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6 SUPPLEMENT

We here provide additional theoretical background, implementation and optimization details, addi-
tional results, comparisons and ablation studies. In particular, we outline a theoretical justification of
the poor calibration of DUMs in Sec. 6.1, and report additional details on the theoretical background
necessary to understand DUMs’ design choices in Sec. 6.2. A description of Lipschitz regularization
techniques can be found in Sec. 6.2.1, while Sec. 6.2.3 summarizes common choices of uncertainty
estimation techniques for discriminative and generative DUMs.

Sec. 6.3.1/Sec. 6.3.2 show additional results for image classification/semantic segmentation. We report
optimization/implementation details in Sec. 6.4/Sec. 6.5. Furthermore, we describe the quantification
of uncertainty for image classification Sec. 6.5.3 and semantic segmentation Sec. 6.5.4. Finally, we
provide details on the data collection process in CARLA and examples from the sequences collected
for semantic segmentation Sec. 6.6.

6.1 THEORETICAL JUSTIFICATION

Given a neural network NN trained on a datasetD = (X,Y ) withX = {xi}i∈|D| and Y = {yi}i∈|D|,
some DUMs (42; 20; 19) require modeling of the intermediate activations p(z|X,Y ) of the NN to
derive estimates of the predictive uncertainty. For this reason, different types of regularization over
the feature space are applied with the aim of making the latent distribution representative of the input
one. Since this only captures the data distribution through the lense of a fixed set of model parameters,
we argue that a key ingredient is missing to account for the total variability over latent distribution.

Taking into account the distribution p(θ|X,Y ) over networks’ parameters θ, which is approximated
by a surrogate distribution q(θ), we obtain for the distribution p(z|X,Y ):

p(z|X,Y ) =

∫
x

p(z|x,X, Y )p(x|X,Y )dx

=

∫
x

(∫
θ

p(z|x, θ)p(θ|X,Y )dθ

)
p(x|X,Y )dx

=

∫
x

(∫
θ

p(z|x, θ)q(θ)dθ
)
p(x|X,Y )dx

=

∫
θ

(∫
x

p(z|x, θ)p(x|X,Y )dx

)
q(θ)dθ

(1)

DUMs typically assume that network weights are fixed, i.e. they are distributed according to a Dirac
delta function:

p(θ|X,Y ) ≈ q(θ) = δ(θ) =

{
+∞, θ = θ̂

0, θ 6= θ̂
(2)

subject to
∫∞
−∞ δ(x) dx = 1. Then,

p(z|X,Y ) =

∫
θ

(∫
x

p(z|x, θ)p(x|X,Y )dx

)
q(θ)dθ

=

∫
x

(
p(z|x, θ̂

)
p(x|X,Y )dx

(3)

Intuitively, DUMs only approximate the inner integral over the distribution of inputs x, since only the
distribution over the input space is taken into account and weights θ̂ are fixed. While this justifies the
good performance of DUMs on OOD detection, failing to model the weights distribution may not
account for the total variability over latent distributions, thus underestimating the output predictive
uncertainty and making it a bad hint for networks’ expected error.

Incorporating the lack of knowledge over the network’s weights is a promising direction to make
DUMs well calibrated.
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6.2 DUMS - FUNDAMENTALS

We here introduce the theoretical background necessary for the understanding of DUMs. Initially
(Sec. 6.2.1, Sec. 6.2.2 and Sec. 6.2.3) we maintain a modularized perspective of DUMs by describing
individual components including their advantages and disadvantages. Subsequently (Sec. 6.2.4), we
shed light on each DUMs individually using insights from the modularized considerations.

In particular, We describe regularization techniques, including Lipschitz regularization (Sec. 6.2.1)
for enforcing distance awareness and informative representations (Sec. 6.2.2). Sec. 6.2.3 summarizes
discriminative and generative approaches to uncertainty estimation in DUMs. Finally, Sec. 6.2.4
discusses each individual method used in our empirical comparison.

6.2.1 REGULARIZATION TECHNIQUES - DISTANCE AWARENESS

The fundamental idea of distance-aware hidden representations is to avoid feature collapse by
enforcing distances between latent representations to mirror distances in the input space. This can
be achieved by constraining the Lipschitz constant, as it enforces a lower and an upper bound to
expansion and contraction performed by an underlying neural network. More formally, given any
pair of inputs x1 and x2 the following lower and upper bounds must hold for the resulting activation
of a feature extractor fθ with parameters θ: c1||x1 − x2||I ≤ ||fθ(x1)− fθ(x2)||F ≤ c2||x1 − x2||I .
c1 and c2 denote respectively the lower and upper bound for the Lipschitz constant, and || · ||I and
|| · ||F are the chosen metrics in the input and feature space respectively.

Recent proposals have primarily adopted two methods to impose the bi-Lipschitz constraint.

Gradient Penalty. First introduced to regularize the Lipschitz constant in GAN training (78), a
two-sided gradient penalty is used as an additional loss term to enforce detectability in the feature
space of changes in the input by DUQ (13). The gradient penalty is formulated as an additional loss
term that regularises the Frobenius norm ||J ||F of the Jacobian J of a NN to enforce a bi-Lipschitz
constraint. Therefore, the training loss of a NN is typically enhanced with the absolute difference
between ||J ||F and some chosen positive constant.

Given a model g and an input x, regularising the Frobenius norm ||J ||F of its Jacobian J constraints its
Lipschitz constant. Therefore, the following two-sided gradient penalty is used: λ [||∇xg(x)||F − 1]

2,
where λ is the regularization strength, || · ||2 is the L2 norm, the target bi-Lipschitz constant is 1. For
more details, refer to (13).

