTS

We list the results on unconditional datasets and with classifier-guidance in Tab. 2 and the results
with Stable Diffusion models in Tab. 3. The key takeaways are: (1) S3 can achieve much higher
sample quality than baselines, especially with very few steps. Our searched schedules outperform
all baselines across all budgets and datasets by a large margin. On text-to-image generation with
Stable Diffusion models, S3 achieves comparable FIDs with only 5 NFE compared to baselines
with 10 NFE, bringing a 2× acceleration ratio. Remarkably, our method achieves a significant
boost under very tight budgets (like 11.50 v.s. 57.52 on CIFAR-10, 33.84 v.s. 76.69 on ImageNet-
64), making it feasible to sample with very low NFEs. (2) Choosing proper settings for existing
methods is important. We can see that in many cases, the performances of the best baseline and
the worst baseline are significantly different from each other, even both of which are under the
SOTA frameworks. Additionally, the best baselines on different datasets or even under different
NFE budgets are not consistent. It indicates the necessity of a careful selection of solver settings
and the significance of our USF since it is proposed to present all adjustable settings systematically.

5.2 ABLATION STUDY: REDUCE SEARCH OVERHEAD

The main overhead of our method comes from evaluating the true performance of solver schedules
since the predictor is much lighter than diffusion U-Nets and has negligible overheads. The time
consumed is proportional to the number of generated images used for metric calculation. Fewer
evaluation images lead to higher variance and lower generalization ability to other texts and initial
noises, thus may cause worse performance. In this section, we ablate this factor to give a relationship

8

Published as a conference paper at ICLR 2024

Table 3: FID results on MS-COCO 256×256. Ours-500/Ours-250 stand for using 500/250 images
to calculate FID when searching.

Method NFE
4 5 6 7 8 9 10

Baseline-W(S) 161.03 156.72 106.15 75.28 58.54 39.26 29.54
Baseline-W(M) 30.77 22.71 19.66 18.45 18.00 17.65 17.54

Baseline-B 24.95 20.59 18.80 17.83 17.54 17.42 17.22
Ours 22.76 16.84 15.76 14.77 14.23 13.99 14.01

Ours-500 24.47 17.72 15.71 14.60 14.47 14.15 14.27
Ours-250 23.84 18.27 17.29 14.90 15.50 14.12 14.31

between overhead and performance. We choose the text-to-image task because the text condition
is far more flexible than label condition or no condition and thus more difficult to generalize from
a small number of samples to other samples. We validate S3 with 250 and 500 generated images
rather than the default setting 1000, and our results are shown in the last two rows in Tab. 3. The
performance under almost all NFE budgets becomes worse as the number of generated samples
decreases. Moreover, some FIDs under higher budgets are even higher compared to lower budgets
due to the high variance caused by lower sample numbers. Remarkably, the search results can still
outperform baseline methods, indicating the potential of S3.

5.3 ANALYSIS AND INSIGHTS

We give some empirical insights in this section based on the pattern of our searched schedules.
Our general observation is that most components of searched schedules show different patterns on
different datasets. We analyze the patterns of different components as follows.

Timesteps. For low resolution datasets, more time points should be placed when t is small. Unlike
the default schedule “logSNR uniform”, we suggest putting more points at 0.2 < t < 0.5 rather
than putting too much at t < 0.05. For high resolution datasets, we recommend a slightly smaller
step size at 0.35 < t < 0.75 on top of the uniform timestep schedule.

Prediction Types. We find that data prediction can outperform noise prediction by a large margin
in the following cases: 1. the NFE budget is very low (i.e., 4 or 5), 2. the Taylor order of predictor
or corrector is high and 3. on low resolution datasets. But for the rest cases, their performance has
no significant difference. Noise prediction can even outperform data prediction sometimes.

Derivative Estimation Methods. We find that low order derivative estimation is preferred for high
Taylor order expansion when step size is very high. Oppositely, full-order estimation is more likely
to outperform low-order estimation when step size is not so large. For derivative scaling functions,
we find they are often used in all searched schedules. But the pattern varies among datasets.

Correctors. Though previous work validates the effectiveness of using correctors Zhao et al. (2023),
we find that not all timesteps are suitable for correctors. For large guidance scale sampling, correc-
tor is not usually used. But in general, corrector is more likely to bring positive impact on the
performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a new sampling framework, USF, for systematical studying of solving
strategies of DPMs. We further reveal that suitable strategies at different timesteps are different, and
thus propose to search solver schedules with the proposed framework in the predictor-based multi-
stage manner. Experiments show that our proposed method can boost the sample quality under a
very tight budget by a large margin, making it feasible to generate samples with very few NFE.

Although we propose a general framework for sampling based on exponential integral, we prune
the search space empirically to avoid excessive search overheads. Exploring the strategies not used
in this work could be a valuable direction for future research. Besides, our method has additional
overhead related to the evaluation speed and the number of sampled schedules. Therefore, fast
evaluation methods and efficient search methods are worth studying.

9

Published as a conference paper at ICLR 2024

ACKONWLEDGEMENT

This work was supported by National Natural Science Foundation of China (No. 62325405,
62104128, U19B2019, U21B2031, 61832007, 62204164), Tsinghua EE Xilinx AI Research Fund,
and Beijing National Research Center for Information Science and Technology (BNRist). We thank
Cheng Lu and Prof. Jianfei Chen for valuable suggestions and discussion, Yizhen Liao for provid-
ing some experimental results and reviewing the revision in the rebuttal phase. We thank for all the
support from Infinigence-AI.

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

David Francis Griffiths and Desmond J Higham. Numerical methods for ordinary differential equa-
tions: initial value problems, volume 5. Springer, 2010.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. arXiv preprint arXiv:2305.08891, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. arXiv preprint arXiv:2306.08860, 2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

10

Published as a conference paper at ICLR 2024

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. In European Conference on Com-
puter Vision, pp. 189–204. Springer, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sam-
ple from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. Oboe: Collaborative filtering
for automl model selection. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1173–1183, 2019.

11

Published as a conference paper at ICLR 2024

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. arXiv preprint arXiv:2310.13268, 2023.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

Published as a conference paper at ICLR 2024

In the appendix, we first state several assumptions in App. A for the later discussion. Then, we
provide the details of our search space and methods in App. B and App. D. In App. E, we elaborate
on how existing methods can be incorporated by our frameworks based on the detailed algorithm
we discuss before. In App. F and App. G.1, we list our settings for the experiments and provide
all experimental results. Finally, we give the derivation of how to get Taylor expansion Eq. (8)
and Eq. (9) through the diffusion ODE Eq. (4) and Eq. (5), and discuss the convergence of our
framework.

A DEFINITIONS AND ASSUMPTIONS

In this section we list some necessary definitions and assumptions for the discussion follows. We
first define the convergence order of an arbitrary estimation x̃.

Definition A.1. Suppose h is a given value, x̃(h) is an estimation of the ground truth value x. If ∃c,
such that ∀h, |x̃(h)− x| ≤ chp, then we call x̃(h) is p-order converge to h.

The defined p-order convergence can also be given as x̃(h) = x+O(hp).

Then we list several regularity assumptions for the neural network ϵθ, xθ, and the hyperparameters
of DPMs.

Assumption A.1. ϵθ(x, t) and xθ(x, t) are Lipschitz w.r.t. x with a Lipschitz constant L

Assumption A.2. The i-th derivatives diϵθ(xt,λt)
dλi and dixθ(xt,λt)

dλi exist and are continuous for all
1 ≤ i ≤M, where M is an large enough value.

Assumption A.3. ∃B such that ∀t, s ∈ (tε, T] and t < s, σt

σs
< αt

αs
≤ B.

B SEARCH SPACE DETAILS

In this section, we detail the searchable strategies for all components of the search space we use for
experiments in Sec. 5. We also try several different designs and list the results in App. G.4.

Timestep Schedule For all experiments, we set the start timestep tN = T following the conclusion
in Lin et al. (2023) that setting tN ̸= T can be harmful to the sample quality. For the last timestep
t0, previous works usually set it to 0.001 or 0.0001 empirically (Lu et al., 2022a;b). We find that the
value of t0 has a large impact on the sample quality since low t0 can cause numerical instability and
high t0 contains more noise. Therefore, we set t0 to be searchable in the interval [0.0001, 0.0015].
For other ti where i ∈ [1, N − 1], all values between t0 and tN are optional.

Prediction Type. For the experiments in Sec. 5, we simply set data prediction and noise prediction
as the two only strategies that can be applied for one-step update. We further try interpolation
between the two forms: given xϵ

t calculated by Eq. (8) and xx
t calculated by Eq. (9), we set the final

solution xt to be axϵ
t + (1− a)xx

t . The results of this adjusted search space are shown in Tab. 19.

Starting Point. We observe that in most cases, singlestep solvers perform worse than multistep
solvers. Therefore, we simply set the starting point to be the previous timestep xti+1

of the target
point xti for all experiments in Sec. 5. To have a better understanding of the singlestep approach,
we further set the starting point searchable with two candidates xti+1

and xti+2
for every xti , and

list the search results with this new search space in Tab. 18.

Taylor expansion order. As discussed in the previous work Zhao et al. (2023), too high solver order
is detrimental to the solution, possibly because of the numerical instability of high-order derivatives.
So, we set the candidates of Taylor expansion order as 1, 2, 3, and 4.

Derivative Estimation Method. As discussed in Sec. 3.1, we divide the estimation of derivatives
into two steps: Taylor-difference and scaling operation. For the Taylor-difference method, the main
idea is to utilize Taylor expansions from other points to the target points and eliminate all derivatives
of other orders to preserve the derivative needed to be computed. We give the formal definition here.

Definition B.1. Given the function value of the target point f(xt, t), and m additional points
f(xt1 , t1), f(xt2 , t2), · · · , f(xtm , tm) where ti = t + rih, then f (k)(xt, t) can be estimated by
DTa/hk, where D is a m-dimension vector given by D = [f(xt, t) − f(xt1 , t1), f(xt, t) −

13

Published as a conference paper at ICLR 2024

f(xt2 , t2), · · · , f(xt, t) − f(xtm , tm)]. And a = [a1, a2, · · · , am] is the solution vector of the
linear equation system Ca = b, where C is a square matrix with m rows and columns satisfying

Cij =
rij
i! for all integers i, j ∈ [1,m], and b is a m-dimension vector satisfying bi = Ii==k for all

integers i ∈ [1,m].

