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ABSTRACT

We propose in this paper an analytically new construct of a diffusion model whose
drift and diffusion parameters yield a faster time-decaying Signal to Noise Ratio in
the forward process. The proposed methodology significantly accelerates the forward
diffusion process, reducing the required diffusion time-steps from around 1000 seen in
conventional models to 200-500 without compromising image quality in the reverse-
time diffusion. Additionally, in a departure from conventional models which typically
use time-consuming multiple runs, we introduce a parallel data-driven model to gen-
erate a reverse-time diffusion trajectory in a single run of the model. The construct
cleverly carries out the learning of the diffusion coefficients via an estimate of the
structure of clean images. The resulting collective block-sequential generative model
eliminates the need for MCMC-based sub-sampling correction for safeguarding and
improving image quality, which further improve the acceleration of image generation.
Collectively, these advancements yield a generative model that is at least 4 times faster
than conventional approaches, while maintaining high fidelity and diversity in gen-
erated images, hence promising widespread applicability in rapid image synthesis
tasks.

1 INTRODUCTION

Generative diffusion models (GDMs) have recently emerged as powerful tools for image modeling and
numerous other applications (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song
et al., 2021b), offering exceptional fidelity and generative diversity (Yang et al., 2023). In contrast to
existing generative models, like Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and
Variational Autoencoders (VAEs) (Kingma &Welling, 2013), GDMs are more stable in training and less
sensitive to hyper-parameter selection (Kingma &Welling, 2019).

Generative diffusion approaches gradually corrupt image data with increasingly random noise in the
forward diffusion steps. The noise removal1 is progressively learned in the reverse diffusion to recover
the desired image data to best match its initial distribution. GDMs have been represented as discrete as
well as continuous-time processes. Discrete-time processes were initially used in diffusion probabilistic
models (Sohl-Dickstein et al., 2015) and later refined as the denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020), The training task was to learn the reverse posterior distribution bymaximizing
a variational lower bound on the model log likelihood. Later Score-based Generative Models (SGMs)
- represented by Noise-Conditional Score Networks (NCSNs) (Song & Ermon, 2019) and (Song et al.,
2021b) - were successfully used to achieve high quality image samples through denoising scorematching
and annealed Langevin dynamics. The continuous-time GDMs are fundamentally based on continuous
stochastic differential equations (SDEs), with a continuous forward diffusion model defined to add
random noise to an image according to some selected drift and diffusion parameters, and a reverse

1This may equivalently be viewed as learning the statistical structure of the data for given additive white noise.
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diffusion (Anderson, 1982) is run by a reverse-time SDE governed by a score-based model to be learned
by deep neural networks.

While effective, the performance of conventional diffusion models entails a slow convergence, with a
quality image generation requiring a large number of time-steps, consequently leading to an increased
computational complexity. To this end, much effort (Jolicoeur-Martineau et al., 2021a;b; Salimans & Ho,
2021; Zhang&Chen, 2023; Dockhorn et al., 2022; Lyu et al., 2022; Zheng et al., 2022) has been dedicated to
reducing this lengthy process and to improving the quality for prediction-correctionmethods byMarkov
chain Monte Carlo (MCMC) subsampling &modified Langevin dynamics (Song et al., 2021b). Current
models have, however,only focused on reducing the reverse trajectory by employing sub-sampling or
fast ODE solver based strategies.

In this paper, we propose an alternative approach and use insights from statistical mechanics of particles
to account for local (pixel-level) SNR in driving the microscopic dynamics of the diffusion process. In
so doing, our novel diffusion model leverages the structure of clean image data to learn the drift and
diffusion parameters at a microscopic level to accelerate the forward diffusion. Specifically, these param-
eters increase the rate of degradation according to image pixel-SNR in contrast to the uniform regime of
existing models. This is inspired by the well-known water pouring algorithm paradigm (Gallager, 1968)
employed in multi-channel communication systems. The water pouring algorithm allocates power to a
channel in accordance with the noise-level experienced in that channel, with more degraded channels
getting more power. Intuitively, one may interpret the macroscopic forward diffusion as a parallel
(bundle) process of microscopic forward diffusion processes occurring on individual pixels in parallel.
In our model, the forward diffusion scheduling is dependent, as detailed later, on the initial clean pixel
values while each pixel maintains its own diffusion independent from others. We demonstrate that by
employing this pixel based scheduling strategy, we can achieve the target goal of reaching isotropic Gaus-
sian distribution on all the pixels much faster than the conventional pixel agnostic diffusion scheduling
in the forward diffusion stage.

With such an image-aware forward diffusion in hand, we proceed with an autoencoder to learn the
combined diffusion schedule across all the pixels of a noisy image. This learned schedule is subsequently
used in adata-driven reverse-timediffusionmodel to generate the complete trajectory of the reverse-time
diffusion. While conventionalmodels generate the reverse trajectory one step at a time requiringmultiple
model runs, we leverage the structural information learned in the scheduling strategy to generate the
whole reverse-time diffusion path in one go without compromising on the over-all generated image
quality. As a result of this combined strategy, we are able to accelerate the reverse-time diffusion process
by at least 4 times in terms of the total generation time. On account of its relatively simple structure,
our pixel-wise diffusion has the potential to be incorporated into existing methods to further speed
up sampling. As an example, the latent diffusion model (Rombach et al., 2022b), with some special
care given to the image scale, should be able to swap the conventional diffusion with our newmodel.
However, we only focus on our novel diffusion model in this paper.

