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Figure 1: Learning curves of PETS-POMP (Ours) and baselines on three continuous control tasks
from OpenAl Gym benchmark. The solid lines represent the mean and the shaded areas represent the
standard deviation among trials of 8 different seeds. As shown in the figure, our method achieves better
performance compared to baselines on InvertedPendulum and Cheetah while achieving comparable
results on Hopper. Moreover, PETS-POMP outperforms POMP on all tasks while also improving its
training stability.

B IMPLEMENTATION DETAILS

In this section, we provide some details for the implementation of our method.

B.1 DBAS DETAILS

Here we provide more implementation details for DBAS (?). The pseudocode for DBAS procedure
can be found in Algorithm[I] In our method, we use a mixture of Gaussians as the generative model
G. We use the Expectation-Maximization (E-M) algorithm (?) to train the mixture of Gaussians.
Furthermore, we use an initial set of actions drawn from the policy for ;.. We repeat the DBAS
procedure (Line 5] of Algorithm [I)) for 10-20 iterations.

B.2 HYPERPARAMETERS

In Table[TJand Table[2]and 3] we present the set of hyperparameters used in PETS-POMP, PETS-MBPO
and PETS-SAC respectively.

B.3 ACTION INITIALIZATION

As we leverage gradient-based optimization to find the approximate optimal action, action initializa-
tion can make a difference in the quality of the approximation. This is also supported in our regret
analysis in Appendix [C] We empirically have found that initializing the action from the action that
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Algorithm 1 DBAS

Input: predictor oracle O(z), GenTrain(x;), percentage of least-performing samples [¢ = 0.9],
number of samples [M = 1000], initial data set [z, = 0]
1: set < Tinit

if xiy; is empty then

set <— randomly initialized data
end if
while not converged do

G < GenTrain(set)

set «— x; ~ G

scores; + O(x;)

set < x; if it is not among the ¢'" percentage least-performing samples based on scores
end while
return setg
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would have been taken by the underlying algorithm without the exploration helps with getting better
approximations.

Table 1: Set of hyperparameters used in PETS-POMP.

Inverted Walker2d Cheetah Ant Humanoid Hopper
Pendulum
. exploration 0.6 0.3 0.8 0.3 0.8 0.8
probability
TNgamples number Of 5 50 10 5 10
P posterior samples
Ngrad st number of gradient 40 100 100 60 100 50
ascent steps
. gradient ascent 0.002 0.01 0.01 0.05 0.05 0.005

learning rate

Table 2: Set of hyperparameters used in PETS-POMP.

Cheetah Ant Hopper
0.8 04 0.4

exploration
probability
number of
posterior samples
number of gradient
ascent steps
, gradient ascent
learning rate

50 5 5

Nsamples

100 40 40

Ngrad_steps

7 0.01 0.01 0.01

Table 3: Set of hyperparameters used in PETS-SAC.

Cheetah Ant Hopper

exploration
€ probability 0.7 0.4 1.0
number of
Msamples  posterior samples > 3 3
Migrad_steps number of gradient 0 40 20

ascent steps
, gradient ascent
learning rate

i 0.02 0.01 0.01
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C REGRET ANALYSIS

We expand upon the regret analysis presented in ?, extending it to approximate greedy policies.
We demonstrate that under certain assumptions on the action-value function, the regret bound of

0] (d3/ 2H32\T ) can be achieved, even when the optimal action ¢* cannot be trivially identified
and has to be approximated.

To this end, we first state the analysis setting. Consider an episodic MDP of the form (S, A, H, P, r)
where S is the state space, A is the continuous action space, H is the episode length, P = {P, }1_,
are the state transition probability distributions, and r = {r),}}__, are the reward functions where
S X A— [0,1]

Furthermore, 7, () denotes the action that the agent takes in the state « at the h-th step in the episode,
and 7 is the set of policies. The value and action-value functions are defined as:

Vir(x) =E, lz T (Tpr,ap) | op = .”L"| .

h’'=h

QZ({E,G) =E

H
Z Tht (xh/,ah/) ‘ Th = X,Qp — a] .

h'=h

The Bellman equation and Bellman optimality equations are as follows:

Qn(x,a) = (rn +PuVily) (w,a),  Vi(2) = Qf (w,mn(2)), Vi (x) =0.

QZ(xaa) = (T/L""IP}LV}:—ﬁ-l) (J?,CL), Vi;k(x) :QZ (JJ,?T;;(J?)), VP*I+1(1‘) =0.
where V¥ (z) = Vi (2), Q;(2,a) = QF (x,a), 7* is the optimal policy and [P}, V},11] (z,a) =
Em’NIP’h(-\m,a)Vh+1 (-T/)

We measure the suboptimality of an agent by the total regret defined as
Regret(K Z { %4 (Ilf)} (1)
k=1

where ¥ is the initial state and 7y, is the policy agent uses for episode k. and K is the total number of
episodes which the agent interacts with the environment with the goal of learning the optimal policy.