The convergence order p of Taylor-difference estimation is given by p = m − k + 1. The proof is
simple by substituting the Taylor expansion of all f(xti , ti) to f(xt, t) into the estimation formula.

Proof. Write the estimated value f̃ (k)(xt, t) through Def. B.1:

f̃ (k)(xt0 , t0) =
1

hk

m∑
i=1

ai(f(xt, t)− f(xti , ti))

=
1

hk

m∑
i=1

ai(rihf
(1)(xt0 , t0) +

(rih)
2f (2)(xt0 , t0)

2
+

· · ·+ (rih)
mf (m)(xt0 , t0)

n!
+O(hm+1))

=f (k)(xt0 , t0) +O(hm−k+1)

(10)

The last equation holds because ai is a constant and independent of h. If we consider the error of
all involved points x̃ti and f satisfy the regularity assumptions in App. A, then the convergence
order should be p = min(m, li) − k + 1, where li is the convergence order of x̃ti . According to
Asm. A.1, the convergence order of f(x̃ti , ti) equals the convergence order of x̃ti . By substituting
the convergence order of f into Eq. (10), we can get a similar proof.

The derivation of the last equation utilizes Ca = b that
∑m

i=1 ai
rki
k! = Ii==k. All existing expo-

nential integral-based methods set the number of additional timesteps to be the same as the order of
Taylor expansion to keep the convergence order (see App. E for details). In our framework, we al-
low low-order estimation for derivatives as an optional strategy, i.e., the number of additional points
could be smaller than Taylor expansion order, since low-order difference is more stable and our
experiments in Fig. 2 have revealed the potential of this method. For the scaling operation, we use
1 +R(h) to rescale the derivatives. We choose five scaling coefficients R(h) as follows.

• R0(h) = 0 (i.e., no scaling operation),

• R1(h) =
h′
2 (eh

′
−1)

eh′−h′−1
− 1,

• R2(h) =
h′2
2

eh′−h′−1
− 1,

• R3(h) = 0.5(eh
′ − 1),

• R4(h) = −0.5(eh
′ − 1),

where h′ = h when the prediction type is noise prediction, and h′ = −h if the prediction is data
prediction. The choices of R1 and R2 are inspired by existing methods (Lu et al., 2022a;b; Zhao
et al., 2023) (see App. E for details). R3 and R4 are chosen for larger scale coefficients. We
demonstrate the R(h)-h curve in Fig. 3. All R(h)s are small quantities ofO(h) order(except R0(h))
and thus convergence is guaranteed for sufficiently small h. Note that though we only try to apply
low-order Taylor-difference and scaling operation to the 1-st derivative out of consideration for the
potential instability of high-order derivatives and the difficulty in search phase, these methods can
be applied to high-order derivatives. Furthermore, in addition to the proposed two-step method
with Taylor-difference and scaling, other off-the-shelf numerical differentiation methods can also be
applied. These extensions are left for future exploration.

Corrector. As discussed in Sec. 3.1, the correcting process can be viewed as an independent step
using the function evaluation of the target timestep. Therefore, the searchable strategies listed above
can also be applied here, causing a too large search space. To avoid this problem, we simply increase

14

Published as a conference paper at ICLR 2024

0.0 0.1 0.2 0.3 0.4
Step Size h

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Sc
al

e

Noise Prediction
R0(h)
R1(h)
R2(h)
R3(h)
R4(h)

0.0 0.1 0.2 0.3 0.4
Step Size h

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Sc
al

e

Data Prediction
R0(h)
R1(h)
R2(h)
R3(h)
R4(h)

Figure 3: The scales of all Rh

Table 4: FID results of independent search of every component in S3 on CIFAR-10. All results are
calculated on 50k generated samples.

NFE 5 7 10

Baseline-B 23.44 6.47 3.90
Timestep 10.06 5.36 2.88

Order 17.76 5.86 3.90
Prediction Type 23.44 6.47 3.90

Corrector 22.58 6.23 3.90
Scaling 21.67 5.56 3.90

Low Order Estimation 23.44 5.91 3.84

the Taylor expansion order and the Taylor-difference order for all derivatives of the corrector by 1
compared to the corresponding predictor. The prediction type is kept consistent with the predictor.
No derivative scaling operations are used for the corrector. In this way, the searchable part only
includes whether to use corrector, making the search problem easier to handle. Further exploration
of independent strategies for the corrector can be a valuable direction for future research.

C ADDITIONAL INVESTIGATE THE POTENTIAL OF EVERY COMPONENT

In this section, we first discuss the improvement potential of each component and offer suggestions
on which component should be paid more attention in the future designing of solver schedules. We
find from our search results that on most datasets, the timestep schedule and order schedule are the
most different with baseline methods among all components. To further validate this observations,
we independently search for every single component and fix others. We only evolutionary sample
a small amount of solver schedules and truly evaluate them to do the search. The results are listed
in Tab. 4 and Tab. 5. From the results we can conclude that timestep is the component with the
most improvement space for baseline and order comes as the second. Moreover, all searchable
components can be improved to enhance the sampling quality. We suggest that for future design of
solver schedule, the design of timestep and order schedule should be treated with high priority and
the strategies of other components could be tuned for better performance.

D ALGORITHM DETAILS

In this section we detail the search process of S3.

D.1 DETAILED ALGORITHM OF THE UNIFIED SAMPLING FRAMEWORK

We present the detailed general process of our sampling framework S3 in Alg. 1. We mark all
searchable components of the framework in italics.

15

Published as a conference paper at ICLR 2024

Table 5: FID results of independent search of every component in S3 on LSUN-Bedroom. All
results are calculated on 1k generated samples.

NFE 5 7 10

Baseline-B 33.92 25.94 23.65
Timestep 27.23 22.99 18.64

Order 31.89 25.41 22.38
Prediction Type 32.43 24.84 23.25

Corrector 33.40 25.60 23.27
Scaling 32.84 25.60 23.25

Low Order Estimation 33.92 25.62 23.52

Algorithm 1 Sample through USF

1: Get timestep discretization scheme [t0, t1, · · · , tN].
2: Sample xtN from N (0, I)
3: for i = N − 1, · · · , 0 do
4: Get the prediction type from noise prediction or data prediction of neural network.
5: Get the starting point tsi , where si ≥ i.
6: Get the order of Taylor expansion ni, where ni ≤ N − i.
7: h = λti − λtsi
8: if noise prediction then
9: xti =

αti

αtsi

xtsi

10: for k = 0, · · · , ni − 1 do
11: ϵ̃

(k)
θ (xtsi

, tsi)← Estimate ϵ
(k)
θ (xtsi

, tsi)

12: xti = xti − σtih
k+1φϵ

k+1(h)ϵ̃
(k)
θ (xtsi

, tsi)
13: end for
14: Correct xti using ϵθ(xti , ti)
15: else if data prediction then
16: xti =

σti

σtsi

xtsi

17: for k = 0, · · · , ni − 1 do
18: ϵ̃

(k)
θ (xtsi

, tsi)← Estimate ϵ
(k)
θ (xtsi

, tsi)

19: xti = xti + αtih
k+1φx

k+1(h)x̃
(k)
θ (xtsi

, tsi)
20: end for
21: Correct xti using xθ(xti , ti)
22: end if
23: end for
24: return xt0

D.2 DETAILED ALGORITHM OF MULTI-STAGE SEARCH

As discussed in Sec. 4.2, we use a multi-stage search process to search for well-performed solver
schedules as described in Alg. 2 and demonstrated in App. D.2. We first initialize the population
with baseline solver schedules mentioned in App. F.3 to avoid the ’cold-start’ dilemma since most
solver schedules in the search space are not good enough. In the first iteration of the search process,
we conduct the evolutionary search based on the true performance of all sampled schedules since no
predictor can be utilized. At the end of each iteration, we use all evaluated schedules to update the
weights of the predictor, which will be used to guide the evolutionary search in the next iteration.

D.3 PREDICTOR DESIGN

Architecture. Our performance predictor P takes parameterized solver schedules s as input and out-
puts the performance. The predictor contains three modules: 1. timestep encoder [t1, · · · , tM] →
[EmbT1 , · · · ,EmbTM], which maps the sequential timesteps to sequential embeddings using a po-
sitional embedder followed by a MLP (Vaswani et al., 2017; Ho et al., 2020; Song et al., 2020b);

16

Published as a conference paper at ICLR 2024

Figure 4: The iterative workflow of predictor-based multi-stage search.

Algorithm 2 Predictor-based Multi-stage Search

Require:
S: search space of solver schedule
P : S → R: a predictor which takes a parameterized solver schedule as input and outputs its
performance
N : S → N+: get the NFE of a solver schedule

Hyperparameter:
N (k): number of solver schedules sampled in the k-th iteration

Input:
C = [C1, C2, · · · , Cn]: a series of timestep budgets

Search Process:
1: Initialize P randomly
2: Initialize S̃ with baseline solver schedules
3: for k = 1, · · · ,MAX ITER NUM do
4: if k == 1 then
5: Sample a set of solver schedules S(k) = {sj}j=1,··· ,N(k) from S using evolutionary search

guided by the ground-truth performance.
6: else
7: Sample a set of solver schedules S(k) = {sj}j=1,··· ,N(k) from S using evolutionary search

guided by the predictor P
8: end if
9: Evaluate the ground-truth performance pj of all solver schedules sj ∈ S(k), get S̃(k) =

{(sj , pj)}j=1,··· ,N(k)

10: S̃ ← S̃ ∪ S̃(k), and S̃ is used to train the predictor P
11: end for
12: s∗i = argmin

sj

pj , s.t. N(sj) < Ci

13: return s∗i

2. encoder of other solving strategies, which uses one-hot embedders followed by MLPs to embed
the decisions of one component (e.g., order of Taylor-expansion) ck and get [Embk1 , · · · ,EmbkM].
Embeddings of decisions from all components are concatenated to obtain the final embedding of
solving strategies [Embc1, · · · ,EmbcM] = [Emb11| · · · |EmbK1 , · · · ,Emb1M | · · · |EmbKM], where K
is the number of searchable components in the our framework of solving Eq. (6); 3. sequence pre-

17

Published as a conference paper at ICLR 2024

dictor, which takes the concatenated embedding [EmbT1 |Embk1 , · · · ,EmbTM |EmbkM] as input and
outputs the final predicted score. An LSTM (Merity et al., 2017) is used to process the sequential
embedding, followed by an MLP to regress the final score.