2 BACKGROUND

2.1 FORWARD DIFFUSION

Associating to a data sample x0 ∈ Rd distributed as x0 ∼ q(x0), a common forward diffusion (Sohl-
Dickstein et al., 2015) is tantamount to defining a Markov chain of samples x1, ...,xT such that:

q(x1, ...,xT |x0) =
T∏

i=1
q(xi |xi−1), q(xi |xi−1) =N (

√
1−βi xi−1,βi I), i ∈ {1, ...,T }, (1)

2
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where βi ∈ (0,1), ∀ i ∈ {1, ...,T }, is an increasing scalar schedule starting from a very small positive value
progressing towards 1 inT steps. For a sufficiently large, T , a well behaved increasing scheduleβi ensures
that xT ∼ N (0,I) . In relation to Eqn. 1, a forward diffusion of this form may follow as a discretized
Markovian process,

xi+1 =p
αi xi +

√
1−αi ϵi , ϵi ∼N (0,I), (2)

where αi = 1−βi , the first addend controls the drift of xi+1, and the second one is its diffusion term.
Another iterative form of Eqn. 2 in terms of the initial sample value x0, can also be obtained as a
reparameterized equation(Kingma &Welling, 2013),

xi+1 =
√
αi x0 +

√
1−αi ϵ̃i , ϵ̃i ∼N (0,I), (3)

where αi = ∏i
k=1αk and ϵ̃i is a linear combination of ϵk ∼ N (0,I), k ∈ {1, ..., i }, such that ϵ̃i ∼ N (0,I).

Note thatβi controls the diffusion of the process, and a number of its variations have beenused including
a linear profile (Ho et al., 2020), a harmonic (Sohl-Dickstein et al., 2015) and a squared cosine dependency
(Song et al., 2021a). In all these cases, a simple scalar βi is invariably used for each element of the vector
xi = [x1

i , · · · , x j
i , · · · , xd

i ] ∈Rd , where d is the number of pixels in an image.

2.2 SAMPLING FOR REVERSE-TIME DIFFUSION

While Eqn. 2 implies q(xi |xi−1) is an explicitly known conditional Gaussian distribution for xi , the
posterior distribution q(xi−1|xi ) is unknown. The probability of xi−1 conditioned on xi and x0 can,
however, be explicitly expressed using Bayes rule (Ho et al., 2020) as

q(xi−1|xi ,x0) =N (µ̃(xi , ϵ̃i ), β̃i I),

µ̃(xi , ϵ̃i ) = 1p
αt

(
xi − 1−αi√

1−αi

ϵ̃i

)
,

β̃i = 1−αi−1

1−αi
βi .

(4)

DDPM based models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021a; Peebles & Xie, 2022)
approximate q(xi−1|xi ,x0) using pθ(xi−1|xi ) =N

(
µ̃
(
xi ,εθ(xi , i )

)
, β̃i

)
, where εθ(xi , i ) is a neural network

model for removing the noise added in the forward diffusion step. To learn to predict the mean µ̃(.), a
Variational Lower Bound (VLB) on the negative log likelihood pθ(x0) is maximized. The VLB is given as:

LVLB = Eq

[
DKL

(
q(xT |x0)||pθ(xT )

)
+

T∑
i=2

DKL
(
q(xi−1|xi ,x0)||pθ(xi−1|xi )

)
− log

(
pθ(x0|x1

)
)
]

.
(5)

The neural network output εθ(xi , i )), together with the parameters αi , βi , enables the reverse-time
diffusion trajectory constructed as,

xi−1 = µ̃(xi ,εθ(xi , i ))+
√
β̃iσi , σi ∼N (0,I), i ∈ {T, · · · ,1}. (6)

This perspective has led to various GDMs sampling from the posterior distribution.
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Additionally, a continuous-time version of Eqn. 2 was given in (Song et al., 2021b) for T →∞ yielding
a forward-time. Relying on (Anderson, 1982; Hyvärinen, 2005), the corresponding reverse-time SDE
can be built via learning the so-called score function ∇xt log(q(xt )) iteratively through through a neural
network.

Two main neural network architectures are used for learning tasks: U-Net based models (Song & Ermon,
2019; Ho et al., 2020; Song et al., 2021b;a) and Transformer-basedmodels (Peebles & Xie, 2022; Rombach
et al., 2022a). The U-Net (Ronneberger et al., 2015), popular for semantic segmentation tasks, uses a
downsampling encoder and an upsampling decoder, with feature maps from the encoder concatenated
with inputs of the decoder at different resolutions. Upsampling is a sparse operation. A good prior from
earlier stages aids the decoder to better represent the localized features. Newer models use Transformer
architectures, which work on lower-dimensional latent encodings instead of images, to offer higher
generation quality despite being more computationally intensive (Peebles & Xie, 2022).

3 METHODOLOGY: IMAGE AWARE DIFFUSION

3.1 MOTIVATION

In the forward direction of a diffusion process, a clean imagewith d pixels, represented as x0 = [x1
0 , . . . , xd

0 ]
is diffused iteratively in T steps. With large enough T , we get xT ∼N (0,Id ), indicating that the diffusion
of the various data pixels leads to approximately 0 SNR. The water pouring algorithm employed in
multi-channel communication systems(Gallager, 1968), similarly addresses assignment of signal power
distribution across frequency channelswith different ambient noise powers tomaximize SNR. Facedwith
our objective of all pixels simultaneously achieving approximately 0 SNR over a certain time interval (the
total number of steps, T ), it makes sense to diffuse higher-valued pixels at a faster rate than lower-valued
pixels.

