
A Appendix

A.1 Extended Derivation for Equation 4

In the main paper, we proposed to decompose the norm and angular similarity into instance-
independent and dependent components.

‖x‖2 = ‖∆x‖2 + Cx
|φy| = |∆φy| − |Cφ|

The ‖∆x‖2, |∆φy| are the instance-dependent components and Cx, |Cφ| are the instance-independent
components. We can rewrite the pre-softmax logits in Eq. 1 with the decomposed norm and angular
similarity.
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We can simplify the equation by assuming cos |φy| is close to one, which means |φy| is small. This
is due to the fact that |φy| is the angle between the correct class weight and x, which means as training
ensues, the angle converges to 0 and thus the cosine similarity converges to 1. (Please see Sec. A.2
for empirical support.)

cos |Cφ| sin |∆φy|
sin |Cφ| cos |∆φy|

=
sin (|∆φy|+ |Cφ|) + sin |φy|
sin (|∆φy|+ |Cφ|)− sin |φy|

≈ 1 (11)

A.2 Small Angle Assumption in Equation 5

Table 8: Average cosine similarity to the ground truth class on the training data set after training for
200 epochs

CIFAR10 CIFAR100

ResNet-18 ResNet-34 ResNet-101 ResNet-18 ResNet-34 ResNet-101
cosφ 0.81 0.79 0.76 0.75 0.78 0.74

One reason for the small angle assumption in Eq. 5 is the observation that high-capacity models tend
to be more miscalibrated [4] and our method is especially more effective in this case. When a model
is sufficiently high-capacity compared to the diversity of the dataset, the assumption of small-angle
is empirically more valid and the method can provide more significant improvement. All ResNet
models are high-capacity deep models and corresponding cosine similarity to the true class is close to
one during training as assumed in Sec. 3.2. Tab. 8 shows the average cosine similarity to the ground
truth class on the training data.
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A.3 Definitions of Metrics

The problem tackled in this paper is supervised image classification in the face of noise. Assume a data
point Xi ∈ X, i ∈ [1, N ] each associated with a label Y ∈ Y = {1, ...,K}. We would like our model
M whereM(Xi) = (Ŷi, P̂i) where Ŷi is the class prediction and P̂ is the probability/confidence given
by the model to be as close to the ground truth distribution P (Yi|Xi). Ideally P̂i is well calibrated
which means that it represents the likelihood of the true event Ŷi = Yi. Perfect calibration [4] can be
defined as:

P(Ŷi = Yi|P̂i = Pi) = Pi,∀Pi ∈ [0, 1] (12)

Ways of evaluating Calibration are as follows:

A.3.1 Expected Calibration Error (ECE)

Expected Calibration Error [20] evaluates calibration by calculating the difference in expectation
between the confidence and accuracy or:

EP̂ [|P(Ŷ = Y |P̂ = p)− p|] (13)

This can also be computed as the weighted average of bins’ accuracy/confidence difference:

ECE =

M∑
m=1

|Bm|
n
|accuracy(Bm)− confidence(Bm)| (14)

where n is the total number of samples. Perfect calibration is achieved bins when confidence equals
accuracy and ECE = 0.

A.3.2 Negative Log Likelihood (NLL)

A way to measure a model’s probabilistic quality is to use Negative Log Likelihood [18]. Given a
probabilitist model P (Y |X) and N samples it is defined as:

L = −
N∑
i=1

log(P̂ (Yi|Xi)) (15)

where P̂ is the predicted distribution of the ground truth P and Yi is the true label for input Xi. NLL
belongs to a class of strictly proper scoring rules [28]. A scoring rule is strictly proper if it is uniquely
optimized by only the true distribution. NLL is the negative of the logarithm of the probability of the
true outcome. If the true class is assigned a probability of 1, NLL will be minimum with value 0.

A.3.3 Brier

The Brier score [19] measures accuracy of probabilistic predictions. Across all predicted items N
in a set of predictions, the Brier score measures the mean squared difference between the predicted
probability assigned to possible outcome for i ∈ [1, N ] and the actual outcome.