Training. Since ranking information of different schedules is far more important than their absolute
metrics, we use pair-wise ranking loss to train the predictor, which is validated to be more effective
in extracting relative quality information and preserving the ranking information (Ning et al., 2020;
Liu et al., 2023).

loss =

∥S̃∥∑
i=1

∑
j,F(sj)>F(si)

max(0,m− (P(sj)− P(si))), (11)

where S̃ is the dataset of schedule-performance pair data. Lower output value of the predictor trained
with ranking loss indicates higher performance of the input solver schedule.

E RELATIONSHIP BETWEEN USF AND EXISTING EXPONENTIAL INTEGRAL
BASED METHODS

In this section, we discuss the relationship between existing exponential integral methods (Zhang
& Chen, 2022; Lu et al., 2022a;b; Zhao et al., 2023) and USF. We show that all existing methods
in the λ domain (Lu et al., 2022a;b; Zhao et al., 2023) are included in our framework by assigning
corresponding decisions to every component. The method in t domain (Zhang & Chen, 2022) also
shares strong relevance with USF.

E.1 DPM-SOLVER

DPM-Solver (Lu et al., 2022a) is a singlestep solver based on the noise prediction type Taylor
expansion of exponential integral. Lu et al. (2022a) gives two examples of DPM-Solver-2 and DPM-
Solver-3 in Algorithm-1 and Algorithm-2 of its paper, correspondingly. We discuss the relationship
between these two examples and USF below.

DPM-Solver-2. In DPM-Solver-2, to calculate the trajectory value x̃ti of the target point ti from
the starting point ti−1, a midpoint si ∈ (ti, ti−1) is given by si = tλ(

λti−1
+λti

2) and its trajectory
value ui is calculated through the 1-st expansion of Eq. (8) (i.e., DDIM (Song et al., 2020a)) from
the starting point ti−1. Then x̃ti is given by: x̃ti =

αti

αti−1
x̃ti−1

− σti(e
hi − 1)ϵθ(ui, si) (see the

Algorithm-1 in the original paper Lu et al. (2022a) for details). We further write this formula:

x̃ti =
αti

αti−1

x̃ti−1
− σti(e

hi − 1)ϵθ(ui, si)

=
αti

αti−1

x̃ti−1 − σti(e
hi − 1)ϵθ(x̃ti−1

, ti−1)− σti(e
hi − 1)(ϵθ(ui, si)− ϵθ(x̃ti−1

, ti−1))

=
αti

αti−1

x̃ti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1)

− σti

(ehi − 1)(λsi − λti−1
)

ehi − hi − 1
h2
iφ

ϵ
2(hi)

ϵθ(ui, si)− ϵθ(x̃ti−1
, ti−1)

λsi − λti−1

=
αti

αti−1

x̃ti−1 − σti(e
hi − 1)ϵθ(x̃ti−1 , ti−1)− σtih

2
iφ

ϵ
2(hi)(1 +R1(hi))

ϵθ(ui, si)− ϵθ(x̃ti−1
, ti−1)

λsi − λti−1

.

We can see that the 2-nd solver expands Eq. (8) to the 2-nd order and uses 1+R1(hi) to scale the 1-st
derivative estimated by Taylor-difference (degrade to direct two-points difference approximation in
this case). Therefore, DPM-Solver-2 can be viewed as two updates with Taylor expansion orders 1
and 2. The second update uses second point ti−1 before the target timestep ti as the starting point
and 1 +R1(h) to scale the 1-st derivative.

DPM-Solver-3. In DPM-Solver-3, two midpoints s2i−1 and s2i are selected to calculate the final
solution xti . Firstly, the trajectory value of s2i−1 is calculated by the 1-st solver DDIM (Song et al.,
2020a). Then, the trajectory value of s2i is calculated from the starting point ti−1 and the previous

18

Published as a conference paper at ICLR 2024

midpoint s2i−1.

u2i =
αs2i

αti−1

x̃ti−1
− σs2i(e

λs2i
−λti−1 − 1)ϵθ(x̃ti−1

, ti−1)

−
σs2i(λs2i − λii−1)

λs2i−1 − λii−1

(
eλs2i

−λti−1 − 1

λs2i − λti−1

− 1)(ϵθ(u2i−1, s2i−1)− ϵθ(x̃ti−1 , ti−1))

=
αs2i

αti−1

x̃ti−1
− σs2i(e

λs2i
−λti−1 − 1)ϵθ(x̃ti−1

, ti−1)

− σs2i(λs2i − λti−1)
2φϵ

2(λs2i − λti−1)
ϵθ(u2i−1, s2i−1)− ϵθ(x̃i−1, ti−1)

λs2i − λti−1

.

This process also uses the 2-nd order expansion of Eq. (8) like DPM-Solver-2, but uses 1+R0(λs2i−
λti−1

) rather than 1 + R1 in DPM-Solver-2. The final calculation of x̃ti is similar to the above
process but uses s2i as the midpoint of this 2-nd singlestep solver. In conclusion, DPM-Solver-3 can
be viewed as three updates with Taylor expansion orders 1, 2, and 2. The last two solvers both use
ti−1 as the starting point.

E.2 DPM-SOLVER++

DPM-Solver++ (Lu et al., 2022b) propose several new solving strategies based on the framework
of DPM-Solver (Lu et al., 2022a). The first is to switch the noise prediction model to the data
prediction model, both of which are optional strategies in USF. The second is to apply multistep
solvers. The original paper provides the process of DPM-Solver++(2S) and DPM-Solver++(2M) in
Algorithm 1 and Algorithm 2. We discuss the relationship between these two examples and USF as
follows.

DPM-Solver++(2S). DPM-Solver++(2S) is similarly designed to DPM-Solver-2 Lu et al. (2022a),
except for switch to data prediction. See the Algorithm 1 in Lu et al. (2022b) for details. We can
draw an analogous conclusion to DPM-Solver-2 by rewriting the formula of the 2-nd update.

x̃ti =
σti

σti−1

x̃ti−1
− αti(e

−hi − 1)xθ(x̃ti−1
, ti−1)− αti

(e−hi − 1)hi

2

xθ(x̃si , si)− xθ(x̃ti−1
, ti−1)

λsi − λti−1

=
σti

σti−1

x̃ti−1
− αti(e

−hi − 1)xθ(x̃ti−1
, ti−1)

− αti

hi

2 (e
−hi − 1)

e−hi − 1 + hi
h2
iφ

x
2(hi)

xθ(x̃si , si)− xθ(x̃ti−1
, ti−1)

λsi − λti−1

=
σti

σti−1

x̃ti−1 − αti(e
−hi − 1)xθ(x̃ti−1 , ti−1)

− αti(1 +R1(hi))h
2
iφ

x
2(hi)

xθ(x̃si , si)− xθ(x̃ti−1 , ti−1)

λsi − λti−1

We can see that DPM-Solver++(2S) also uses R1(h) to scale the 1-st derivative. Therefore, predic-
tion type is the only difference between the two methods.

DPM-Solver++(2M). DPM-Solver++(2M) no longer uses singlestep update. Despite the first step,
which needs a cold start with the 1-st solver, the rest of the steps use 2-nd expansion of Eq. (9) (See

19

Published as a conference paper at ICLR 2024

the Algorithm 2 in Lu et al. (2022b) for details). We reformulate the 2-nd update formula as below.

x̃ti =
σti

σti−1

x̃ti−1 − αti(e
−hi − 1)xθ(x̃ti−1 , ti−1)− αti

(e−hi − 1)hi

2

xθ(x̃ti−1
, ti−1)− xθ(x̃ti−2

, ti−2)

λti−1 − λti−2

=
σti

σti−1

x̃ti−1 − αti(e
−hi − 1)xθ(x̃ti−1

, ti−1)

− αti

hi

2 (e
−hi − 1)

e−hi − 1 + hi
h2
iφ

x
2(hi)

xθ(x̃ti−1
, ti−1)− xθ(x̃ti−2

, ti−2)

λti−1
− λti−2

=
σti

σti−1

x̃ti−1
− αti(e

−hi − 1)xθ(x̃ti−1
, ti−1)

− αti(1 +R1(hi))h
2
iφ

x
2(hi)

xθ(x̃ti−1
, ti−1)− xθ(x̃ti−2

, ti−2)

λti−1
− λti−2

We find that the only difference between DPM-Solver++(2M) and the 2-nd update of DPM-
Solver++(2S) is the position of starting point. In the 2-nd update of DPM-Solver++(2S), the starting
point is the second point before the target point. In DPM-Solver++(2M), the starting point is the
first point before the target point.

E.3 UNIPC

UniPC (Zhao et al., 2023) proposes two update methods, UniP and UniC. In fact, UniC can be
viewed as a special version of UniP with the involvement of the function value ϵθ(xt, t) or xθ(xt, t)
at the target point t. Therefore, we mainly discuss the relationship between UniP and USF.

UniP. Take noise prediction model as an example, the update formula of Uni-P is given by x̃ti =
αti

αti−1
x̃ti−1

−σti(e
hi −1)ϵθ(x̃ti−1

, ti−1)−σtiB(hi)
∑p−1

m=1
amDm

rm
, where Dm = ϵθ(xti−1

, ti−1)−
ϵθ(xtim

, tim), ap−1 = [a1, a2, · · · , ap−1] satisfies ap−1 = B−1(hi)R
−1
p−1(hi)Φp−1(hi), and

Rp−1(h) and Φp−1(h) are given below (see the Algorithm 2 in Zhao et al. (2023)).