FIGURE 1: A toy example: SNR degradation in forward diffusion direction across three pixels as a dual of
water pouring algorithm

Fig. 1 shows as an example SNR reduction across 3 pixels with different SNRs over 6 time-steps. In the
beginning, Pixel 3 has the highest value while Pixel 2 has the lowest value. To reach 0 SNR simultaneously
in 6 steps, different pixels experience SNR reduction at different rates.

This also implies that our group-diffusion process, will require a vector βi ∈ Rd , whose elements are
different for different pixels x j

i , in xi = [x1
i , · · · , x j

i , · · · , xd
i ] ∈Rd to reflect each diffusion yielding specific

drift and diffusion determined by each pixel. To this end, we propose here a carefully chosen image-
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aware scheduling forward process which converges to the isotropic standard normal distribution at a
faster rate. Consequently the reverse process can converge much faster.

Furthermore, conventional GDMs generate new samples by a reverse diffusion process which involves
sequential sampling (over i ranging from T to 1) from the learned conditional posterior distributions,
pθ(xi−1|xi ) with xT ∼ N (0,Id ). or with a uniformly distributed subsampling sequence, as discussed
in Denoising Diffusion Implicit Model (DDIM) (Song et al., 2021a). The sequential sampling entails
multiple forward passes through a trainedmodel, significantly increasing the overall generation time. To
overcome this difficulty, we proposed here our second innovative contribution - our proposed parallel
generation of the reverse diffusion. We rely on a more informed prior, specifically a rough estimate of
the clean image x0. This provides some early-scale feature information of the clean image such as image
boundaries. It acts as a regularizer to our model. This, together with our fast pixel-wise diffusion allows
us a simultaneous parallel generation of reverse diffusion steps.

3.2 REDEFINING FORWARD DIFFUSION

3.2.1 DEFINITIONS

We define image scale xδ ∈Rd as
xδ≜ e−γx0 , (7)

where γ is a scalar hyperparameter such that x j
0 << γ< T, ∀ j ∈ {1, · · · ,d} and exponentiation is done

element-wise.

The diffusion schedule parameters now become vectors, redefined as

αi = 1−βi = x1/T
δ . (8)

where 1 = [1,1, · · · ,1] is a d-dimensional vector. This allows the diffusion schedule to vary across all
the pixels x j

i , j ∈ {1, ...,d}. This is in contrast to conventional Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020), in which the schedule parameters can be regarded as vectors with the same
repeated element (ours being distinct): αC ,i = 1−βC ,i =αi1, where αi is a scalar independent of x0. The
resulting reparametrized forward step dependent on x0 can be written as

xi =
√
αi ⊙x0 +

√
1−αi ⊙ ϵ̃i , αi = e−γ i x0/T , i ∈ {0,1, ...,T } (9)

where ⊙ is an element-wise multiplication.

We further assume that all x j
0 are normalized to the range (0,1], with small scalar value added to all x j

0 ,
so that none of the resulting pixels is exactly 0 to ensure that e−γ i x0/T vary with i . From Eqn. 9, it is
clear that as i increases from 0 to T , the drift term decreases exponentially from x0 to a vanishingly small
value, while the noise variance increases exponentially from 0 to 1.

γ>> x j
0 ensures that the pixel density drift to a very small value as i approaches T . In our experiments

for CIFAR10 dataset images of 32×32 resolution (Krizhevsky, 2009), we fixed T = 200 and γ= 20. For
CelebA dataset images of 128×128 resolution (Liu et al., 2015) , we fixed these values to 500 and 50
respectively. Note that, we opted to keep a 1:10 ratio between γ and T. While heuristically chosen, they
were subjected to a thorough experimental validation over toy examples. Additionally, due to lower
information content in lower resolution images, as in CIFAR10 dataset, the forward diffusion tunes into
noise at a much faster rate in comparison to when using higher resolution CelebA images.

To analyze the time trajectory of our diffusion model, we substitute discrete ratio i /T with a continuous
variable t ∈ [0,1], by letting T →∞, the discrete time-step Eqn. 9 becomes a continuous time one:

5
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xt =
√
αt ⊙x0 +

√
1−αt ⊙ ϵ̃t , αt = e−γ t x0/T , t ∈ [0,1]. (10)

Using Eqn. 10, we can calculate the time differentiable SNR at pixel x j
0 as:

SNR( j , t ) = (x j
0 )2

eγ t x
j
0 −1

(11)

Form Eqn. 11, it is clear that the SNR of any pixel decreases exponentially with time.

3.2.2 PROPOSITION 1

For our diffusion starting from clean pixels, x j
0 < xk

0 , there exists a tδ,

d SNR(k, t )

d t
< d SNR( j , t )

d t
< 0, ∀t ∈ [0, tδ] (12)

The proof of this proposition can be found in Appendix A. Thus, our choice ofαi makes pixels with high
values experience faster SNR reduction.

3.2.3 PROPOSITION 2

For the diffusion model defined as per Eqn - 10, the expected trajectory is χN(t ) = E[xt ] = x0 ⊙ e−
γx0 t

2 .
Choosing γx j

0 > at , ∀ j ∈ {1, · · · ,d}, t ∈ (0,1], ensures

|χC(t )

d t
|< |χN(t )

d t
| (13)

whereχC(t ) = E[xt ] = x0e−
at
2

2
is the expected trajectory of a linearly varying conventionalDDPMschedule

of the form, βt = at , t ∈ [0,1].