BS = (1/N)

N∑
t=1

R∑
i=1

(fti − oti)2 (16)

Where R is number of possible classes, N is overall number of instances of all classes. fti is the
approximated probability of the forecast oti in one hot encoding. Brier score can be intuitively
decomposed into three components: uncertainty, reliability and resolution [29] and it is also a proper
scoring rule.
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Table 9: ResNet18 ECE on CIFAR10/100 Noise, averaged over 5 seeds

CIFAR10 CIFAR100

Noise-level 1 2 3 4 5 1 2 3 4 5

Ensemble 0.051 0.075 0.076 0.118 0.184 0.059 0.076 0.078 0.107 0.149
MCDO 0.076±0.003 0.098±0.004 0.102±0.002 0.164±0.005 0.251±0.008 0.114±0.002 0.147±0.002 0.14±0.006 0.192±0.009 0.255±0.014

ResNet 0.102±0.001 0.141±0.003 0.153±0.007 0.209±0.011 0.293±0.016 0.113±0.004 0.149±0.005 0.152±0.004 0.185±0.005 0.237±0.01

Ours (GS) 0.040±0.002 0.055±0.003 0.060±0.005 0.080±0.01 0.106±0.012 0.067±0.002 0.083±0.002 0.089±0.004 0.116±0.007 0.145±0.013

Table 10: ResNet18 NLL on CIFAR10/100 Noise, averaged over 5 seeds

CIFAR10 CIFAR100

Noise-level 1 2 3 4 5 1 2 3 4 5

Ensemble 0.544 0.737 0.753 1.055 1.551 1.499 1.927 1.969 2.379 2.99
MCDO 0.667±0.02 0.845±0.029 0.831±0.013 1.262±0.033 1.947±0.054 1.789±0.011 2.225±0.012 2.236±0.043 2.788±0.072 3.585±0.119

ResNet 0.718±0.01 0.979±0.019 1.043±0.046 1.436±0.081 2.052±0.133 1.782±0.018 2.269±0.023 2.326 ± 0.029 2.773±0.027 3.434±0.032

Ours (GS) 0.531±0.006 0.716±0.012 0.785±0.013 1.007±0.018 1.346±0.02 1.786±0.013 2.208±0.013 2.300±0.014 2.676±0.015 3.215±0.028

A.4 Calibration in the Face of Differing Levels of Noise

We report additional calibration ECE, NLL and Brier results in the face of different levels of corruption
using ResNet18 in Tab. 9, 10 and 11 respectively. CIFAR10 and CIFAR100’s validation set was
corrupted using a library of common corruptions [1] with 5 levels of severity. In Tab. 9, 10 and 11 we
show how differing levels of common corruptions effect the calibration of models. Across all levels
of corruption our model consistently had the stronger Brier score in CIFAR100 and much strong ECE
and NLL on CIFAR10.

A.5 Calibration in the Face of Rotation

In Tab. 12b, 12a we rotated CIFAR10 and CIFAR100 validation data set by [0, 350] degrees with 10
degree steps in between, the calibration metrics and accuracy were then averaged. For each model 5
seeds were trained, for MCDO 5 passes were done on each model for inference with a dropout rate of
50% as suggested in the original paper and 5 models were ensembled for Deep Ensemble. β′ for our
models were 4 on CIFAR10 and 10 for CIFAR100.

A.6 Qualitative Comparison: Extended Discussion

GSD vs. Single Pass Models The current state-of-the-art single pass models for inference on OOD
data, without training on OOD data, are SNGP [9] and DUQ [8]. The primary disadvantages
of these models is: 1) Hyperparameter Combinatorics: Both DUQ and SNGP require many
hyperparameters as shown in Tab. 13. SNGP requires the most hyperparameters out of all the single
pass models. The large combinatoric scale, in addition to the fact that these hyperparameters must
be tuned via pre-training grid search, make these methods costly as a full training procedure with
multiple epochs are required before evaluating calibration. Our model only has one hyperparameter
that is tuned post-training with 1 epoch on validation set. 2) Extended Training Time: DUQ
requires a centroid embedding update every epoch, while SNGP requires sampling potentially high
dimensional embeddings of training points for generating the covariance matrix as well as updates to
the bounded spectral norm on each training step, thus increasing training time while our model trains
in the same amount of time as the model it is applied to.

GSD vs. Multi-Pass Models Bayesian MCDO [7] and Deep Ensemble [14] are considered the
current state-of-the-art methods for multi-pass calibration. Bayesian MCDO requires multiple passes
with dropout during training and inference in order to achieve stronger calibration. Deep Ensembles

Table 11: ResNet18 Brier on CIFAR10/100 Noise, averaged over 5 seeds

CIFAR10 CIFAR100

Noise-level 1 2 3 4 5 1 2 3 4 5

Ensemble 0.021 0.028 0.03 0.041 0.057 0.005 0.006 0.006 0.007 0.008
MCDO 0.024±0.0 0.03±0.001 0.032±0.0 0.046±0.001 0.065±0.001 0.005±0.0 0.006±0.0 0.006±0.0 0.007±0.0 0.009±0.0

ResNet 0.025±0.0 0.034±0.0 0.038±0.001 0.05±0.002 0.068±0.002 0.005±0.0 0.006±0.0 0.007±0.0 0.007±0.0 0.009±0.0