Spectral Normalization. The two-sided gradient penalty described above requires backpropagating
through the Jacobian of a NN and is, thus, computationally demanding. A more efficient technique
is SN (49). For each layer g : hin → hout, SN normalizes the weights W of each layer using their
spectral norm sn(W ) to constrain the bi-Lipschitz constant. Thus, weight matrices are normalized
according to: Wsn = W

c·sn(W ) . This effectively constrain the layer’s Lipschitz norm ||g||Lip =

suphsn(∇g(h)), where sn(A) is the spectral norm of the matrix A, equivalent to its largest singular
value. Consequently, SN normalizes the spectral norm of the weights W of each layer to satisfy the
soft-Lipschitz constraint sn(W ) = c (hard- if the Lipschitz constant c = 1): Wsn = W/sn(W ).
Note, that spectral normalization requires residual layers. We refer to (15) for further details.

Runtime. Let N denote the number of parameters of the underlying neural network and B denote
the batch size used during training of the underlying discriminative task. Gradient penalty leads
to additional runtime/memory cost of O(NB). This originates from backpropagation through the
gradients of the input which essentially doubles the computation during backpropagation. Spectral
normalization leads to additional runtime/memory cost of O(N) since its complexity equates to
applying the affine layers of a model additionally on a single sample.

Overall, we summarize the advantages and disadvantages of each regularization technique enforcing
distance aware representations.

• Distance awareness (general):

– Advantages: Can be used in combination with GPs and RBF kernels which both
assume distance-aware inputs.
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– Disadvantages: Assumes an underlying distance metric (e.g. L2). This can be
unsuitable/problematic for some data distributions (e.g. images). Does not correlate
with OOD detection performance.

• Gradient Penalty:
– Advantages: Architecture-agnostic.
– Disadvantages: High computational and memory costs due to backpropagation

through the input’s gradients.
• Spectral Normalization:

– Advantages: Computationally more efficient compared to gradient penalty.
– Disadvantages: Not architecture-agnostic. Requires the use of residual layers.

6.2.2 INFORMATIVE REPRESENTATIONS

Unlike approaches enforcing distance aware representations, informative representations do not rely
on an underlying distance metric. These approaches rather aim at maximizing the mutual information
between input data distribution and the distribution of hidden representations heuristically (20) or
exactly (42; 17). Subsequently, we discuss the different approaches in greater detail.

Constrastive learning. DCU (42) first pretrains its model using contrastive learning (54). Subse-
quently, they finetune on the actual classification task by training simultaneously on classification and
contrastive learning objective. This approach provably encourages the model to increase the mutual
information between the input distribution and the distribution of hidden representations (53). A
disadvantage with this approach is the large batch size required for training the contrastive objective.
Furthermore, it heavily depends on the underlying data augmentations which need to be tailored to
the discriminative task (e.g. classification) at hand.

Reconstruction regularization. The authors of MIR (20) try to heuristically increase the information
content about the input in the hidden representations. Therefore, they require the model to be able
to reconstruct its input from its hidden representations using a separate decoder module during
training. The entire approach can also be viewed as a constrained autoencoder, where the constraint
is the objective of the discriminative task at hand (e.g. classification). While this approach is only a
heuristic, it is more agnostic of the underlying discriminative task which the model solves.

Entropy regularization. PostNet (20) learns the distribution of hidden representations end-to-end
during training of the discriminative model. They parameterize the distribution using one normalizing
flow (radial flow) per class. While they do not explicitly mention the problem of feature collapse,
their entropy regularization loss fulfills this purpose. In particular, they maximize the entropy of the
predicted Dirichlet distribution D(α(i)) parameterized by α(i) = (α

(i)
1 , . . . , α

(i)
c ) for a classification

problem with c classes. Each α(i)
j is given by α(i)

j = βprior +NcP (z
(i)|c, φ). Here, βprior denotes

a constant prior term shared across classes, Nc denotes the number of occurrences of class c in
the training set, z(i) denotes the hidden representation of some input x(i) and P (z(i)|c, φ) denotes
the radial flow associated with class c with parameters φ. Importantly, βprior is set to 1 in their
experiments which leads to α(i)

j ≥ 1∀j ∈ [1, . . . , c]. PostNet then encourages large entropies of the
Dirichlet distribution during training. The entropy is given by

H(D(α(i))) = log(B(α(i))) + (α
(i)
0 − c)ψ(α

(i)
0 )−

c∑
j=0

(α
(i)
j − 1)ψ(α

(i)
j ) (4)

where B is there beta-function, ψ is the Digamma function and α(i)
0 =

∑c
j=1 α

(i)
j . Importantly,

this function has a global maximum for α(i)
j = 1∀j ∈ [1, . . . c]. Since βprior = 1, this term further

encourages the normalizing flows to produce likelihoods close to zero. Thus, we encourage large
values of the negative log-likelihoods and, consequently, entropies under each radial flow.

Runtime. Let N denote the number of parameters of the underlying neural network and B denote
the batch size used during training of the underlying discriminative task. Contrastive learning leads
to additional runtime/memory cost of O(N). This originates from the fact that it requires large
batch sizes and thus likely increases the batch size compared to the original discriminative task.
Reconstruction regularization (20) and entropy regularization (17) lead to additional runtime/memory
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cost of O(B), since the size of the decoder model in reconstruction regularization (20), and resp.
the normalizing flows in entropy regularization (17), are in principal independent of the size of the
original model.

Overall, we summarize the advantages and disadvantages of each regularization technique enforcing
informative representations.

• Informative representations (general):
– Advantages: Does not rely on an underlying distance metric.
– Disadvantages: When paired with generative modeling of hidden representations,

strong regularization is expected to show similar pathologies as explicit generative
models trained directly on the data distribution (58). Moreover, it cannot be paired with
RBF kernels and GPs approximations based on RBF kernels, since they work under
the assumption that also the feature extractor is a distance-preserving function.