The proof of proposition 2 can be found in Appendix B. Thus, by carefully choosing γ, ourmodel achieves
faster convergence in comparison to conventional DDPMmodel.

Fig. 2 demonstrates that the mean and variance of our newmethod converge to target values (0 and 1
respectively) much faster than the conventional diffusion model. Here the total number steps is kept
constant to 500 steps. The βi for conventional DDPM vary linearly from 10−4 to 0.02. The example
image is a sample from the CelebA dataset that has a resolution of 128×128. The means and variances
calculated in this experiment are empirical ones. We rely on the law of large numbers that as the number
of pixels in the image is sufficiently large (specifically 128×128 = 16,384), the empirical statistics match
theoretical statistics with high probability. Fig. 2 demonstrates that the empirical mean and variance
of our newmethod converge to target values (0 and 1 respectively) much faster than the conventional
DDPMmodel at 500 steps for an image from the CelebA dataset. The βi for DDPM varies linearly from
10−4 to 0.02. We have assumed that, as the number of pixels in the image is large enough (specifically
128×128 = 16,384), the empirical statistics would match theoretical statistics with high probability.

At inference time the reverse diffusion process requires the knowledge of the scheduling parameters
which are themselves dependent on xδ = e−γx0 . At first glance, this appears to be a counter-intuitive
task as acquiring x0 through a stochastic trajectory seems to require knowledge of x0 itself. To avoid
this dilemma, we take advantage of the feature of xδ that provides only structural information with
less fine details, or an approximation of it, to provide some prior information of the image structure.
Consequently, we exploit a VAE, a less complex denoising based method to estimateGθ(xi , i ) = x̂δ ≈ xδ

6
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(A) Pixel mean progression (B) Pixel variance progression

FIGURE 2: Comparison of pixels mean (left) and variance (right) progression in forward diffusion trajec-
tory of a single color channel (red color) over time of the conventional DDPM (blue) vs. our model (red).

from a noisy image xi . The requirement on parameter complexity ofGθ(xi , i ) can be kept low due to xδ
lacks finer details (unlike x0) as a result of exponentiation and the large value of γ.The image scale, xδ
and γ are independent of time-steps. Once xδ is estimated, the approximations of the factorsα j

i
andα j

i
can also be readily calculated to further recover x0.

Fig. 3 shows, using an example fromCelebA dataset, the comparison of the real image, x0 vs x̂δ generated
by Gθ(xT ,T ). The second image also shows the real image scale, xδ. To also verify that it is easier to
estimate xδ instead of x0 from xT , we also trained a VAE with same architecture and size asGθ(.). The
outputs from this VAE had many spurious artifacts with very poor generation quality. Example outputs
of this VAE are provided in the Appendix F. Similarly, the figures in Appendix E show comparison of
real and estimatedαi . The structural similarity (SSIM) index between real and estimated images was
found to be in the range of 0.86 to 0.99 for both xδ andαi (the higher the better, with 1 signifying perfect
similarity) across different values of i . Appendix G shows progression of our diffusion process compared
with conventional DDPM process showing a visual evidence our faster convergence in both forward as
well as reverse direction.

(A) Real image, x0 (B) Image scale, xδ (C) Scale estimator output, x̂δ

FIGURE 3: Illustration of real image vs Image Scale vs Denoised output from VAE.

Details about the architecture of the VAE are in Appendix C. This forward process design accelerates the
reverse diffusion process via two sources:

1. Acceleration due to shortened forward trajectory as shown in Proposition 3.2.3 reducing the
diffusion process steps by 50-75%.

2. The image scale approximation acting as a regularizer affords a simultaneous parallel generation
of reverse diffusion steps avoidingmultiple iterative runs of the trained parallel diffusionmodel.
This results in overall reduction of generation time at least by a factor of 4. This is explained in
the next sub-section.

7
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3.3 REVERSE-TIME DIFFUSION MODELING

To proceed with a reverse-time diffusion we estimate x̂δ, βi , αi and αi using the VAE, Gθ(xi , i ), as
discussed in theprevious subsection. In conventional designs the same trainednetwork is used iteratively
to generate the reverse trajectory sample at a particular time-step by using the generated sample for
previous time-step as input. This provides evidence that the same architecture has a sufficient capacity
to process the semantic information hidden in the noisy image at any time-step. Theoretically, based on
the Universal Approximation Theorem, the conventional GDMs can also try to generate all the steps
parallelly by relying on a prohibitively large neural network much too difficult to train.

While conventional GDMs learn to approximate the posterior distribution, q(xi−1|xi ,x0) as pθ(xi−1|xi ),
our reverse diffusion model on the other hand approximates it using pφ(xi−1|xi , x̂δ). Thus, the scale
estimator autoencoder, Gθ(xi , i ) is central to the proposed model. It generates the image scale ap-
proximation as an informed prior regularizing our parallelized reverse diffusion model. The overall
architecture of our parallelized reverse diffusion model using a U-net architecture, is shown in Fig.-4 in
Appenix C. In adapting it to our proposed methodology, the following modifications are in order:

1. We also fuse (by addition to feature maps) x̂δ predicted from the image scale autoencoder
Gθ(xi , i ).

2. We modify the structure of the last layer of the whole model to predict the additive noise,Z j for
all the preceding time-steps ( j ∈ {i −1, · · · ,1}) in different channels of the last layer. While the
one time complexity of our model is higher than existing competing models, unlike the latter,
only a single execution is required of the trained model to obtain a clean image x0. This thus
results in an overall reduction in sample generation time.