Rp−1(h) =

 1 1 · · · 1
r1h r2h · · · rp−1h
· · · · · · · · · · · ·

(r1h)
p−2 (r2h)

p−2 · · · (rp−1h)
p−2

 ,

Φp−1(h) = [1!hφϵ
2(h), 2!h

2φϵ
3(h), · · · , (p− 1)!hp−1φϵ

p(h)].

Then suppose the solution given by our USF with p-th Taylor expansion and pure Taylor-difference
estimation for each derivative is x̃U

ti . We state that x̃U
ti = x̃ti if the starting point and all additional

points in the two solvers are the same. The proof is as follows.

Proof.

x̃U
ti =

αti

αti−1

xti−1
− σti

p−1∑
k=0

hk+1φϵ
k+1(h)ϵ̃

(k)
θ (xti−1

, ti−1) (12)

=
αti

αti−1

xti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1)− σti

p−1∑
k=1

hk+1φϵ
k+1(h)D

T
UaU/h

k
i , (13)

where DU = [ϵθ(xti−1 , ti−1) − ϵθ(xti1
, ti1), · · · , ϵθ(xti−1 , ti−1) − ϵθ(xtip−1

, tip−1)], and aU sat-
isfies aU = C−1

U bkU . As discussed in Def. B.1, CU and bkU are written as:

CU =


r1 r2 · · · rp−1

r21/2! r22/2! · · · r2p−1/2!
· · · · · · · · · · · ·

rp−1
1 /(p− 1)! rp−1

2 /(p− 1)! · · · rp−1
p−1/(p− 1))!

 ,

bkU = [b1, b2, · · · , bp−1], bi = Ii==k

20

Published as a conference paper at ICLR 2024

substitute DU , CU and bkU to Eq. (13):

x̃U
ti =

αti

αti−1

xti−1 − σti(e
hi − 1)ϵθ(x̃ti−1 , ti−1)− σti

p−1∑
k=1

hφϵ
k+1(h)D

T
UC

−1
U bkU (14)

=
αti

αti−1

xti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1)− σtihD

T
U

p−1∑
k=1

φϵ
k+1(h)C

−1
U bkU (15)

=
αti

αti−1

xti−1 − σti(e
hi − 1)ϵθ(x̃ti−1 , ti−1)− σti

p−1∑
m=1

Dmqm, (16)

where qm is the m − th element of vector q = h
∑p−1

k=1 φ
ϵ
k+1(h)C

−1
U bkU = C−1

U b′U , where b′U =
[hφϵ

2(h), hφ
ϵ
3(h), · · · , hφϵ

p(h)]. Then we rewrite this equation by left multiply CU at both sides:

CUq =


r1 r2 · · · rp−1

r21/2! r22/2! · · · r2p−1/2!
· · · · · · · · · · · ·

rp−1
1 /(p− 1)! rp−1

2 /(p− 1)! · · · rp−1
p−1/(p− 1))!


 q1

q2
· · ·
qp−1

 (17)

=b′U =

 hφϵ
2(h)

hφϵ
3(h)
· · ·

hφϵ
p(h)

 (18)

This equation is equivalent to: 1 1 · · · 1
r1h r2h · · · rp−1h
· · · · · · · · · · · ·

(r1h)
p−2 (r2h)

p−2 · · · (rp−1h)
p−2


 r1q1

r2q2
· · ·

rp−1qp−1

 =

 hφϵ
2(h)

2!h2φϵ
3(h)
· · ·

(p− 1)!hp−1φϵ
p(h)

 (19)

Compare Eq. (19) with ap−1 = B−1(hi)R
−1
p−1(hi)Φp−1(hi), it is obvious to obtain that rmqm =

amB(hi). Substitute this equation to Eq. (16), we get:

x̃U
ti =

αti

αti−1

xti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1)− σtiB(hi)

p−1∑
m=1

amDm

rm
= x̃ti (20)

We can see that UniP is equivalent to using full-order Taylor-difference to estimate all derivatives.
The coefficient B(h) is eliminated here and thus has no impact on the sample quality. However, the
implementation (see https://github.com/wl-zhao/UniPC for details) of UniP applies a
special case for the 2-nd solver:

x̃ti =
αti

αti−1

xti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1)− σti

B(hi)

2

D1

r1

=
αti

αti−1

xti−1 − σti(e
hi − 1)ϵθ(x̃ti−1 , ti−1)

− σti

hiB(hi)

2(ehi − hi − 1)
h2
iφ

ϵ
2(hi)

ϵθ(xti−1
, ti−1)− ϵθ(xti1

, ti1)

λti−1 − λti1

This is equivalent to scaling 1-st derivative with 1+R(h) = hiB(hi)

2(ehi−hi−1)
. UniPC (Zhao et al., 2023)

empirically provides two choices for B(h): B1(h) = h and B2(h) = eh − 1. The corresponding

R(h) for B1(h) is
h2

2

eh−h−1
− 1 = R2(h) and the corresponding R(h) for B2(h) is

h
2 (e

h−1)

eh−h−1
− 1 =

R1(h).

21

https://github.com/wl-zhao/UniPC

Published as a conference paper at ICLR 2024

In conclusion, 2-nd order UniP is equivalent to using R1 or R2 to scale the 1-st derivative, while
UniP with other orders is equivalent to applying full-order Taylor-difference method to all deriva-
tives without scaling.

UniC. UniC has no fundamental difference with UniP. Inspired by it, our framework USF set the
corrector to be a searchable component without re-evaluation of the function at the target timestep.

E.4 DEIS

As discussed in Sec. 2.2.2, DEIS uses Lagrange interpolation to calculate the integral in t domain
directly without Taylor expansion, as given below.

x̃ti−1 =
αti−1

αti

xti − αti−1

∫ ti−1

ti

e−λ(τ)λ′(τ)ϵ̃θ(xτ , τ)dτ (21)

=
αti−1

αti

xti − αti−1

∫ ti−1

ti

e−λ(τ)λ′(τ)

p∑
j=0

(

p∏
k ̸=j

τ − ti+k

ti+j − ti+k
)ϵθ(xti+j , ti+j)dτ, (22)

Note that other methods (Lu et al., 2022a;b; Zhao et al., 2023) including USF estimate the integral
in the λ domain, so DEIS has fundamental differences with these methods. However, we show that
the numerical integral estimation method of DEIS (i.e., Lagrange interpolation), which is one of the
core designs of this work, can still be incorporated in USF in the λ domain. We rewrite Eq. (22)
w.r.t. λ:

x̃ti−1
=
αti−1

αti

xti − αti−1

∫ λti−1

λti

e−λϵ̃θ(xτ , τ)dλ (23)

=
αti−1

αti

xti − αti−1

∫ λti−1

λti

e−λ

p∑
j=0

(

p∏
k ̸=j

λ− λti+k

λti+j
− λti+k

)ϵθ(xti+j
, λti+j

)dλ. (24)

Lagrange interpolation with p + 1 points ϵθ(xti+j , λti+j) (j = 0, · · · , p) constructs a polynomial
ϵ̃θ(xt, λt) = apλ

p + ap−1λ
p−1 + · · · + a1λ + a0, which pass through all points. We rewrite this

polynomial to make the starting point λti be the ’center’: ϵ̃θ(xt, λt) =
ap

p! (λ− λti)
p +

ap−1

(p−1)! (λ−
λti)

p−1 + · · · + a1(λ − λti) + ϵθ(xti , λti), and construct a linear equation system to solve all
coefficients.  λti+1 − λti (λti+1 − λti)

2/2! · · · (λti+1 − λti)
p/p!

λti+2
− λti (λti+2

− λti)
2/2! · · · (λti+2

− λti)
p/p!

· · · · · · · · · · · ·
λti+p − λti (λti+p − λti)

2/2! · · · (λti+p − λti)
p/p!


 a1

a2
· · ·
ap



=

 ϵθ(xti+1
, λti+1

)− ϵθ(xti , λti)
ϵθ(xti+2

, λti+2
)− ϵθ(xti , λti)
· · ·

ϵθ(xti+p
, λti+p

)− ϵθ(xti , λti)


Suppose hi = λti−1 − λti , λti+k

− λti = rkhi, and ϵθ(xti+k
, λti+k

) − ϵθ(xti , λti) = Dk. Then
rewrite the above equation:

[a1 a2 · · · ap]


r1 r2 · · · rp−1

r21/2! r22/2! · · · r2p−1/2!
· · · · · · · · · · · ·

rp−1
1 /(p− 1)! rp−1

2 /(p− 1)! · · · rp−1
p−1/(p− 1))!


= [D1 D2 · · · Dp]

Extract the k-th column of the both sides.

ak = [D1 D2 · · · Dp]


r1 r2 · · · rp−1

r21/2! r22/2! · · · r2p−1/2!
· · · · · · · · · · · ·

rp−1
1 /(p− 1)! rp−1

2 /(p− 1)! · · · rp−1
p−1/(p− 1))!


−1


0
0
· · ·
1
· · ·
0


=DC−1b

22

Published as a conference paper at ICLR 2024

The value of D, C, and b can be found in Def. B.1 by replacing f with ϵθ and t with λ. We can
see that ak is equal to the k-th derivative at timestep ti calculated by full order Taylor-difference.
Therefore, the update formula using USF with an expansion order p + 1 and full order Taylor-
difference estimation for all derivatives is given by:

x̃U
ti−1

=
αti−1

αti

xti − σti−1

p∑
k=0

hk+1
i φϵ

k+1(hi)ak.

And the update formula of DEIS in λ domain is written as:

x̃ti−1
=
αti−1

αti

xti − αti−1

∫ λti−1

λti

e−λ

p∑
k=1

ak(λ− λti)
kdλ.

It is proved in App. H that σti−1
hk+1
i ϕϵ

k+1(hi) = αti−1

∫ λti−1

λti
e−λ(λ − λti)

kdλ, so that x̃U
ti−1

=

x̃ti−1 . In summary, estimating the integral through Lagrange interpolation in λ domain is equivalent
to using full order Taylor-difference to estimate all derivatives. Thus, DEIS in λ domain can also be
incorporated in USF.

F EXPERIMENTAL SETTINGS

In this section, we list the settings of our experiments.

F.1 MODELS

All models we use in the experiments are open-source pre-trained models. We list the information
of them below.