Ours (GS) 0.022±0.0 0.03±0.0 0.034±0.0 0.043±0.001 0.056±0.001 0.003±0.0 0.005±0.0 0.006±0.0 0.007±0.0 0.008±0.000
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ECE↓ NLL↓ Brier↓ Accuracy↑
Ensemble 0.12±0.047 2.973±0.833 0.008±0.002 0.338
MCDO 0.254±0.005 3.78±0.043 0.009±0.0 0.282±0.002

ResNet18 0.215±0.007 3.352±0.036 0.009±0.0 0.311±0.003

Ours 0.097±0.003 3.189±0.019 0.008±0.0 0.299±0.003

(a) ResNet18 on CIFAR100 Rotate over 5 seeds

ECE↓ NL↓L Brier↓ Accuracy↑
Ensemble 0.302 2.397 0.082 0.44
MCDO 0.373±0.001 3.08±0.025 0.092±0.0 0.401±0.002

ResNet18 0.42±0.009 2.941±0.085 0.095±0.001 0.427±0.006

Ours 0.323±0.006 2.211±0.04 0.085±0.001 0.422±0.005

(b) ResNet18 on CIFAR10 Rotate over 5 seeds

Table 13: Model Requirements

Model Loss Function Hyperparameters Output Multi-pass Infer

Ensemble CE Number of Models LL True
MCDO CE Dropout % LL True
SNGP CE Spectral Norm Bound, GP scale & bias & discount factor & covariance factor & field factor & ridge penalty GP False
DUQ Multi-BCE Gradient penalty, RBF sigma, embedding gamma RBF False
Ours CE β’, error (default = 0.1) Decomposed LL False

LL: Linear Layer. CE: Cross-Entropy, BCE: Binary Cross-Entropy, GP: Gaussian Process, RBF: Radial Basis
Function

requires N times the number of parameters as the single model it is ensembling where N is the
number of models ensembled. The obvious disadvantage to Deep Ensembles is that it requires N
times as long to train and run inference as its base model. While no model currently beats Deep
Ensemble in accuracy on both clean data and corrupted data, we have shown that our model has
stronger calibration in the face of certain levels of severity of corruption Tab. 1 and 2. Bayesian
MCDO has shown to have stronger calibration than the same model not trained with dropout, but
tends to suffer large accuracy drops as well as not being as strong as other single pass models or Deep
Ensemble in calibration, even with many passes. Our model empirically suffers minimal accuracy
drops when compared to its backbone and in some conditions led to stronger accuracy on corrupted
data (Tab. 1 and 2).

A.7 Generalizability: Extended Table

Generalizability We explored how generalizable our method is by applying it to 12 different models
and 4 different datasets in Tab. 14. We report results for both variants of our model: Grid Searched:
grid search β′ on the validation set to minimize ECE and Optimized: optimize β′ on the validation
set via gradient decent to minimize NLL for 10 epochs, similar to temperature scaling. We can
see consistently that our model had stronger calibration across all models and metrics, including
models known to be well calibrated like LeNet [22]. All models were tested on CIFAR10C and
CIFAR100C datasets offered by [1] where the original CIFAR10 and CIFAR100 were pre-corrupted;
these were used for consistent corruption benchmarking across all models. All non-CIFAR datasets
were corrupted via rotation from angles [0,350] with 10 step angles in between and the average
calibration and accuracy was taken across all degrees of rotation. Our models included: DenseNet [23],
LeNet [22] and 6 varying sizes of ResNet, which are described in [24]. The datasets we experimented
on CIFAR10 [25], CIFAR100 [25], MNIST [26] and SVHN [27], CIFAR10C [1], CIFAR100C [1].

A.8 Training Parameters and Dataset License

We train all our models using stochastic gradient descent for 200 epochs and a batch size of 128 on
RTX 2080 GPUs. We use a starting learning rate of 0.1 and a weight decay of 5.0e−4. For ResNet18
experiments, we use a cosine scheduler for learning rate. For Wide ResNet-20-10 experiments, we
use a step scheduler which multiplies the learning rate at epoch 60, 120 and 160 by 0.2.

The CIFAR10/100 datasets [25] are released under MIT license. The CIFAR10/100C datasets [1] are
released under Creative Commons Public license.

A.9 Introduction to Temperature Scaling

Temperature scaling is a simple form of Platt scaling [30]. Temperature scaling uses a scalar T to
adjust the confidence of the softmax probability in a classification model. Following the notation from
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Table 14: Extended Generalizability Experiments We benchmark our method against the vanilla
models using 12 different backbones and 4 different dOPTasets. Grid Searched (GS): β′ grid
searched on validOPTion ECE, Optimized (OPT): β′ optimized via SGD on validation NLL.