Please refer to Appendix C formore details. ThemodelRφ(xi , x̂δ, i ) (with trainable parameters,φ) receives
a noisy image xi , its predicted scale x̂δ and time-step information i as input and predicts additive noise
for all the steps of the forward diffusion in parallel. These predictions can then be used to generate the
reverse trajectory using Eqn.-6 with ϵφ(x j , j ) replaced by predictions, Z j , j ∈ {1, · · · ,T } of the model.

The last layer of the whole network has T feature maps. The j th feature map, Z j , j ∈ {1, · · · ,T }, is:

Z j =M j ⊙G j

(
ZD ,K ,P(i ),H (x̂δ);φ j

)
, (14)

where,ZD ,K is the output of the last decoder, with K being the total number of decoders. φ j ⊂φ. M j
is a channel mask which is all 1’s if j < i , and otherwise all 0’s. This ensures that only predictions for
time-steps preceding i are made. G j (.) is a feature map implemented using a small neural network. The
fusion of hidden information in xδ, estimated as x̂δ allows us to reduce the parameter complexity of G j (.).
P(i ) is a non-linear mapping of the input time-step i with the same dimensions as a single channel of
the decoder output,ZD ,K . H (x̂δ) is a non-linearmapping of x̂δ. The parallel prediction of noise outputs
for all the steps (per Eqn.-14 ) underlines the differences with a conventional U-Net based design. So,
for an RGB image, while conventional U-Net models have a 3-channel output, our model has a 3 x 500
channels output for a 500 time-steps trajectory. Additionally, just like fusion of time-step embedding in
conventional models, image structure information in the form of xδ is also fused inside the U-Net. All T
optimization objective functions are similar to those used in conventional DDPM (Ho et al., 2020):

L(φ, j ) = Ei ,xi [||Z j − ϵ̃ j ||22], j ∈ {1, · · · ,T } (15)

For j > i , L(φ, j ) is fixed to 0 as a consequence of the same argument of using the maskM j . L(φ, j ) for
different values of j are optimized in parallel. The parameters of the common network backbone are
thus:φb = {φl |φl ∈ φ,φl ∉ φ j ,∀ j } are trained by all the L(φ, j ), while the parameters φ j of a particular
G j (.) are trained only by its particular loss function L(φ, j ).
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The procedure for generating the final clean image is shown in Algorithm 1. It is similar to the one used
by (Ho et al., 2020), the difference being that the scheduling parameters are calculated from x̂δ and only
a single forward pass through the model Rφ(.) is required to predict all denoising terms ϵφ(., j ) in the
Eqn.-4, as they are available in parallel in the form of Z j .

4 EXPERIMENTS AND RESULTS

Themodels were trained on Cifar10 and CelebA datasets for fair comparison with other models. The
images were first normalized to the range [ϵ,1]. Note that a small ϵ= 4×10−3 is added to all x j

0 to ensure
their values are greater than 0 so that αi vary with i . Time-step inputs to the modified U-net for the
reverse diffusion model were encoded using sinusoidal positional embedding (Vaswani et al., 2017).

Appendix H shows some generated examples for CIFAR10 and CelebA datasets. We compared our
algorithm to DDPM (Ho et al., 2020), a discrete timemodel like ours, the Stochastic Differential Equation
(SDE) based continuous model introduced by Song et al (Song et al., 2021b), DDIM (Song et al., 2021a),
an accelerated modification of DDPM and DPM Solver applied over vanilla DDPM(Lu et al., 2023).
Tables 1 and 2 show image generation performance of the thesemodels on CIFAR10 and CelebA datasets
respectively in terms of number of trainable parameters, FID scores and execution time. Training and
inference was done on a single NVIDIA Tesla V100 SXM2 32 GB GPU. Most research efforts, such as
(Song et al., 2023; Lu et al., 2022; Salimans & Ho, 2022; Chen, 2023; Chen et al., 2024), focus on fast
sampling using fast ODE solvers applied to the backward diffusion of SDE based model. A continuous
time version of our model will appear in a future paper as it is out of scope of the present paper due to
space limit. These fast solvers will be compatible and can be applicable to our continuous timemodel
as well, providing further acceleration.

While the image quality of our model is competitive, its execution time is at least 4 times lesser than
that of vanilla DDPM (our 0.3 second against their 1.23 seconds in case of CIFAR10) and comparable to
DDIM even whenmore time-steps are used (our 500 vs their 100 steps). The SDE basedmodel effectively
requires orders of magnitude more steps as a result of correction required due to MCMC subsampling.
Our model on the other hand requires only 200 time-steps and 500 time-steps long trajectory to provide
comparable performance, and even these steps of the trajectory are generated in a single run of the
model.In general, generation quality is proportional to the number of time-steps in the trajectory. This
is evident in Tables-1 and 2 from the decreasing FID scores in the case of DDIM and DPM Solvers
with increasing number of time-steps. Our models produce lower FID scores in comparison to DDIM
models with 1000 steps. DDIMmodels with fewer steps produce higher FID scores. Same holds true for
DPM Solver based outputs also. Our model has more trainable parameters because of the added scale
VAE,Gθ(.) and the multiple parallel out channels, Zi in Rφ(.). Specifically, in the case of model trained
for CIFAR10 the 71.5 million parameters comprise 30.3 million parameters of VAE and 41.2 million
parameters of the revers diffusion model. In the case of the model trained for the CelebA dataset, these
numbers were 61.3 million and 84.2 million respectively. Consequently, the slightly increased parameter
complexity in our models is compensated by just a single forward pass required by our model.