• Contrastive Learning:
– Advantages: Is shown to simultaneously boost predictive performance (54; 42) -

particularly on classification. Architecture-agnostic. Provably maximizes mutual-
information between input distribution and distribution of hidden representations (53).

– Disadvantages: High computational and memory costs due to the necessity of large
batch sizes. Contrastive learning needs to be tailored (e.g. data augmentations) to the
underlying discriminative task.

• Reconstruction regularization:
– Advantages: Architecture-agnostic.
– Disadvantages: Only heuristically maximizes mutual information between input

distribution and distribution of hidden representations.
• Entropy regularization:

– Advantages: Assuming a deterministic neural network, enforcing large entropy in the
latent space equates maximizing mutual-information between input distribution and
distribution of hidden representations.

– Disadvantages: Not architecture-agnostic, since it requires Batch Normalization prior
to entropy regularized hidden representations for training stabilization. Further, requires
low-dimensional hidden representations.

6.2.3 UNCERTAINTY ESTIMATION

Training a feature extractor under the regularization constraints imposed by distance awareness
(Sec. 3.1.1, Sec. 6.2.1) or representation informativeness (Sec. 3.1.2) allows to leverage intermediate
representations to quantify uncertainty over network’s predictions. Extending Sec. 3.2, we here
distinguish between generative and discriminative approaches to uncertainty quantification in DUMs
and provide a detailed categorization of such techniques.

Generative approaches. Given a model trained under some above-discussed regularization con-
straint, generative approaches estimate the distribution of hidden representations by fitting density
models on the regularized feature space, and use the likelihood as uncertainty metric to detect OOD
samples. MIR (20), DDU (19) and DCU (42) learn the density of hidden representations post-training
based on the features observed on the training data. In contrast, PostNet (17) learns the density model
end-to-end with the underlying discriminative model.

Predominantly, class-conditional GMMs are fitted on the regularized intermediate feature space to
estimate its distribution, as done in MIR (20), DDU (19) and DCU (42) - i.e. one multi-variate
gaussian per class, to the hidden representations post training. Subsequently, log-likelihood (20) or
the log-likelihood of the mixture component associated with the predicted class (19; 42) is used as a
proxy for epistemic uncertainty.

On the other hand, PostNet (17) learns the class-conditional distribution of hidden representations
end-to-end using normalizing flows (in particular radial flows). They learn one normalizing flow per
class. In their work the class-conditional distribution is used to parameterize a Dirichlet distribution.
Following PostNet’s notation, the parameters α(i) of the Dirichlet distribution associated with a
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particular sample x(i) are given by α(i)
c = βprior+βi with βi = NcP (z

(i)|c, φ). Here, c denotes the
class, βprior a constant prior term shared across all classes, Nc the number of samples observed in
class c and P (z(i)|c, φ) (φ are the parameters of the normalizing flow) is the probability of observing
the hidden representation z(i) given the normalizing flow associated with class c. Ultimately, epistemic
uncertainty is then quantified as the maximum alpha among all classes. Thus, the epistemic uncertainty
is directly derived from the likelihood of the normalizing flow associated with the predicted class of
the NN, which mostly corresponds to the normalizing flow with the maximum likelihood assuming a
balanced class distribution. We refer to (17) for a more detailed treatment.

Empirically, we find generative approaches to show worse calibration. The underlying assumption of
generative approaches to uncertainty estimation is that locations in feature space entail information
about the correctness of predictions. While this is arguably true, features also contain additional
information that which can render them suboptimal for judging the correctness of predictions due to
ambiguities.

Discriminative While generative approaches use the likelihood produced by an explicit generative
model fit to the distribution of regularized hidden representations to quantify uncertainty, discrimina-
tive methods directly rely on the predictions based on regularized representations.

Centroid-based techniques use distances between points in the latent space to parameterize predictions.
Centroids are defined with respect to the distribution of the feature space generated by the training
set. Mandelbaum et al. (12) propose to use a Distance-based Confidence Score (DCS) to estimate
local density at a point as the Euclidean distance in the embedded space between the point and its k
nearest neighbors in the training set. Similarly, DUQ (13) builds on Radial Basis Function (RBF)
networks (59), which requires the preservation of input distances in the output space which is achieved
using the gradient penalty. The class-specific centroids used in the RBF kernel are maintained as a
running mean of the features observed for each class.

Other methods are based on the idea that, since GPs with RBF kernels are distance preserving
functions (15), they can be combined with regularization techniques that enforce distance awareness
of the feature extractor (15; 18) to obtain an end-to-end distance-aware model. The uncertainty can
then be computed at the network’s output level as the Dempster-Shafer metric (15) or the softmax
entropy (18). Based on this intuitive idea, SNGP (15) and DUE (18) simply rely on different
approximations of the GP, adopting respectively the Laplace approximation based on the random
Fourier feature (RFF) expansion of the GP posterior (60) and the inducing point approximation (61;
62). Another minor difference lies in the spectral normalization algorithm, with DUE providing
a SN implementation also for batch normalization layers. While both methods rely on spectral-
normalized feature extractors, they could in principle be applied together with any distance-preserving
regularization technique. For example, the GPs could be placed on top of a feature extractor trained
with gradient penalty (13) to regularize the bi-Lipschtiz constant.