Clean Corrupt/Rotate

model dataset accuracy↑ ECE↓ NLL↓ Brier↓ accuracy↑ ECE↓ NLL↓ Brier↓
LeNet5 Mnist 96.16% 0.01 0.132 0.006 33.95% 0.43 4.533 0.104

GSD LeNet5 GS Mnist 96.86% 0.005 0.103 0.005 35.73% 0.42 4.405 0.101
GSD LeNet5 OPT Mnist 96.86% 0.012 0.106 0.005 35.73% 0.406 4.173 0.01

DenseNet SVHN 41.72% 0.051 1.71 0.072 14.31% 0.301 3.844 0.107
GSD DenseNet GS SVHN 41.7% 0.027 1.62 0.069 14.41% 0.287 3.134 0.106

GSD DenseNet OPT SVHN 41.7% 0.04 1.62 0.069 14.41% 0.277 3.25 0.105
ResNet34 CIFAR10 95.63% 0.026 0.186 0.007 81.96% 0.164 1.114 0.039

GSD ResNet34 GS CIFAR10 95.9% 0.005 0.148 0.006 76.54% 0.088 0.882 0.037
GSD ResNet 34 OPT CIFAR10 95.9% 0.011 0.162 0.007 76.54% 0.054 0.813 0.035

ResNet50 CIFAR10 95.32% 0.03 0.203 0.008 76.32% 0.17 1.23 0.039
GSD ResNet50 GS CIFAR10 95.82% 0.008 0.147 0.007 76.23% 0.057 0.766 0.033

GSD ResNet50 OPT CIFAR10 95.82% 0.01 0.158 0.007 76.32% 0.115 0.928 0.038

ResNet101 CIFAR10 95.61% 0.028 0.197 0.007 77.59% 0.154 1.118 0.037
GSD ResNet101 GS CIFAR10 95.62% 0.007 0.158 0.007 77.21% 0.075 0.852 0.036

GSD ResNet101 OPT CIFAR10 95.62% 0.007 0.155 0.007 77.21% 0.086 0.788 0.033
ResNet152 CIFAR10 95.7% 0.028 0.196 0.007 75.2% 0.179 1.337 0.041

GSD ResNet152 GS CIFAR10 95.63% 0.007 0.151 0.007 76.58% 0.058 0.765 0.033
GSD Resnnet152 OPT CIFAR10 95.63% 0.01 0.154 0.007 76.58% 0.043 0.756 0.032

ResNet34 CIFAR100 78.81% 0.071 0.868 0.003 51.16% 0.19 2.387 0.007
GSD ResNet34 GS CIFAR100 78.02% 0.037 0.938 0.003 49.27% 0.098 2.361 0.007

GSD ResNet34 OPT CIFAR100 78.02% 0.043 0.93 0.003 49.27% 0.112 2.372 0.007
ResNet50 CIFAR100 79.28% 0.0746 0.861 0.003 49.71% 0.213 2.477 0.007

GSD ResNet50 GS CIFAR100 78.97% 0.0326 0.879 0.003 50.12% 0.08 2.264 0.006
GSD ResNet50 OPT CIFAR100 78.97% 0.041 0.856 0.003 50.12% 0.110 2.28 0.007

ResNet101 CIFAR100 80.17% 0.092 0.846 0.003 58.19% 0.253 2.575 0.007
GSD ResNet101 GS CIFAR100 79.82% 0.034 0.834 0.003 53.14% 0.082 2.11 0.006

GSD ResNet101 OPT CIFAR100 79.82% 0.038 0.829 0.003 53.14% 0.092 2.114 0.006
ResNet152 CIFAR100 80.71% 0.0895 0.815 0.003 54.2% 0.233 2.45 0.007

GSD ResNet152 GS CIFAR100 79.85% 0.0364 0.827 0.003 53% 0.078 2.12 0.006
GSD ResNet152 OPT CIFAR100 79.85% 0.0397 0.821 0.003 53% 0.087 2.12 0.006

the main paper, let l denotes the logits. The temperature scalar is applied to all classes as following:

P (y|x) =
exp 1

T ly∑c
j=1 exp 1

T lj
=

exp (‖wy‖2 1
T ‖x‖2 cosφy)∑c

j=1 exp (‖wj‖2 1
T ‖x‖2 cosφj)

(17)

As described in Fig. 1a, the temperature effectively changes the slope of ‖x‖2 from 1 to 1
T . The

temperature parameter is optimized by minimizing negative log likelihood on a validation set while
freezing all the other model parameters [4]. Temperature scaling calibrates a model’s confidence on
IND data and does not change accuracy. However, it does not provide any mechanism to improve
calibration on shifted distribution and is inferior to other uncertainty estimation methods in terms of
calibration [5].
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