5 LIMITATIONS AND FUTURE WORK

In addition to keeping T smaller than that of conventional DM, our pixel-aware forward diffusion
approach yields an overall accuracy and time advantage over conventional models. Reducing the
number of time-steps T of the diffusion process sets an upper bound on the choice of γ. Larger γ
results in faster convergence to standard normal distribution in the forward direction and provides
image scale without detailed features for reconstruction. Using a value greater than T results in an

9
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Model #Param(M) #Steps FID Time(sec)
DDPM 35.7 1000 3.28 1.26

SDE based 31.4 1000 2.99 47.67
DDIM 35.7 10 13.36 0.03
DDIM 35.7 100 4.16 0.33
DDIM 35.7 1000 4.04 3.22

DPMDiscrete Solver 35.7 10 5.37 0.02
DPMDiscrete Solver 35.7 34 4.16 0.05
DPMDiscrete Solver 35.7 100 3.94 0.15
DPMDiscrete Solver 35.7 200 3.77 0.31
DPMDiscrete Solver 35.7 500 3.41 0.76

Our Model 71.5 200 3.15 0.3

TABLE 1: CIFAR10 Generative Performance

Model #Param(M) #Steps FID Time(sec)
DDPM 78.7 1000 3.51 10.19

SDE based 65.6 1000 3.20 246.69
DDIM 78.7 10 17.33 0.53
DDIM 78.7 100 6.53 5.55
DDIM 78.7 1000 3.51 48.44

DPMDiscrete Solver 78.7 10 4.85 0.04
DPMDiscrete Solver 78.7 34 4.53 0.12
DPMDiscrete Solver 78.7 100 4.52 0.33
DPMDiscrete Solver 78.7 500 3.79 1.48

Our Model 145.5 500 3.25 1.3

TABLE 2: CelebA Generative Performance

exceedingly fast decay in the forward direction which breaks the Markovian condition, while using a
smaller value results in non-convergence of some lower valued-pixels to standard normal distribution.
Lifting the hyperparameter nature of γ is part of our future work, and our plan is for a systematic choice
by jointly considering the data/pixels distribution to optimize some associated energy functional while
ensuring the existence of a stationary distribution as is commonly the case for aMarkov chain. Additional
experiments with much more diverse datasets are also planned for a more profound understanding of a
universal selection of parameters.

A particularly interesting angle about this stochastic diffusion is to investigate the performance of our
proposed diffusion by exploring the internal mechanics of the encoder and decoder in the context of
diffusion processes. Our model learns the reverse diffusion process conditional on the global image
structure (via xδ). A future challenge is to discover the extent of control over a diffusion process for a
system of interacting particles (Bao & Krim, 2004; Krim & Bao, 1999) instead of parallel independent
forward diffusions as is the norm in current models. Given the asymmetry of information processing
between the encoder and decoder implementation of the U-Net model uncovered in (Li et al., 2023), it
would be interesting to study what kind of semantic information is learned by the two sub-components
of the model. Finally, we also intend to study how our approach works on transformer based models to
improve performance.

6 CONCLUSION

In this paper, we have introduced a novel forward diffusion model that significantly improves upon the
limitations of conventional models in terms of convergence speed and computational efficiency. By
leveraging the microscopic structure of clean images to learn the drift and diffusion coefficients, our
model degrades the Signal to Noise Ratio much faster than traditional approaches. Drawing inspiration
from the water pouring algorithm, we implemented a pixel-based scheduling strategy that optimizes
forward diffusion by considering the initial values of individual pixels. This method achieves isotropic
Gaussian distribution across the pixels more efficiently than conventional, pixel-agnostic diffusion
methods.

Furthermore, we utilized an autoencoder to learn a comprehensive diffusion schedule. The learned
knowledge of the global structure of the clean image inspired us to develop a reverse-time data driven
diffusion model to generate the entire reverse-time diffusion trajectory in one step. This approach
not only maintained image quality but also accelerated the reverse-time diffusion process by up to
10 times compared to existing models. Our findings demonstrate that addressing the inefficiencies
of universal diffusion in generative models through a detailed, pixel-focused approach can lead to
substantial improvements in performance, paving the way for more effective and efficient generative
image modeling.

10
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A PROOF THAT EXPONENTIAL PIXEL VALUE BASED DIFFUSION FOLLOWS WATER POURING
ALGORITHM

In this section, we will show that in each step higher variance noise is being added to a higher value pixel
in comparison to a lower value pixel.

SNR of pixel j at time t is calculated as

SNR( j , t ) = (x j
0 )2

eγ t x
j
0 −1

(16)

Thus, the rate of change of SNR over time t is

d SNR( j , t )

d t
=− γ(x j

0 )3

(eγ t x
j
0 −1)2

(17)

From the Taylor series

ex = 1+x + x2

2!
+·· ·

we can show that for any small value x > 0, the following inequality is true.