6.2.4 A METHOD-ORIENTED PERSPECTIVE ON INDIVIDUAL DUMS

Here, we discuss each DUMs in our empirical comparison individually. Furthermore, Tab. 4 provides
a comparison of DUMs used in our empirical evaluation regarding properties which are interesting
for practitioners. We consider four characteristics: Architecture/task constraints, well calibrated
uncertainties and computational/memory overhead. We consider the computational/memory overhead
of a method not minimal when it scales with at leastO(N) whereN denotes the number of parameters
of the underlying neural network. This is the case for contrastive learning in DCU (42) due to large
batch sizes, the gradient penalty in DUQ (13) due to backpropagation through the gradients of a
neural network’s input and spectral normalization in SNGP (15) and DDU (19).

SNGP (15) uses spectral normalization for regularizing hidden representations (see Sec. 6.2.1).
While this denotes an efficient approach to enforcing distance-aware representations, it renders
them dependent on an underlying distance metric in the input space. Moreover, they require the
underlying model to be composed of residual layers. Furthermore, we find that enforcing distance
awareness, does not directly correlate with OOD detection performance. SNGP estimates uncertainty
by replacing the softmax layer with a GP based on the RBF kernel. In particular, they use a Laplace
approximation of the GP. They estimate epistemic uncertainty using the Dempster-Shafer metric (15).
We find that SNGP yields reasonable uncertainty calibration.
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Method
Architecture
constraints Task constraints Well-calibrated Minimal computational/memory cost

SNGP(15) residual layers classification 3 7

DUQ(13) - classification 7 7

DDU(19) residual layers - 7 7

DCU(42) - classification 7 7

MIR(20) - - 7 3

PostNet(17)
batch

normalization classification 7 3

Table 4: Qualitative comparison of different DUMs used in our empirical comparison. We are
interested in four characteristics that are interested from a practical perspective: Architecture/task
constraints, well calibrated uncertainties and computational/memory overhead. We consider the
computational/memory overhead of a method not minimal when it scales with at least O(N) where
N denotes the number of parameters of the underlying neural network. This is the case for contrastive
learning in DCU (42) due to large batch sizes, the gradient penalty in DUQ (13) due to backpropaga-
tion through the gradients of a neural network’s input and spectral normalization in SNGP (15) and
DDU (19).

DUQ (13) prevents feature collapse by enforcing distance-aware hidden representations. Distance-
awareness is enforced using the gradient penalty. While the latter allows DUQ to be model agnostic,
it dramatically increases the computational/memory cost at training time. Moreover, following the
general drawbacks of enforcing distance-aware representations it depends on an underlying distance
metric in the input space. DUQ is only applicable to classification and replaces the softmax output
layer using an RBF kernel which compares observed representations to centroids where each class
in the classification problem is associated with one centroid. These centroids are updated using a
running mean during the training of the model. This renders DUQ sensitive to instabilities at training
time in case the mean updates are noisy. For example, the latter case can arise when the number of
classes in the classification problem becomes large.

DDU (19) uses spectral normalization for regularizing hidden representations (see Sec. 6.2.1). While
this denotes an efficient approach to enforcing distance-aware representations, it renders them
dependent on an underlying distance metric in the input space. Moreover, they require the underlying
model to be composed of residual layers. In order to estimate uncertainty, DDU estimates the
distribution of hidden representations of the penultimate layer using a class-conditional GMM, i.e.
they train one multivariate Gaussian per class. Then, epistemic uncertainty is approximated as
the negative log-likelihood of the mixture components with the highest probability. This approach
to uncertainty estimation allows DDU to be applied across different tasks. However, due to the
generative approach to uncertainty estimation it yields poorly calibrated uncertainty.

DCU (42) enforces informative representations at training time to counter feature collapse. To this
end DCU uses constrastive learning (see Sec. 6.2.2) as a regularization objective. While this approach
has theoretical guarantees for maximizing the information content in the hidden representations and
is architecture-agnostic, in practically requires very large batch size to generate hard negative samples
at training time (54). Moreover, while the contrastive learning objective boosts performance on
classification, it is not directly transferable to other tasks than classification since those may require
a different set of data augmentations which are essential to the success of contrastive learning (54).
In order to estimate uncertainty, DCU also estimates the distribution of hidden representations of
the penultimate layer using a class-conditional GMM, i.e. they train one multivariate Gaussian per
class. Then, epistemic uncertainty is approximated as the negative log-likelihood of the mixture
components with the highest highest probability. This approach to uncertainty estimation allows
DCU to be applied across different tasks. However, due to the generative approach to uncertainty
estimation it yields poorly calibrated uncertainty.

MIR (20) regularizes hidden representations using reconstruction regularization. While this approach
only heuristically increases the information content in the hidden representations, it is efficient and
architecture- and task-agnostic. In order to estimate uncertainty, MIR also estimates the distribution
of hidden representations of the penultimate layer using a class-conditional GMM, i.e. they train
one multivariate Gaussian per class. Then, epistemic uncertainty is approximated as the negative
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Figure 5: Scatter plots for Accuracy/mIoU versus rAULC on 4 testsets, based on Tab. 2 and 3. The
baselines (red) usually occupy the top part of the figure, confirming their effectiveness of uncertainty
calibration. Among the DUMs (blue), SNGP and MIR are closer to the region of baselines than
others. For realistic shifts (CARLA-C), a significant drop of uncertainty calibration performance can
be found for DDU. (“MCD”=“MC Dropout”)

marginal log-likelihood. This approach to uncertainty estimation allows DCU to be applied across
different tasks. However, due to the generative approach to uncertainty estimation it yields poorly
calibrated uncertainty.