• CIFAR-10 We use the model cifar10 ddpmpp deep continuous steps provided by
the paper Song et al. (2020b). This model applies linear noise schedule with
VP-SDE and is trained with continuous-time. It can be got by download-
ing the checkpoint 8.pth at https://drive.google.com/drive/folders/
1ZMLBiu9j7-rpdTQu8M2LlHAEQq4xRYrj.

• CelebA We use the model provided by the paper Song et al. (2020a). This
model applies linear noise schedule with VP-SDE and is trained with discrete-
time. It can be downloaded at https://drive.google.com/file/d/1R_
H-fJYXSH79wfSKs9D-fuKQVan5L-GR/view.

• ImageNet-64 We use the unconditional model trained with L hybrid provided
by the paper Nichol & Dhariwal (2021). This model applies cosine noise
schedule with VP-SDE and is trained with discrete-time. It can be down-
loaded at https://openaipublic.blob.core.windows.net/diffusion/
march-2021/imagenet64_uncond_100M_1500K.pt.

• LSUN-Bedroom We use the model provided by the paper Dhariwal & Nichol (2021).
This model applies linear noise schedule with VP-SDE and is trained with discrete-time.
It can be downloaded at https://openaipublic.blob.core.windows.net/
diffusion/jul-2021/lsun_bedroom.pt.

• ImageNet-128 (classifier guidance) We use the model provided by the paper Dhari-
wal & Nichol (2021). This model applies linear noise schedule with VP-SDE and is
trained with discrete-time. It can be downloaded at https://openaipublic.blob.
core.windows.net/diffusion/jul-2021/128x128_diffusion.pt. The
classifier is also provided by this paper at https://openaipublic.blob.core.
windows.net/diffusion/jul-2021/128x128_classifier.pt

• ImageNet-256 (classifier guidance) We use the model provided by the paper Dhari-
wal & Nichol (2021). This model applies linear noise schedule with VP-SDE and is
trained with discrete-time. It can be downloaded at https://openaipublic.blob.
core.windows.net/diffusion/jul-2021/256x256_diffusion.pt. The
classifier is also provided by this paper at https://openaipublic.blob.core.
windows.net/diffusion/jul-2021/256x256_classifier.pt.

23

https://drive.google.com/drive/folders/1ZMLBiu9j7-rpdTQu8M2LlHAEQq4xRYrj
https://drive.google.com/drive/folders/1ZMLBiu9j7-rpdTQu8M2LlHAEQq4xRYrj
https://drive.google.com/file/d/1R_H-fJYXSH79wfSKs9D-fuKQVan5L-GR/view
https://drive.google.com/file/d/1R_H-fJYXSH79wfSKs9D-fuKQVan5L-GR/view
https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_100M_1500K.pt
https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_100M_1500K.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt

Published as a conference paper at ICLR 2024

• MS-COCO 256×256 (classifier-free guidance (Ho & Salimans, 2022)) We use the model
provided by the paper Rombach et al. (2022). This model applies linear noise sched-
ule with VP-SDE and is trained with discrete-time. Additionally, this model is trained in
the latent space. It can be downloaded at https://huggingface.co/runwayml/
stable-diffusion-v1-5.

F.2 EVALUATION SETTINGS

We sample 1k images to evaluate the FID as a proxy to the final performance in the search phase.
For the final evaluation, we sample 50k images for evaluation on all unconditional datasets and
ImageNet-128 (classifier guidance) dataset and 10k images on ImageNet-256 (classifier guidance)
and MS-COCO 256×256. For CIFAR-10 and CelebA, we get the target statistics by calculat-
ing the activations of all images in the training set using the pytorch-fid repository at https:
//github.com/mseitzer/pytorch-fid. For ImageNet-64, ImageNet-128, ImageNet-
256, and LSUN-Bedroom, we get the target statistics at https://github.com/openai/
guided-diffusion/tree/main/evaluations. For MS-COCO 256×256, we calculate
the activations of all corresponding images with their caption used for generation using the pytorch-
fid repository. To align the settings of text-to-image evaluation with Rombach et al. (2022), we
resize the short edge of the image to 256 and center crop a 256×256 patch before feeding them into
the InceptionV3. We keep these settings for all samplers in our experiments.

F.3 BASELINE SETTINGS

We mainly choose the three SOTA methods DPM-Solver (Lu et al., 2022a), DPM-Solver++(Lu
et al., 2022b) and UniPC (Zhao et al., 2023) as our baselines. For the evaluation of DPM-Solver and
DPM-Solver++, we use the code at https://github.com/LuChengTHU/dpm-solver and
choose DPM-Solver-2S, DPM-Solver-3S, DPM-Solver++(2M) and DPM-Solver++(3M) as base-
lines. For UniPC, we use the code at https://github.com/wl-zhao/UniPC and choose
UniPC-2-B1(h), UniPC-2-B2(h), UniPC-3-B1(h), UniPC-3-B2(h) and UniPCv-3 as baselines. We
follow Lu et al. (2022b) to choose uniform t as the time schedule for high-resolution datasets (i.e.,
ImageNet-128, ImageNet-256 and LSUN-Bedroom) and text-image generation. We use lower or-
ders at the final few steps for DPM-Solver++ and UniPC following their implementation. We keep
other settings as default in the official implementations of these samplers.

F.4 SEARCH ALGORITHM SETTINGS

We sample and evaluated 4000 solver schedules on CIFAR-10, 3000 solver schedules on CelebA and
ImageNet-64, 2000 solver schedules ImageNet-128 and ImageNet-256, and 1500 solver schedules
on LSUN-Bedroom and for text-to-image generation. We sample 1000 images to evaluate the true
performance of all solver schedules. We use 3 stages in the multi-stage search process, with the
first stage evaluating half of all schedules and the other two stages each evaluating a quarter of all
schedules.

F.5 DISCUSSION OF SEARCH OVERHEADS

Since the we need to generate images for solver schedule evaluation, calculate the metric and train
predictors, our method introduces additional overhead. The network used to calculate FID is much
lighter than diffusion U-Net and need not to inference iteratively. The predictor is even lighter and its
training costs only tens of minutes. Therefore, the total cost is mainly on the generation of images.
This overhead is equal to the time cost of N×M×S times neural inference of the diffusion U-Net
(together with the classifier if it is classifier-guidance sampling), where N is the number of evaluated
solver schedules, M is the number of images generated to calculate the metric, and S is the mean
NFE of all solver schedules. N and M for each dataset can be found at App. F.4. Since we conduct
the search under NFE budget 4-10 and we uniformly sample budget in this range, we use the mean
value 7 for S. We then test the runtime for diffusion U-Net to forward one batch of images on one
single GPU and estimate the overall GPU time cost. We list the results in Tab. 6.

24

https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://github.com/openai/guided-diffusion/tree/main/evaluations
https://github.com/openai/guided-diffusion/tree/main/evaluations
https://github.com/LuChengTHU/dpm-solver
https://github.com/wl-zhao/UniPC

Published as a conference paper at ICLR 2024

Table 6: Computational Cost of S3. N stands for the total number of evaluated solver schedules.
M stands for the number of generated images to calculate the metric. S stands for the mean NFE
of all solve schedules. Time/Batch is the GPU time consumed for the diffusion U-Net to complete
one time of inference with the corresponding batch size. Total GPU hours is the overall overhead of
the search, which is estimated by N×M×S×(Time/Batch)/3600. ”Ours-250“ stands for our ablated
setting of using only 250 images to calculate the metric, whose performance can be found at Tab. 3.

Dataset N M S Time/Batch Total GPU hours Device

CIFAR-10 4000 1000 7 400ms/256 12.15 NVIDIA 3090
CelebA 3000 1000 7 500ms/256 11.39 NVIDIA 3090

ImageNet-64 3000 1000 7 788ms/256 17.96 NVIDIA 3090
ImageNet-128 2000 1000 7 2465ms/256 37.45 NVIDIA A100
ImageNet-256 2000 1000 7 2148ms/64 130.33 NVIDIA A100

LSUN-Bedroom 1500 1000 7 3332ms/128 68.36 NVIDIA A100
MS-COCO 1500 1000 7 585ms/16 106.64 NVIDIA A100

MS-COCO (Ours-250) 1500 250 7 585ms/16 26.66 NVIDIA A100

Comparison with other methods We compare our overhead with a popular training-based method
Consistency Model (Song et al., 2023) and a concurrent work DPM-Solver-v3 (Zheng et al., 2023)
of improving training-free sampler to demonstrate the efficiency of our search method S3.

• Training-based Method. While distillation-based methods have astonishing performance
with very low NFE, their overheads are far larger than ours. Consistency model (Song et al.,
2023) is a popular and effective work which achieves very impressive performance with 1-
4 sampling steps. However, the training cost of this work is heavy. According to Tab.3 in
its paper, consistency distillation/training on CIFAR-10 needs 800k×512 samples, which
is nearly 15 times more than 4000×1000×7 in our methods. Moreover, one iteration of
training consistency models needs more than one forward pass (3 for CD and 2 for CT) and
an additional backward process (nearly 3× time cost than forward pass). Therefore, our
search process is nearly 90 times faster than training consistency models. For large resolu-
tion datasets, this ratio is even larger. On LSUN-Bedroom, consistency distillation needs
600k×2048 samples, which is 117 times more than 1500×1000×7 in our methods, and the
overall cost is almost 700 times larger. Besides, our method does not have GPU memory
limitations, while training based methods suffer from this problem (e.g., consistency mod-
els are trained on 8 GPUs on CIFAR10 and 64 GPUs on LSUN). In conclusion, our S3

offers a effective trade-off between sample quality and computation overhead compared to
training-based methods.

• Training-free Sampler. DPM-Solver-v3 (Zheng et al., 2023) is a concurrent work that
aims to improve the training-free diffusion samplers. It replaces traditional model predic-
tion types (i.e., data prediction and noise prediction) with a novel new prediction type. To
calculate such a prediction type, DPM-Solver-v3 has to calculate empirical model statistics
(EMS) related to the data distribution before being used for sampling. Therefore, similar
to S3, this method also needs additional offline overhead for the EMS calculation. Accord-
ing to Appendix D in this paper, we compare its cost with our S3 search in Tab. 7. We
can see that the overhead of these two methods is within the same order of magnitude. It
is worth mentioning that S3 can incorporate DPM-Solver-v3 by introducing its novel pre-
diction type as another searchable strategy without changes to other components and be
further boosted.