0 < xex/2 < ex −1 < xex

This leads to
0 < 1

xex < 1

(ex −1)
< 1

xex/2

Applying above inequality to our case, we can see that SNR at time t can be expressed as

0 < x j
0

(γ t )eγ t x
j
0

< (x j
0 )2

eγ t x
j
0 −1

< x j
0

(γ t )eγ t x
j
0 /2

(18)

And the magnitude of rate of change of SNR with time, t can be expressed as

0 < x j
0

γ t 2 e2γ t x
j
0

< γ(x j
0 )3

(eγ t x
j
0 −1)2

< x j
0

γ t 2 eγ t x
j
0

(19)

From Eqns. 18 and 19 we can see that for t belonging to a small interval, t ∈ [0, tδ], both the SNR as well
as the magnitude of its rate of change of SNR at pixel x j

0 are very high and it quickly approaches 0. In
this small interval [0, tδ], the SNR decays at the rate of t−2. The decay rate is proportional to x j

0 also.
Therefore, when 0 < x j

0 < xk
0 , in the interval t ∈ [0, tδ], we have

|d SNR( j , t )

d t
| < |d SNR(k, t )

d t
|

B PROOF OF FASTER CONVERGENCE OF OUR FORWARD DIFFUSION PROCESS

For any discrete diffusion process satisfying, Eqn. 2, the corresponding continuous SDE is

dxt =−βt

2
xt d t +

√
βt dw, t ∈ (0,1) (20)
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From theory of Ito Calculus (Särkkä & Solin, 2019; Oksendal, 2000; Lara, 2006), we have

xt −x0 −
∫ t

0
f(xs , s)d s = xt −x0 −

∫ t

0
−βs

2
xs d s

is a martingale (for definition see (Oksendal, 2000)). Thus we can calculate rates of change of mean of
the image at t as:

d E[xt ]

d t
= E[f(xt , t )] =−βt

2
E[xt ] (21)

This leads to

E[xt ] = x0e
−
∫

t

0

βs

2
d s

To focus on analyzing the algorithm, we simply letβt = at (a linear function of time). Hence the expected
trajectory of the DDPM follows the exponential decay of the form

E [xt ] = x0e−
at
2

2

. (22)

We now compare the expected trajectory of our model with the trajectory in Eqn 22

The continuous SDE corresponding to our pixel-wise diffusion given in 3.2.3 is:

d x j
t =−γx j

0

2
x j

t d t +
√
γx j

0 d w j , (23)

This SDE can be derived from the discrete iterative forward diffusion equation of our process using the
same approach as described in (Song et al., 2021b).

In our case, the rate of change of mean turns out to be:

d E[x j
t ]

d t
=−γx j

0

2
E[x j

t ] (24)

This leads to
E[xt ] = x0 ⊙e−

γx0 t
2 (25)

By further choosing γ in such a way that γx j
0 > at , ∀ j ∈ {1, · · · ,d}, t ∈ (0,1], we can ensure that the

trajectory in Eqn 25 decays faster than the DDPM trajectory in Eqn 22.

This demonstrates that our diffusion accounts for the pixel value in deciding the rate of decay in the
forward process, which in turn requires a selection of a specific value of γ as described in Section 3.2.1
to ensure effective pixel-wise diffusion.

The drift term of each pixel diffusion can be further generalized to−Γ(x j
0 , t )x j

0 , where Γ(x j
0 , t ) is a positive

function of t and x j
0 , monotonic in t . Similarly, Over all the pixels, we can have a vector valued function

Γ(x0, t ) ∈Rd .

For comparisonwith conventionalDDPM,onecan selectΓ(x0, t ) = γβt
2 x0, whereβt is the sameparameter

used in conventional DDPM. Thismakes the diffusion schedule pixel-dependent. If βt = at , we will have

E[xt ] = x0 ⊙e−
γax0 t2

2 (26)

This demonstrates the acceleration our pixel-wise modulated diffusion has over the DDPM algorithm.
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In the case of a single pixel, we have an exponential function that we can illustrate using the pixel
value. We have also compared the conventional diffusion models with our design by conducting experi-
ments with toy examples, where noise added in the forward direction is completely known beforehand.
Specifically, we conducted reverse trajectory generation experiments where the entire forward direction
trajectory (i.e., the noise samples Z in Step-5 of the Sampling algorithm-1) was known beforehand. In
Sampling algorithm-1 the scale estimate x̂δ was replaced with actual scale value xδ and we checked
the MSE between generated reverse direction image, and the real image x0. Appropriate value of γwas
chosen based on these experiments.

C MODEL ARCHITECTURE AND OTHER DETAILS

FIGURE 4: Reverse diffusion model architecture

As autoencoder training involved learning simpler image structures, the depth of the network is kept
much lower. Each autoencoder encoder/decoder layer is composed of a single residual convolutional
block along with self attention of 16×16 context size followed by a downsampling/upsampling by an
order of 2. Group normalization is applied to the input of each convolutional layer. The time-steps are
encoded using Sinusoidal positional embeddingwith encoding vector size chosen as 128. The bottleneck
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layer outputs composed of feature maps of 4×4 resolution are flattened and projected to a larger size
latent space to ensure generation diversity.