PostNet (17) learns the distribution of hidden representations end-to-end which allows them to
regularize its entropy directly (see Sec. 6.2.2). While this is theoretically guaranteed to lead to high
information content in the hidden representations for deterministic models, it leads to some difficulties
during training. To ensure stability during training the hidden representations are require to be low
dimension. Furthermore, it is required to apply a Batch Normalization layer directly prior to hidden
representations which distribution is estimated. While PostNet’s approach can be generalized to other
predictive distributions, they focus on Dirichlet distributions and thus only classification. PostNet
estimates the distribution of hidden representations using one radial flow per class. Uncertainty
is estimated using the likelihood of the radial flow with the maximum likelihood. Precisely, they
multiply the likelihood with the elements observed for a particular class in the training set which
is usually constant in their/our experiments and add one to the result. In accordance with other
approaches that use generative modeling of hidden representations for uncertainty estimation, we
observe poor calibration of epistemic uncertainty.

6.3 ADDITIONAL RESULTS

Fig. 5 provides additional visualization of the test accuracy versus calibration performance for the
methods compared in Tab. 2 and 3.

6.3.1 IMAGE CLASSIFICATION

OOD Detection. Tab. 5 shows quantitative results on detecting OOD data for DUMs, MC dropout
and deep ensembles trained on CIFAR10/100. We observe that DUMs are able to outperform MC
dropout and deep ensembles on OOD detection.

Sensitivity to regularization strength. We provide additional ablation studies on the sensitivity
to regularization strength for different methods on MNIST (Fig. 6) and FashionMNIST (??) These
results confirm the findings of the main manuscript, i.e. that only MIR and Dropout are sensible
to regularization strength, while DUMs based on Lipschitz regularization are not influenced by the
regularization strength.

Corruption Severity Analysis. We show the classification accuracy, AUROC and rAULC for each
method on the CIFAR10-C (Fig. 11, Fig. 12, Fig. 13) and CIFAR100-C (Fig. 14, Fig. 15, Fig. 16)
datasets under different types of corruptions. Each type of corruption is applied at 5 increasing levels
of severity. For ease of visualization, we split the 15 different types of corruptions applied on the
CIFAR10-C and CIFAR100-C datasets into 3 different figures each. Each figure shows 5 different
types of corruptions.

While all methods demonstrate a similar mIoU pattern, DUMs - in particular methods based on
generative modeling of hidden representations - yield worse calibration across corruption severities.
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OOD Data STL10 SVHN CIFAR100

C
IF

A
R

10

MC Dropout (7) 0.686 ± 0.004 0.885 ± 0.002 0.82 ± 0.003
Ensemble (27) 0.875 ± 0.001 0.937 ± 0.009 0.758 ± 0.003
DUQ (13) 0.633 ± 0.008 0.843 ± 0.016 0.766 ± 0.003
SNGP (15) 0.726 ± 0.007 0.925 ± 0.02 0.861 ± 0.004
MIR (20) 0.752 ± 0.015 0.916 ± 0.025 0.840 ± 0.007
DDU (19) 0.737 ± 0.018 0.663 ± 0.073 0.638 ± 0.004
DCU (42) 0.725 ± 0.027 0.992 ± 0.014 0.921 ± 0.014

OOD Data STL10 SVHN CIFAR10

C
IF

A
R

10
0

MC Dropout (7) 0.772 ± 0.004 0.846 ± 0.01 0.735 ± 0.002
Ensemble (27) 0.801 ± 0.014 0.741 ± 0.003 0.756 ± 0.007
DUQ (13) - - -
SNGP (15) 0.744 ± 0.02 0.795 ± 0.112 0.686 ± 0.007
MIR (20) 0.789 ± 0.025 0.809 ± 0.031 0.663 ± 0.004
DDU (19) 0.698 ± 0.021 0.809 ± 0.056 0.764 ± 0.019
DCU (42) 0.798 ± 0.019 0.978 ± 0.005 0.755 ± 0.024

Table 5: OOD detection performance when training on CIFAR10/100 and testing on various other
datasets. We report AUROC averaged across 5 independent trainings.

6.3.2 SEMANTIC SEGMENTATION

Examples of segmentation and uncertainty masks. We show qualitative examples of predicted
masks, error masks and uncertainty masks for Softmax, MC dropout, SNGP and MIR on semantic
segmentation. Fig. 7 illustrates examples under minimal distributional shift (i.e. Azimuth angle
of the sun = 85◦ and Fig. 8 under maximal distributional shift (i.e. Azimuth angle of the sun
= −5◦. We show the input image (Input), the segmentation ground truth (GT), the predicted
segmentation mask (Prediction), the error mask (Error) and the uncertainty mask (Uncertainty). The
error mask is computed as a boolean mask with True values when a pixel is predicted wrongly
(yellow) and False (blue) when the prediction is instead correct. The uncertainty mask is preprocessed
to facilitate visualization. In particular, we first compute mean µ and standard deviation σ of
per-pixel uncertainties over each uncertainty mask. Then, the uncertainty mask is clipped between
[µ−2σ, µ+2σ]. Finally, the uncertainty mask is normalized between 0 and 1 before being visualized.

While the softmax entropy provides decent uncertainty estimates under minimal distributional shift,
it tends to be overconfident under severe distributional shift. In particular, Softmax models are only
uncertain close to object borders, but they are confident about large portions of the image that are
instead predicted wrongly. This can be observed in Fig. 8, where all models tend to predict the entire
sky wrongly (assigned to ‘building’ class), but the Softmax model is the most confident about its
predictions of the sky being correct. DUMs and MC dropout do a better job at recognizing wrong
predictions under sever domain shift by outputting higher uncertainty values.

Corruption Severity Analysis. We show the mIoU, AUROC and rAULC for each method on the
Carla (Fig. 20) and Cityscapes (Fig. 17, Fig. 18, Fig. 19) datasets under different types corruptions.
Each type of corruption is applied at 5 increasing levels of severity. For ease of visualization, we
split the 15 different types of corruptions applied on the Cityscapes dataset into 3 different figures,
showing 5 types of corruptions each.