G ADDITIONAL RESULTS

G.1 COMPARISON WITH MORE BASELINE METHODS

We provide the full results of all baseline methods at Tabs. 8 to 14. We report best and worst
performance of these baselines in Sec. 5.

25

Published as a conference paper at ICLR 2024

Table 7: Comparison of the additional cost (GPU hours) between DPM-Solver-v3 (Zheng et al.,
2023) and our method. We use the setting of 250 generated images for “Ours-250” and the results
can be found at Tab. 3 and Tab. 16

Dataset CIFAR10 MS-COCO

DPM-Solver-v3 56 88
Ours 12.15 106.64

Ours-250 3.04 26.66

Table 8: Full baseline results on CIFAR-10

Method NFE
4 5 6 7 8 9 10

DPM-Solver-2S 247.23 32.16 32.15 13.22 10.80 6.41 5.97
DPM-Solver-3S 255.21 288.12 23.87 14.79 22.99 5.72 4.70

DPM-Solver++(2M) 61.13 33.85 20.84 13.89 10.34 7.98 6.76
DPM-Solver++(3M) 61.13 29.39 13.18 7.18 5.27 4.41 3.99

UniPC-2-B1(h) 62.67 33.24 16.78 9.96 6.87 5.19 4.41
UniPC-2-B2(h) 60.20 31.10 17.77 11.23 8.03 6.27 5.40
UniPC-3-B1(h) 62.67 23.44 10.33 6.47 5.16 4.30 3.91
UniPC-3-B2(h) 60.20 26.30 11.64 6.83 5.18 4.31 3.90

UniPCv-3 57.52 24.93 11.12 6.67 5.15 4.30 3.90
Ours 11.50 6.86 5.18 3.81 3.41 3.02 2.69

G.2 SEARCH RESULTS UNDER LARGER NFE BUDGETS

To further show the effectiveness of our method, we report the FID result under larger NFE budgets
in Tab. 15. Noting that when the NFE budget is adequate, the negative impact of sub-optimal empir-
ical strategies diminishes. So, it is nothing surprising that the gap between our method and baselines
decreases. But we can see that our method still outperforms all baselines by a large margin at larger
NFEs like 12, 15, and 20. Our method completely converges at NFE=15, much faster than existing
solvers.

G.3 MORE RESULTS WITH LOWER SEARCH COST

Since S3 has additional search cost, it is meaningful to investigate its performance if the search
cost is limited. As discussed in Sec. 5.2 and App. F.5, the search overhead of S3 is proportional to
the number of evaluated schedules and the number of images for FID calculation. In Sec. 5.2, we
demonstrate the results of using less generated images to calculate the metric. In this section, we
conduct more systematic experiments on CIFAR-10 to investigate the impact of both the number
of sampled images and the number of evaluated solver schedules. Our results are listed in Tab. 16.
From these results, we can see that though in most cases, lower search cost leads to worse search
results, our method consistently outperforms the best baseline method significantly. These results
show the large space of optimization for baseline solver schedules, requiring only small search cost
to enhance.

G.4 SEARCH RESULTS WITH OTHER SEARCH METHODS AND SPACES

In addition to the search space we introduce in App. B and the multi-stage method we introduce in
Sec. 4.2, we try other search space designs and search approaches. We introduce these methods in
this section.

G.4.1 SEARCH METHOD

Cascade Search The search method introduced in Sec. 4.2 searches for all components simultane-
ously, which may lead to a huge search space and thus is inefficient. We try another cascade search

26

Published as a conference paper at ICLR 2024

Table 9: Full baseline results on CelebA

Method NFE
4 5 6 7 8 9 10

DPM-Solver-2S 313.62 31.14 52.04 7.61 7.40 4.98 4.37
DPM-Solver-3S 321.39 330.10 25.14 17.28 16.99 10.39 6.91

DPM-Solver++(2M) 31.27 20.37 14.18 11.16 9.28 8.00 7.11
DPM-Solver++(3M) 31.27 14.31 8.21 7.56 6.43 5.17 4.47

UniPC-2-B1(h) 28.51 13.90 8.95 7.44 5.96 4.84 4.20
UniPC-2-B2(h) 29.95 18.57 12.29 9.83 7.74 6.81 5.97
UniPC-3-B1(h) 28.51 8.38 6.72 6.72 5.17 4.21 4.02
UniPC-3-B2(h) 29.95 12.44 7.84 7.38 5.92 4.71 4.25

UniPCv-3 26.32 10.61 7.31 7.13 5.68 4.55 4.15
Ours 12.31 5.17 3.65 3.80 3.62 3.16 2.73

Table 10: Full baseline results on ImageNet-64

Method NFE
4 5 6 7 8 9 10

DPM-Solver-2S 321.67 65.16 72.47 34.08 35.00 28.22 27.99
DPM-Solver-3S 364.60 366.66 51.27 47.84 54.21 23.89 24.76

DPM-Solver++(2M) 82.72 63.48 50.35 40.99 34.80 30.56 27.96
DPM-Solver++(3M) 82.72 69.06 45.32 33.25 27.65 25.47 24.56

UniPC-2-B1(h) 93.98 64.38 49.12 36.12 29.42 26.04 24.23
UniPC-2-B2(h) 80.70 61.73 47.61 38.03 31.96 28.08 25.79
UniPC-3-B1(h) 93.87 67.32 41.73 31.45 27.21 25.67 24.76
UniPC-3-B2(h) 80.73 69.08 43.80 32.05 26.98 25.26 24.35

UniPCv-3 76.69 67.05 42.81 31.76 26.99 25.34 24.44
Ours 33.84 24.95 22.31 19.55 19.19 19.09 16.68

method. We start by searching for only some of the components and keep other components con-
sistent with the setting of baselines. After obtaining the search results with this sub-search space,
we search for other components based on these searched schedules and keep the rest of the compo-
nents unsearchable. In our experiment, we search for timesteps, Taylor expansion orders, prediction
types, and correctors at the first stage, then search for the derivative estimation method in the second
stage. The results of this search method are shown in Tab. 17. The number of sampled schedules is
kept consistent for both search methods. Although the cascade method is more likely to fall into a
local optimal, our results show that under some NFE budgets, the cascade method finds better solver
schedules, indicating that it can also be used for searching.

G.4.2 SEARCH SPACES

Starting Point (SP) Since singlestep methods usually perform worse than multistep methods, we
don’t include other choices of starting points than the point before the target timestep in the original
search space used by experiments in Sec. 5. To explore the potential of a more distant starting point,
we add the second point before the target timestep into the original search space and obtain the
results shown in Tab. 18 (see the row ’Ours-SP’). We keep the search method and settings constant.
We find that though this new search space provides more potential to find better solver schedules
under some NFE budgets, the search results under most budgets are worse than the original search
space. This is because the newly added decision does not bring improvements in most cases, making
the search process more inefficient. Therefore, we recommend using multistep solver when the NFE
budget is very tight.

Interpolated Prediction Type (IP). There are only two choices for prediction type in our original
search space. We further try an interpolation between these two types given below:

xt = axx
t + (1− a)xϵ

t

27

Published as a conference paper at ICLR 2024

Table 11: Full baseline results on LSUN-Bedroom

Method NFE
4 5 6 7 8 9 10

DPM-Solver++(2M) 44.29 24.33 15.96 12.41 10.41 9.28 8.49
DPM-Solver++(3M) 44.29 20.79 13.27 10.85 9.62 8.95 8.38

UniPC-2-B1(h) 38.66 19.09 13.88 12.06 10.87 9.99 9.22
UniPC-2-B2(h) 22.02 20.60 13.79 11.27 9.92 9.11 8.52
UniPC-3-B1(h) 38.66 17.98 13.09 11.49 10.47 9.66 8.89
UniPC-3-B2(h) 22.02 18.44 12.44 10.69 9.76 9.14 8.53

UniPCv-3 39.14 17.99 12.43 10.79 9.97 9.26 8.60
Ours 16.45 12.98 8.97 6.90 5.55 3.86 3.76

Table 12: Full baseline results on ImageNet-128 (classifier-guidance generation, s = 4.0)

Method NFE
4 5 6 7 8 9 10

DPM-Solver++(2M) 26.59 14.42 10.08 8.37 7.50 7.06 6.80
DPM-Solver++(3M) 26.58 15.02 9.30 7.24 6.54 6.44 6.37

UniPC-2-B1(h) 32.08 15.39 9.01 7.13 6.62 6.49 6.36
UniPC-2-B2(h) 25.77 13.16 8.89 7.49 6.88 6.68 6.50
UniPC-3-B1(h) 32.08 16.14 9.81 7.20 6.28 6.03 6.03
UniPC-3-B2(h) 25.77 14.68 9.57 7.24 6.28 6.06 6.04

UniPCv-3 26.60 14.82 9.55 7.31 6.35 6.12 6.03
Ours 18.61 8.93 6.68 5.71 5.28 4.81 4.69

where xx
t and xϵ

t are given by:

xϵ
t =

αt

αs
xs − σt

n∑
k=0

hk+1φϵ
k+1(h)ϵ

(k)
θ (xs, s),

xx
t =

σt

σs
xs + αt

n∑
k=0

hk+1φx
k+1(h)x

(k)
θ (xs, s)

Note that interpolating the neural term by fθ(xt, t) = axθ(xt, t) + (1 − a)ϵθ(xt, t) will lead to an
integral term which can not be analytically computed as the integral in Eq. (36), causing a more
complicate situation, so we simply interpolate the solution of these two prediction types. We search
for the interpolation ratio a only and evaluate another 500 schedules based on the search results
of the cascade search method (see App. G.4.1) on CIFAR-10. The results are shown in the ’Ours-
IP’ row of Tab. 19. We can see that the continuous search space of prediction type may have the
potential to boost the search results with low NFE budget like 4, 5, or 6.