Fig.-4 shows the architecture of our parallelized reverse diffusion model. Our reverse diffusion model is
based on U-Net architecture. The same time encoding employed by the autoencoder was also used by
the reverse diffusion models. Salient aspects of our reverse diffusion model are:

1. Like conventional U-Net, we have multiple layers of downsampling encoders,Ek followed by
multiple upsampling decoders, Dk , k ∈ {1, · · · ,K }. Each encoder/decoder layer consists of 2
residual convolutional blocks with self attention.

2. At the input of any decoder/encoder, Dk/Ek of layer k, information of the input time-step
information, i and image scale estimate, x̂δ are fused by adding their learnable non-linear
mappings,Pk (.) andHk (.) respectively.

3. The last decoder layer,DK has a 512 channels output,ZD ,K

The final layer involves parallel sub-networks, G j (.), j ∈ {1, · · · ,T } to model various time-step noise
predictions. Each sub-network is modeled as 2 successive residual blocks with self attention with the
number of output channels being same as the input image (i.e. 3 in case of RGB images) generated
using Eqn.-14. Adam optimizer is used for backpropagating through all the networks. The learning rates
used for CIFAR10 and CelebA database are respectively 10−4 an 2×10−4 respectively, with training being
done over 1.5 M iterations. The batch sizes for the two datasets are, respectively, 128 and 16. Finally,
the number of time-steps, T of the diffusion process are fixed to 200 and 500 respectively. Training
and inference was done on a single NVIDIA Tesla V100 SXM2 32 GB GPU. The same GPUwas used to
compare execution time of conventional models.

D ALGORITHM FOR SAMPLING FROM THE TRAINED REVERSE DIFFUSION MODEL

ALGORITHM 1: Sampling algorithm

Require: Pre-trained scale autoencoderGθ(.) and reverse diffusion model, Rφ(.).
Input: Noisy image xi and time-step i of the forward diffusion
Output: Clean image x̂0
1: Scale estimate: x̂δ =Gθ(xi , i )

2: α j = exp

{
(

1

T
log(x̂δ))

}
, ∀ j ∈ 1, · · · ,T

3: α j = exp

{
(

j

T
log(x̂δ))

}
, ∀ j ∈ 1, · · · ,T

4: β̃ j =
1−αj−1

1−αj
(1−αj), ∀j ∈ 1, · · · ,T

5: Reverse diffusion noise predictions: Z= {Z1, · · · ,ZT } =Rφ(xi , x̂δ, i )
6: Initialization j = i , x̂ j = xi
7: while j > 0 do
8: ϵ∼N (0,I)

9: x̂ j−1 = 1p
α j

⊙
(

x̂ j −
1−αj√

1−αj

⊙Z j
)
+

√
β̃ j ⊙ϵ

10: j = j −1
11: end while
12: return x̂0
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E REAL AND LEARNED SCHEDULING PARAMETERS COMPARISONS

(A) Real αi (B) Estimated αi

FIGURE 5: Real αi and estimated αi (calculated from the image scale estimate, x̂δ for i ranging from 1 to
20.

F EXAMPLE OF DIRECT DENOISING ATTEMPT

Toprove our design choice of using the VAE,Gθ(xi , i ) to estimate image scale first, we also trained another
VAEwith same architecture andnumber of parameters as our Scale Estimator,Gθ(xi , i ) to directly denoise
the noisy image xi . Fig.-6 shows example outputs from this VAE. As is evident in the figure, the outputs
have various unnecessary artifacts. In comparison, as is evident from Fig.-3, our scale estimator VAE
doesn’t have such spurious artifacts. x̂δ works as an informational prior in our reverse generative model,
without unnecessary spurious information, thus reducing their complexity. x̂δ with only coarse level
information about the image structure, is a better-informed prior.

FIGURE 6: Examples of images generated from a denoising VAE with same architecture as our Scale
estimator VAE
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G FORWARD AND REVERSE PROGRESS EXAMPLE

Fig.-7 shows progression of our pixel aware diffusion process of 500 time-steps. For sake of brevity and
easier presentation only a subset of 500 time-steps (seleted at every 20th time-step) is shown. Fig.-8
shows conventional DDPM process applied on the same image again over 500 time-steps. As is visible,
our process converges faster than conventional DDPM. For more clarity, Fig.-9 and 10 show first 100
steps in the case of forward direction, and last 100 steps in the case of reverse direction of the same
processes sub-sampled at every 5th time-step.

(A) Pixel-aware forward diffusion process. (B) Pixel-aware reverse diffusion process.

FIGURE 7: Pixel-aware diffusion process progression of 500 time-steps (showing here only a subset of
500 images, selected at every 20th time-step).

(A) Conventional DDPM forward diffusion process. (B) Conventional DDPM reverse diffusion pro-
cess.

FIGURE 8: Conventional DDPM diffusion process progression of 500 time-steps (showing here only a
subset of 500 images, selected at every 20th time-step).
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(A) Pixel-aware forward diffusion process.

(B) Pixel-aware reverse diffusion process.

FIGURE 9: Pixel-aware diffusion process progression of first 100 time-steps for forward and last 100
time-steps for the reverse direction (showing here only a subset of 100 images, selected at every 5th
time-step).

(A) Conventional DDPM forward diffusion process.

(B) Conventional DDPM reverse diffusion process.

FIGURE 10: Conventional DDPM diffusion process progression of first 100 time-steps for forward and
last 100 time-steps for the reverse direction (showing here only a subset of 100 images, selected at every
5th time-step).
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H GENERATED IMAGE EXAMPLES

FIGURE 11: Cifar10 examples
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FIGURE 12: CelebA examples
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