While all methods demonstrate a similar mIoU pattern, DUMs - in particular methods based on
generative modeling of hidden representations - yield worse calibration across corruption severities.

6.4 TRAINING DETAILS

We provide training and optimization details for all evaluated methods. All methods using spectral
normalization use 1 power iteration. Hyperparameters were chosen to minimize the validation loss.
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Figure 6: Trained on MNIST. Vertical axis: Test accuracy. Horizontal axis: rAULC (left), AUROC
against FashionMNIST (center) and Omniglot (right) for Dropout (1st row), DUQ (2nd row), SNGP
(3rd row), DDU (4th row) and MIR (5th row) using different regularization strength. For SNGP
a larger hyperparameter corresponds to less regularization. For Dropout and MIR we observe a
correlation between regularization strength and performance.

6.4.1 IMAGE CLASSIFICATION - MNIST/FASHIONMNIST

All methods trained on MNIST/FashionMNIST used a MLP as backbone with 3 hidden layers of 100
dimensions each and ReLU activation functions. We used a batch size of 128 samples and trained for
200 epochs. No data augmentation is performed.

Softmax and Deep ensembles. We used for the single softmax model the Adam optimizer with
learning rate 0.003, and L2 weight regularization 0.0001. When using ensembles, 10 models are
trained from different random initializations.

MC dropout. We used for all baselines the Adam optimizer with learning rate 0.003, dropout rate
0.4 and L2 weight regularization 0.0001.

We found the optimal SN coefficient to be 7, with the GP approximation using 10 (number of classes)
inducing points initialized using k-means over 10000 samples.
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Figure 7: Qualitative comparison of uncertainty from Softmax, MC Dropout, SNGP and MIR under
minimal time-of-the-day distribution shift (i.e. Azimuth angle of the sun = 85◦). We show the
input image (Input) and the ground truth mask (GT), and we report for each method the predicted
segmentation mask (Prediction), the error mask (Error) and the uncertainty mask (Uncertainty).

DUQ We trained DUQ with the SGD optimizer with learning rate 0.01, L2 weight regularization
0.0001, and a multi-step learning rate decay policy with decay rate 0.3 and decay steps at the
epochs 10, 20. Lengthscale for the RBF kernel is 0.1 and optimal gradient penalty loss weight
is 0 where we searched along the grid [0.0, 0.0000001, 0.0000003, 0.000001, 0.000003, 0.00001,
0.00003, 0.0001, 0.0003, 0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.5].

DDU. We trained DDU with the Adam optimizer with learning rate 0.001, L2 weight regularization
0.0001, and a multi-step learning rate decay policy with decay rate 0.2 and decay steps at the
epochs 100, 200, 300. We found the optimal SN coefficient to be 6 searching along the grid
[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15]. The GMM is fitted by estimating the empirical mean and covariance
matrix of the representations on the training data associated with each class.

SNGP. We trained SNGP with the SGD optimizer with learning rate 0.05, L2 weight regulariza-
tion 0.0003, and a multi-step learning rate decay policy with decay rate 0.2 and decay steps at
the epochs 60, 120, 160. We found the optimal SN coefficient to be 6 searching along the grid
[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15]., with the GP approximation using 10 hidden dimensions, lengthscale
2 and mean field factor 30.
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Figure 8: Qualitative comparison of uncertainty from Softmax, MC Dropout, SNGP and MIR under
maximal time-of-the-day distribution shift (i.e. Azimuth angle of the sun = −5◦). We show the
input image (Input) and the ground truth mask (GT), and we report for each method the predicted
segmentation mask (Prediction), the error mask (Error) and the uncertainty mask (Uncertainty).

MIR. We trained MIR with the Adam optimizer with learning rate 0.001, andL2 weight regularization
0.0001. We found the optimal reconstruction loss weight to be 1 after searching along the grid
[0.0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0].

6.4.2 IMAGE CLASSIFICATION - CIFAR10/SVHN

When training on CIFAR-10/SVHN, we use a ResNet-18 (72) as backbone. The dimensionality of
the last feature space encoded with the ResNet backbone is 100 for all methods. We used a batch
size of 128 samples and trained for 400 epochs. The training set is augmented with common data
augmentation techniques. We apply random horizontal flips, random brightness augmentation with
maximum delta 0.2 and random contrast adjustment with multiplier lower bound 0.8 and upper bound
1.2.

Softmax and Deep ensembles. We used for the single softmax model the Adam optimizer with
learning rate 0.003, L2 weight regularization 0.0001, and a multi-step learning rate decay policy with
decay rate 0.2 and decay steps at the epochs 250, 300, 400. When using ensembles, 10 models are
trained from different random initializations.
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MC dropout. We used for all baselines the Adam optimizer with learning rate 0.003, dropout rate
0.3, L2 weight regularization 0.0001, and a multi-step learning rate decay policy with decay rate 0.2
and decay steps at the epochs 250, 300, 400.

DUE We trained DUE with the SGD optimizer with learning rate 0.01, L2 weight regularization
0.0005, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 100, 200, 300. We found the optimal SN coefficient to be 7 for SVHN and 9 for
CIFAR-10, with the GP approximation using 10 (number of classes) inducing points initialized using
k-means over 10000 samples.

DUQ We trained DUE with the SGD optimizer with learning rate 0.01, L2 weight regularization
0.0001, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.3 and decay
steps at the epochs 200, 250. 300. Lengthscale for the RBF kernel is 0.1 and optimal gradient penalty
loss weight is 0

DDU. We trained DDU with the Adam optimizer with learning rate 0.001, L2 weight regularization
0.0001, dropout rate 0.3, and a multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 80, 120, 180. We found the optimal SN coefficient to be 7. The GMM fit on top
of the pretrained feature extractor is trained for 100 epochs and is fit with 64 batches.