Guidance Scale (GS). The choice of guidance scale for classifier-free guidance has a significant
impact on the content and quality of the generated image. Usually, guidance scale is given by the
users to adjust the control strength of provided conditions. But in some cases, users only care about
the image quality and have to try different values of guidance scale to get high-quality samples.
Therefore, we propose to include this hyper-parameter in our search space. Like other strategies,
we allow the guidance scale of each timestep to be searched independently. Our search results are
shown at Tab. 20. From the results of baseline methods with different guidance scales, we validate
the fact that a suitable guidance scale is very important for sample quality, and our S3 can help find
proper guidance scales to achieve higher quality generation. Noting that sample quality evaluated
by different metrics may have different preferences on guidance scale, but using S3 can help to
automatically find the optimal setting given arbitrary metrics.

28

Published as a conference paper at ICLR 2024

Table 13: Full baseline results on ImageNet-256 (classifier-guidance generation, s = 8.0)

Method NFE
4 5 6 7 8 9 10

DPM-Solver++(2M) 51.09 27.71 17.62 13.19 10.91 9.85 9.31
DPM-Solver++(3M) 51.09 38.08 26.30 18.33 13.52 11.35 9.97

UniPC-2-B1(h) 80.46 49.10 29.91 19.70 14.38 11.69 10.20
UniPC-2-B2(h) 56.06 31.79 20.16 14.66 11.71 10.28 9.51
UniPC-3-B1(h) 80.46 54.00 38.67 29.35 22.06 16.74 13.66
UniPC-3-B2(h) 56.06 43.13 34.37 27.45 20.42 16.00 13.01

Ours 33.84 19.06 13.00 10.31 9.72 9.06 9.06

Table 14: Full baseline results of text-to-image generation on MS-COCO2014 validation set, s =
8.0)

Method NFE
4 5 6 7 8 9 10

DPM-Solver-2S 149.55 88.53 79.46 41.50 37.07 23.22 20.74
DPM-Solver-3S 161.03 156.72 106.15 75.28 58.54 39.26 29.54

DPM-Solver++(2M) 24.95 20.59 19.07 18.17 17.84 17.53 17.31
DPM-Solver++(3M) 24.95 20.59 18.80 17.89 17.54 17.42 17.22

UniPC-2-B1(h) 30.77 22.71 19.66 18.45 18.00 17.65 17.54
UniPC-2-B2(h) 25.49 20.65 19.16 18.13 17.84 17.65 17.52

UniPCv-3 26.39 21.30 19.05 17.83 17.58 17.50 17.53
Ours 22.76 16.84 15.76 14.77 14.23 13.99 14.01

G.5 TRANSFER ABILITY VALIDATION OF SOLVER SCHEDULES SEARCHED ON
TEXT-TO-IMAGE TASK

To verify practicality of S3, we use a different version model, SD-v1-3, to evaluate the solver sched-
ules searched with SD-v1-5 model. Other settings are kept consistent with previous experiments in
Sec. 5. We list the results in Tab. 21. We can see that the searched results can directly transfer to
SD-v1-3 and achieve similar acceleration ratio with SD-v1-5 model, making it more convenient to
apply our searched results.

G.6 SEARCHED SOLVER SCHEDULES

We give some of our searched solver schedules on CIFAR-10 here as examples. We list these
schedules in Tab. 22 and Tab. 23

H ADDITIONAL DERIVATIONS

In this section, we write the detailed derivation of Eq. (8) and Eq. (9) from Eq. (4) and Eq. (5),
correspondingly.

H.1 NOISE PREDICTION MODEL

Firstly, we use the variation of constant method to derive Eq. (6). Suppose the solution x(t) of
Eq. (4) can be written as the product of two independent variables: x(t) = u(t)v(t). Substitute it to
Eq. (4), we get:

u(t)dv + v(t)du = (f(t)u(t)v(t) +
g2(t)

2σt
ϵθ(xt, t))dt. (25)

29

Published as a conference paper at ICLR 2024

Table 15: FIDs of searched solver schedules and baseline methods under larger NFE budgets.

Dataset Method NFE
12 15 20

CIFAR-10
Baseline-W 5.31 4.52 3.54
Baseline-B 3.67 3.03 2.80

Ours 2.65 2.41 2.41

CelebA
Baseline-W 6.12 4.20 3.56
Baseline-B 3.82 2.72 2.70

Ours 2.32 2.06 2.06

Table 16: FIDs of the searched solver schedules with lower search cost.

Number of Schedule Number of Image NFE
4 5 6 7 8 9 10

2000
1000 14.94 6.86 5.10 4.18 4.14 3.13 2.67
500 11.50 6.94 5.11 4.40 3.95 3.20 2.90
250 12.55 7.84 6.26 4.77 3.46 3.13 3.13

1500

1000 15.41 7.32 5.58 4.21 4.14 3.17 3.12
500 11.97 7.33 5.11 4.40 4.12 3.20 3.20
250 13.74 8.04 6.11 4.85 3.46 3.46 3.33

1000

1000 15.43 7.78 5.78 4.78 4.12 3.48 3.48
500 11.97 8.01 5.31 4.40 4.41 3.20 3.20
250 15.42 8.11 6.11 4.84 3.46 3.46 3.33

Baseline-B 57.52 23.44 10.33 6.47 5.16 4.30 3.90

We let u(t)dv = f(t)u(t)v(t) to solve v(t) and obtain v(t) = v(s)e
∫ t
s
f(τ)dτ , where s is an arbitrary

value larger than t. Then we substitute the v(t) into Eq. (25):

vtdut =
g2(t)

2σt
ϵθ(xt, t)dt. (26)

Then we solve ut through Eq. (26).

u(t) =u(s) +

∫ t

s

g2(τ)

2στ

ϵθ(xτ , τ)

v(τ)
dτ (27)

=u(s) +

∫ t

s

g2(τ)

2στ

ϵθ(xτ , τ)

v(s)e
∫ τ
s

f(r)dr
dτ (28)

(29)

Finally, we write x(t) = u(t)v(t):

x(t) = u(t)v(t) =v(s)e
∫ t
s
f(r)dr(u(s) +

∫ t

s

g2(τ)

2στ

ϵθ(xτ , τ)

v(s)e
∫ τ
s

f(r)dr
dτ) (30)

=v(s)e
∫ t
s
f(r)dru(s) +

∫ t

s

g2(τ)

2στ
ϵθ(xτ , τ)e

∫ t
τ
f(r)drdτ (31)

=x(s)e
∫ t
s
dlogαr +

∫ t

s

dσ2
τ

dτ − 2dlogατ

dτ σ2
τ

2στ
ϵθ(xτ , τ)e

∫ t
τ
dlogαrdτ (32)

=
α(t)

α(s)
x(s)− α(t)

∫ t

s

στ

ατ
ϵθ(xτ , τ)dlog

ατ

στ
(33)

=
α(t)

α(s)
x(s)− α(t)

∫ λt

λs

e−λϵθ(xλ, λ)dλ. (34)

30

Published as a conference paper at ICLR 2024

Table 17: FIDs of the searched solver schedules using the cascade search method.

Dataset Method NFE
4 5 6 7 8 9 10

CIFAR-10

Baseline-W(S) 255.21 288.12 32.15 14.79 22.99 6.41 5.97
Baseline-W(M) 61.13 33.85 20.84 13.89 10.34 7.98 6.76

Baseline-B 57.52 23.44 10.33 6.47 5.16 4.30 3.90
Ours 11.50 6.86 5.18 3.81 3.41 3.02 2.69

Ours-Cascade 12.60 7.17 5.81 3.76 3.76 3.23 3.23

Table 18: FIDs of the searched solver schedules in the search space containing more choice starting
point.

Dataset Method NFE
4 5 6 7 8 9 10

CelebA

Baseline-W(S) 321.39 330.10 52.04 17.28 16.99 10.39 6.91
Baseline-W(M) 31.27 20.37 14.18 11.16 9.28 8.00 7.11

Baseline-B 26.32 8.38 6.72 6.72 5.17 4.21 4.02
Ours 12.31 5.17 3.65 3.80 3.62 3.16 2.73

Ours-SP 10.76 7.30 4.26 4.09 3.81 3.48 2.39

ImageNet-64

Baseline-W(S) 364.60 366.66 72.47 47.84 54.21 28.22 27.99
Baseline-W(M) 93.98 69.08 50.35 40.99 34.80 30.56 27.96

Baseline-B 76.69 61.73 42.81 31.76 26.99 23.89 24.23
Ours 33.84 24.95 22.31 19.55 19.19 19.09 16.68

Ours-SP 34.31 28.03 23.31 19.92 18.34 18.34 17.75

Then we get the exponential integral in Eq. (6). According to Asm. A.2, we further write the
ϵθ(xλ, λ) with Taylor expansion ϵθ(xλ, λ) =

∑n
k ϵ

(k)
θ (xλs , λs)

(λ−λs)
k

k! (n < M) and substitute
into Eq. (6):

xt =
αt

αs
xs − αt

n∑
k=0

ϵ
(n)
θ (xλs

, λs)

∫ λt

λs

e−λ (λ− λs)
k

k!
dλ+O((λt − λs)

n+2) (35)

=
αt

αs
xs − σt

n∑
k=0

ϵ
(n)
θ (xλs

, λs)

∫ λt

λs

e−(λ−λt)
(λ− λs)

k

k!
dλ+O((λt − λs)

n+2). (36)

Let h = λt − λs, and suppose φϵ
k+1 = 1

hk+1

∫ λt

λs
e−(λ−λt) (λ−λs)

k

k! dλ (k ≥ 0). Use partial integral
to calculate φϵ

k+1:

φϵ
k+1 =

1

hk+1
(−hk

k!
+

∫ λt

λs

e−(λ−λt)
(λ− λs)

(k−1)

(k − 1)!
dλ) (37)

=
φϵ
k(h)− 1/k!

h
. (38)

The initial value φϵ
1(h) can be easily computed: φϵ

1(h) = 1
h

∫ λt

λs
e−(λ−λt)dλ = eh−1

h . And we

further give φϵ
0(h) = eh through φϵ

1 =
φϵ

0(h)−1/0!
h . By substituting φϵ

k+1 to Eq. (36), we obtain
Eq. (8).