SNGP. We trained SNGP with the SGD optimizer with learning rate 0.05, L2 weight regularization
0.0004, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 100, 200, 300. We found the optimal SN coefficient to be 7, with the GP
approximation using 10 hidden dimensions, lengthscale 2 and mean field factor 30.

MIR. We trained MIR with the Adam optimizer with learning rate 0.003, L2 weight regularization
0.0001, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 150, 200, 250, 300. We found the optimal reconstruction loss weight to be 1.

6.4.3 SEMANTIC SEGMENTATION.

When training on semantic segmentation, we use a DRN (75; 76) (DRN-A-50) as backbone. We
used a batch size of 4 samples and trained for 200 epochs. Images are rescaled to size 400 × 640
The training set is augmented with common data augmentation techniques. All training samples
are augmented with random cropping with factor 0.8. We apply random horizontal flips, random
brightness augmentation with maximum delta 0.2 and random contrast adjustment with multiplier
lower bound 0.8 and upper bound 1.2.

Softmax. We used for the single softmax model the Adam optimizer with learning rate 0.0004, L2

weight regularization 0.0001, and a multi-step learning rate decay policy with decay rate 0.3 and
decay steps at the epochs 30, 60, 90, 120.

MC dropout. We used for all baselines the Adam optimizer with learning rate 0.0004, dropout rate
0.4, L2 weight regularization 0.0001, and a multi-step learning rate decay policy with decay rate 0.3
and decay steps at the epochs 30, 60, 90, 120.

SNGP. We trained SNGP with the SGD optimizer with learning rate 0.0002, L2 weight regularization
0.0003, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 20, 40, 60, 80, 100. We found the optimal SN coefficient to be 6, with the GP
approximation using 128 hidden dimensions, lengthscale 2 and mean field factor 25.

MIR. We trained MIR with the Adam optimizer with learning rate 0.0002, L2 weight regularization
0.0001, dropout rate 0.1, and a multi-step learning rate decay policy with decay rate 0.3 and decay
steps at the epochs 30, 60, 90, 120. We found the optimal reconstruction loss weight to be 1.

6.5 IMPLEMENTATION DETAILS.

All methods were re-implemented in Tensorflow 2.0. We payed attention to all the details
reported in each paper and we run all experiments for each method multiple times to ac-
count for stochasticity, i.e. 5 times for classification and 3 times for segmentation. When an
implementation was publicly available, we relied on it. This is the case for DUQ (https:
//github.com/y0ast/deterministic-uncertainty-quantification), SNGP
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(https://github.com/google/uncertainty-baselines/blob/master/
baselines/imagenet/sngp.py) and DUE (https://github.com/y0ast/DUE).

SNGP. We follow the publicly available implementation of SNGP, which, compared to the implemen-
tation described in the original paper, proposes to further reduce the computational overhead of the
GP approximation by replacing the Monte-Carlo averaging with the mean-field approximation (79).
This is especially relevant in large-scale tasks like semantic segmentation, were it is important to
reduce the computational overload.

6.5.1 IMAGE CLASSIFICATION

DUE. Note that only DUE uses a SN approximation also for the batch normalization layer. All other
methods only restrict the Lipschitz constant of convolutional and fully connected layers.

MIR only differs from regular softmax models in its decoder module used for the reconstruction
regularization loss (20). When training MLP architectures the decoder is comprised of two fully-
connected layer. The first has a ReLU activation function and 200 output neruons. The second
has a linear activation function and its output dimensionality equals that of the models’ input data.
When training convolutional neural networks the decoder is comprised of four blocks of transpose
convolutions, batch normalization layers and ReLU activation functions that gradually upscale the
hidden representations to the dimensionality of the input data. These four blocks are followed by a
1x1 convolution with linear activation function.

6.5.2 SEMANTIC SEGMENTATION

MIR. Similar to image classification, MIR only differs from regular segmentation models in its
decoder module used for the reconstruction regularization loss (20). The decoder module is comprised
of a single point-wise feed forward layer that maps the hidden representations z ∈ RWz×Hz×Cz to
z ∈ RWz×Hz×3. Subsequently, the result is bilinearly upsampled to the image resolution on which
we compute the reconstruction loss.

6.5.3 UNCERTAINTY DERIVATION.

We provide details on the estimation of uncertainty for the baseline methods. For details on the
uncertainty derivation in DUMs, please refer to Sec. 3 of the main paper or to the original paper of
each amalysed method.

Softmax. In case of the softmax baseline we estimate uncertainty using the entropy of the predictive
distribution parameterized by the neural network. Given an input x the entropy H is given by
H(y|x) =

∑
−p(y|x) log(p(y|x)) where p(y|x) are the softmax probabilities.

MC dropout and deep ensembles. We following (80) and compute epistemic uncertainty as the
conditional mutual information between the weights w and the predictions ŷ given the input x. Given
an input x and a set of weights w we observe the predictive distribution p(ŷ|x,w). Then epistemic
uncertainty uep is calculated by approximating the mutual information conditioned on the input x:

uep = I (ŷ, w|x)
= H(ŷ|x)−H(ŷ|w, x)
= Ey∼p(ŷ|x) [− log(p(ŷ|x))]− ual

where ual denotes the aleatoric uncertainty. Here, p(ŷ|x) =
∫
dwp(w)p(ŷ|x,w) is evaluated using a

finite set of samples/ensemble members.