H.2 DATA PREDICTION MODEL

The derivation with data prediction model is very similar to that with noise prediction model. There-
fore, we omit some derivation in this section.

31

Published as a conference paper at ICLR 2024

Table 19: FIDs of the searched solver schedules in the search space containing continuous interpo-
lation ratio of prediction types.

Dataset Method NFE
4 5 6 7 8 9 10

CIFAR-10

Baseline-W(S) 255.21 288.12 32.15 14.79 22.99 6.41 5.97
Baseline-W(M) 61.13 33.85 20.84 13.89 10.34 7.98 6.76

Baseline-B 57.52 23.44 10.33 6.47 5.16 4.30 3.90
Ours 11.50 6.86 5.18 3.81 3.41 3.02 2.69

Ours-Cascade 12.60 7.17 5.81 3.76 3.76 3.23 3.23
Ours-IP 12.47 6.92 4.90 3.77 3.77 3.27 3.27

Table 20: FIDs of the searched solver schedules in the search space containing guidance scale.

Guidance Scale Method NFE
4 5 6 7 8 9 10

7.5

Baseline-W(S) 161.03 156.72 106.15 75.28 58.54 39.26 29.54
Baseline-W(M) 30.77 22.71 19.66 18.45 18.00 17.65 17.54

Baseline-B 24.95 20.59 18.80 17.83 17.54 17.42 17.22
Ours 22.76 16.84 15.76 14.77 14.23 13.99 14.01

3.0 DPM-Solver++(3M) 24.64 17.59 15.21 14.24 13.77 13.37 13.13
UniPCv-3 22.01 16.60 14.88 14.14 13.73 13.42 13.20

Searchable Ours-GS 15.63 13.94 13.90 13.69 12.81 12.56 12.34

Firstly, by using the variation of constant method in App. H.1, we can get the exponential integral
with data prediction model:

xt =
σt

σs
xs + σt

∫ λt

λs

eλxθ(xλ, λ)dλ. (39)

Then we replace the xθ(xλ, λ) with its Taylor expansion:

xt =
σt

σs
xs + σt

n∑
k=0

x
(k)
θ (xλs

, λs)

∫ λt

λs

eλ
(λ− λs)

k

k!
dλ (40)

=
σt

σs
xs + αt

n∑
k=0

x
(k)
θ (xλs

, λs)

∫ λt

λs

eλ−λt
(λ− λs)

k

k!
dλ. (41)

Let h = λt − λs, and suppose φx
k+1 = 1

hk+1

∫ λt

λs
eλ−λt (λ−λs)

k

k! dλ (k ≥ 0). Use partial integral to
calculate φx

k+1:

φx
k+1 =

1

hk+1
(
hk

k!
−
∫ λt

λs

eλ−λt
(λ− λs)

(k−1)

(k − 1)!
dλ (42)

=
1/k!− φx

k(h)

h
. (43)

The initial value φx
1(h) can be easily computed: φx

1(h) =
1
h

∫ λt

λs
eλ−λtdλ = 1−e−h

h . And we further

give φx
0(h) = e−h through φx

1 =
1/0!−φx

0 (h)
h . By substituting φx

k+1 to Eq. (41), we obtain Eq. (9).

I DISCUSSION OF CONVERGENCE

In this section, we discuss the convergence order of USF. We give the convergence bound at
Thm. I.1.

32

Published as a conference paper at ICLR 2024

Table 21: Results on MS-COCO 256×256 with SD-V1-3 model.

Method NFE
4 5 6 7 8 9 10

UniPCv-3 24.50 21.09 19.04 18.06 17.71 17.64 17.64
DPM-Solver++(3M) 24.50 20.58 18.83 18.25 17.75 17.56 17.43

Ours 22.49 16.74 15.81 14.84 14.42 14.29 14.40

Table 22: Searched schedule under 4 and 7 NFE budget on CIFAR-10. “D” and “N” in the row
of “Prediction Type” stand for “data prediction” and “noise prediction”. “T” and “F” in the row of
“Corrector” stand for using and not using corrector. The same for “T” and ”F” in the row of “Low
Order Estimation”.

NFE 4 7

Timestep 1.0,0.57,0.27,0.10,5.5e-4 1.0,0.79,0.61,0.42,0.25,0.08,0.03,1.3e-3
Order 1,1,3,2 1,2,3,2,3,2,2

Prediction Type D,D,N,D D,D,D,N,N,D,D
Corrector T,T,F,F T,T,T,T,T,F,F
Scaling -,-,R1,R3 -,R2,R0,R0,R0,R1,R1

Low Order Estimation -,-,F,- -,-,F,-,F,-,-

Theorem I.1. Suppose xti is the ground truth trajectory value, and the estimated value x̃ti(h) is
given by the one step update in Alg. 1, where h = λti − λtsi

is the step length w.r.t. the logSNR.
Then the convergence order of x̃ti(h) to h is pi = min(ni+1, lsi , d1+2, d2+3, · · · , dni−1+ni),
where lsi is the convergence order of the starting point and dk is the convergence order of the k-th
derivative estimation ϵ̃

(k)
θ (xtsi

, tsi) or x̃(k)
θ (xtsi

, tsi) to h.

The proof is very simple by substituting the starting point x̃tsi
= xtsi

+O(hlsi) and the estimation

of all derivatives ϵ̃(k)θ (xtsi
, tsi) = ϵ

(k)
θ (xtsi

, tsi)+O(hdk) into Eq. (8) (the same for data prediction
model). As a result, the convergence order of USF is decided by the Taylor expansion order ni,
accuracy of the starting point and the convergence orders of all derivative estimations.

As discussed in App. B, when no low-order derivative estimation is used and the additional involved
points have convergence orders not smaller than ni, the convergence order of the k-th derivative
estimation is ni−k, and the scaling operation doesn’t change the convergence order of the derivative
estimation. Therefore, the convergence order pi of x̃ti(h) equals ni+1. When low-order estimation
is used, the convergence order pi will decreases. It is worth noting that the there is no strong relation
with the convergence order and the actual truncation error. As shown in Fig. 2, using low-order
derivative estimation in certain timesteps can achieve lower error with the ground truth value. This
is because the actual truncation error is not smooth and using high-order information for low-order
derivative may introduce additional bias. Therefore, we apply low-order Taylor-difference method
for derivative estimation in our experiments.

J QUALITATIVE RESULTS

We provide some samples generated by our searched solver schedules and baseline methods in this
section.

33

Published as a conference paper at ICLR 2024

Table 23: Searched schedule under 9 NFE budget on CIFAR-10. “D” and “N” in the row of “Predic-
tion Type” stand for “data prediction” and “noise prediction”. “T” and “F” in the row of “Corrector”
stand for using and not using corrector. The same for “T” and ”F” in the row of “Low Order Esti-
mation”.

NFE 9

Timestep 1.0,0.76,0.57,0.43,0.32,0.30,0.16,0.057,0.023,6.3e-4
Order 1,2,3,2,3,3,3,1,3

Prediction Type D,N,D,D,D,D,D,D,D
Corrector T,T,T,T,T,T,T,F,F
Scaling -,R3,R1,R0,-,R3,R2,R4,R0

Low Order Estimation -,-,T,-,T,T,T,-,F

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 5: Samples of CIFAR-10 dataset with NFE=4.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 6: Samples of CIFAR-10 dataset with NFE=5.

34

Published as a conference paper at ICLR 2024

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 7: Samples of CelebA dataset with NFE=4.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 8: Samples of LSUN-Bedroom dataset with NFE=4.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 9: Samples of LSUN-Bedroom dataset with NFE=5.

35

Published as a conference paper at ICLR 2024

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 10: Samples of ImageNet-64 dataset with NFE=4.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 11: Samples of ImageNet-64 dataset with NFE=5.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 12: Samples of ImageNet-128 dataset with NFE=4.

36

Published as a conference paper at ICLR 2024

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 13: Samples of ImageNet-128 dataset with NFE=5.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 14: Samples of ImageNet-128 dataset with NFE=7.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 15: Samples of ImageNet-256 dataset with NFE=4.

37

Published as a conference paper at ICLR 2024

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 16: Samples of ImageNet-256 dataset with NFE=5.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 17: Samples guided by the prompt ’A person on a motorcycle high in the air’ with NFE=5.

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 18: Samples guided by the prompt ’A fire hydrant sitting on the side of a city street’ with
NFE=5.

38

Published as a conference paper at ICLR 2024

(a) Samples generated by the searched schedule (b) Samples generated by baseline-B method

Figure 19: Samples guided by the prompt ’A bus yard filled with yellow school buses parked side
by side’ with NFE=5.

39

	Introduction
	Related work
	Diffusion Probabilistic Model
	Training-Free Samplers
	Low Order Samplers
	Exponential-Integral-Based Samplers

	AutoML

	A Unified Sampling Framework
	Solving Strategy
	Solver Schedule: Per-step Solving Strategy Scheme
	Advantages of the Framework

	Search for Solver Schedule through S3
	Problem Definition
	Predictor-based Multi-stage Search For Solver Schedule

	Experiments
	Main Results
	Ablation Study: Reduce Search Overhead
	Analysis and Insights

	Conclusion and Future Work
	Definitions and Assumptions
	Search Space Details
	Additional Investigate the Potential of Every Component
	Algorithm Details
	Detailed Algorithm of the Unified Sampling Framework
	Detailed Algorithm of Multi-stage Search
	Predictor Design

	Relationship Between USF and Existing Exponential Integral Based Methods
	DPM-Solver
	DPM-Solver++
	UniPC
	DEIS

	Experimental Settings
	Models
	Evaluation Settings
	Baseline Settings
	Search Algorithm Settings
	Discussion of Search Overheads

	Additional Results
	Comparison with More Baseline Methods
	Search Results under Larger NFE Budgets
	More Results with Lower Search Cost
	Search Results with Other Search Methods and Spaces
	Search method
	Search Spaces

	Transfer Ability Validation of Solver Schedules Searched on Text-to-image Task
	Searched Solver Schedules

	Additional Derivations
	Noise Prediction Model
	Data Prediction Model

	Discussion of Convergence
	Qualitative Results