6.5.4 UNCERTAINTY DERIVATION FOR SEMANTIC SEGMENTATION.

We derive uncertainty estimates for each method for semantic segmentation. We average pixel-level
uncertainties under the assumption that all pixels are represented by i.i.d. variables.

Uncertainty. In our experiments on continuous distributional shifts we want to estimate pixel-level
uncertainty for the output map.

MIR estimates epistemic uncertainty using the likelihood of hidden representations z ∈ RWz×Hz×Cz .
Since z is high-dimensional in our experiments, we assume that it factorizes along Wz and Hz and
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is translation invariant. Formally, p(z) =
∏Wz

i

∏Hz

j pθ(zij) where zij ∈ RWz×Hz and θ is shared
across Wz and Hz .

We parameterize pθ with a GMM with n = 10 components where each component has a full
covariance matrix. We fit the GMM on 100000 hidden representations (zij ∈ RCz ) randomly picked
from the training dataset post-training. Since Cz = 1024 is still high-dimensional, we first apply
PCA to reduce its dimensionality to 32.

In the dilated resnet architecture used for semantic segmentation the latent representation z is passed
through a point-wise feedforward layer f : RWz×Hz×Cz 7→ RWz×Hz×3 and, subsequently, bilinearly
upsampled to image resolution (RW×H×K) where K is the number of classes. We could estimate
the global, i.e.image-level, uncertainty of an input, by providing the negative log-likelihood of
the factorizing distribution. However, in order to also obtain pixel-wise uncertainties using MIR,
we first compute the negative log-likelihood (i.e.epistemic uncertainty) associated with each latent
representation zij . Then, we bilinearly upsample the negative log-likelihoods and use the result
as proxy for pixel-wise epistemic uncertainty. If we wanted to obtain a global, i.e.image-level,
uncertainty we could average pixel-level uncertainties.

6.6 DATASET

To benchmark our model on data with realistically and continuously changing environment, we collect
a synthetic dataset for semantic segmentation. We use the CARLA Simulator (64) for rendering the
images and segmentation masks. The classes definition is aligned with the CityScape dataset (73).
In order to obtain a fair comparison, all the OOD data are sampled with the same trajectory and the
environmental objects, except for the time-of-the-day or weather parameters.

In-domain data The data is collected from 4 towns in CARLA. We produce 32 sequences from
each town. The distribution of the vehicles and pedestrians are randomly generated for each sequence.
Every sequence has has 500 frames with a sampling rate of 10 FPS. From them we randomly sample
the training and validation set.

Out-of-domain data Here, we consider the time-of-the-day and the rain strength as the parameters
for the continuous changing environment. In practice, these two parameters have major influence for
autonomous driving tasks.

The change of the time-of-the-day is illustrated in Fig. 9. The time-of-the-day is parametrized by
the Sun’s altitude angle, where 90◦ means the mid-day and the 0◦ means the dust or dawn. Here,
we produce samples with the altitude angle changes from 90◦ to 15◦ by step of 5◦, and 15◦ to −5◦
by step of 1◦ where the environment changes shapely. From these examples, we can confirm that
the change of time-of-the-day leads to the major change in the lightness, color and visibility of the
sky, roads and the buildings nearby. The effect of rain strength is demonstrated in Fig. 10. Here the
cloudiness and, ground wetness and ground reflection are the main changing parameters.
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(a) Mid-day (90◦) (b) Afternoon (45◦) (c) Afternoon (15◦) (d) Evening (10◦)

(e) Dust (2◦) (f) Sunset (0◦) (g) Sunset (−2◦) (h) Night (≤ −5◦)

Figure 9: Changing of the time-of-the-day

(a) Clear (b) Cloudy (c) Small rain (d) Heavy rain

Figure 10: Changing of the weather
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Figure 11: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR10-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): brightness, contrast, defocus blur, elastic, fog.
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Figure 12: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR10-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): frost, frosted glass blur, gaussian noise, impulse noise,
jpeg compression.
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Figure 13: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR10-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): motion blur, pixelate, shot noise, snow, zoom blur.
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Figure 14: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR100-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): brightness, contrast, defocus blur, elastic, fog.
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Figure 15: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR100-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): frost, frosted glass blur, gaussian noise, impulse noise,
jpeg compression.
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Figure 16: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR100-C dataset. We show the accuracy, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): motion blur, pixelate, shot noise, snow, zoom blur.
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Figure 17: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR100-C dataset. We show the mIoU, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): brightness, contrast, defocus blur, elastic, fog.
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Figure 18: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the CIFAR100-C dataset. We show the mIoU, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): frost, frosted glass blur, gaussian noise, impulse noise,
jpeg compression.
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Figure 19: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the Cityscapes-C dataset. We show the mIoU, AUROC and rAULC
(vertical axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): motion blur, pixelate, shot noise, snow, zoom blur.

33



Under review as a conference paper at ICLR 2022

020406080

0.3

0.4

Sun angle [°]

Accuracy - time_of_day

020406080

0.4

0.6

0.8

Sun angle [°]

AUROC - time_of_day
Softmax Ensemble SNGP MIR MC Dropout DDU

020406080

−0.5
0

0.5

1

Sun angle [°]

rAULC - time_of_day

0 1 2 3

0.2

0.3

0.4

Rain strength

Accuracy - rain_strength

0 1 2 3

0.4

0.6

0.8

Rain strength

AUROC - rain_strength

0 1 2 3

−0.5
0

0.5

1

Rain strength

rAULC - rain_strength

Figure 20: We here compare the performance of DUMs and of the baselines under different corruption
types and severities applied on the Carla-C dataset. We show the mIoU, AUROC and rAULC (vertical
axis) for each method depending on the corruption severity (horizontal axis) of the following
corruption types (listed from top to bottom): time of day, rain.
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