Consider the following loss function for the action-value function from ?:

k—1 2
I ) = 3 |on o) + @l (aF2.0) = @ uni (o) | A anl @)
=1

where ¢(., .) is a feature vector, wy, is the Q function parameters and ) is the regularization constant.
We consider a linear function approximation for the Q function and:

QZ(7 ) < min {¢(7 ')TwZ7Jk7H —h + 1}+ (3)

where wf 7k s the parameter vector obtained after .J, iterations of the Langevin Monte Carlo (LMC)
process, applied to the loss function defined in Eq. equationd] as described in Algorithm [2] We
further denote V,"(2) = maxae4 QF (2}, a).

Note that while the action-value function Qh is linear with respect to the parameter vector w, it
is not necessarily linear in the action a. Furthermore, the loss function L¥ (wy,) includes the term
ViF, 1 (x}, 1), which, in a high-dimensional continuous action space, cannot be computed exactly due
to infinite actions. Consequently, in Algorithm [2]and our regret analysis, we substitute this term with

the approximate value function, Vh , as defined in Equation equation ??. This approach leads to the
formulation of the following modified loss function:
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Algorithm 2 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) with Approximate
Greedy Policy
Input: step sizes {mr >0},-,, inverse temperature {S3;},~;, loss function
Li(w) B B

1: Initialize w,* = 0 for h € [H],Jo =0

2: forepisode k =1,2,..., K do
3:  Receive the initial state s¥

4. forsteph=H,H—1,...,1do
5: w0 = b Ik
h h

6: forj=1,...,J;do

7: ek’] ~ N(0,1)

8: wp? = gL (W) S
9: end for

Jr

10: Qb ) min{Q (wp7 o)) H —h+1]

11: initialize set of actions aj,

12: for 1terat10nt =1,2,. t* do

13: ap, =ag,_ 1+VQ( aj; ,_,) {as outlined in Eq ??}
14: end for

15: V() « Q(., ah +~) {approximate optimal value}

16:  end for

17. forsteph=1,2,...,H do

18: Take approximate optimal action afl based on a’fht* , observe reward r,’i (sfl, aﬁ) and next

state sy

19:  end for
20: end for

E

—1 . 9
Lk (wn) = 3 [ (a7, 07) + Vi (@70) = Q (wns o (wh ai) |+ AJwnl® 4

T=1

We present a modified version of the Langevin Monte Carlo Least Squares Value Iteration
(LMC_LSVI) algorithm (?) in Algorithm [2] Contrasting with Algorithm 1 in ?, Algorithm [2]
incorporates the use of an approximate value function, denoted as V, and employs approximate
optimal actions. In the subsequent sections, we demonstrate that under certain assumptions about the
action-value function, Algorithm [2]achieves the same target regret bound.

Proposition C.1. As defined in ?, let w*’* be the approximation of posterior parameters after J;,
iterations of LMC as defined in Eq ?? for the k’th episode where h is the horizon step. Under the loss
defined in Eq wk7x follows a Gaussian distribution where the mean vector and covariance matrix
are defined as:

i = AL A ZA"’“ alp (=A@, o
k
mt =3 éAgk CATER (T A (N T T A) T Al ©)

where A; = I — 2n;\} fori € [k].

Proof. We refer readers to Proposition B.1 of ? for the proof. O

Definition C.2. (Model Prediction Error). For any (k, h) € [K] x [H], we define the model prediction
error associated with the reward ry,,

lﬁ(a:,a) =rp(z,a) + th/;f_H(m, a) — Qﬁ(x, a). @)
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Proposition C.3. For an action-value function Q(x,.) that has an L-Lipschitz continuous gradient
and satisfies the Polyak-Lojasiewicz Inequality (PL) inequality for some 1 > 0 as stated below:

SIV@h )l 2 1 (Qh(r,0) ~ Qf(wa) Ve ®

where
a* = argmax, Q¥ (zp,, a)

Qh (en.0")~ @k (wn.00)
KH v

ViF(xn) — VE(xy) < e 9)

is the optimal action. For t* >= (%log( )) iterations we have:

_ @3/23/2 T

where Epx = ——KH -

Proof. As proved in Theorem 1. of 2, with the step size of %, for an action-value function Q(z, .)
that has an L-Lipschitz continuous gradient and satisfies the PL inequality, we have

t
Qh(ana") = Qhlan,ar) < (1= ) (Qh(n,a*) = Qh(wn, a0)) (10)

where a; is the action after ¢ iteration of gradient ascent:
a1 = a; + VQp (an, ar) (1n

using 1 — u < exp(—u) on Eq[10]we have
Qh(an, a") = Qhlwn, ar) < exp (=) (Qh(wnsa”) = Qh(wnsa0))

k * k
So for t* >= I%log(KHQh(wgs’Z;;g’:/(;’“ao) ) we have:

X d3/2H3/2\T
QZ(‘T}HG’ ) - Qi(xhyat*) < T KH = Epx (12)
by applying the definition of th we have:
Vii(an) = Vi (2n) < e (13)
O

Proposition C.4. Under the approximate value function V}f we have:
]I”thk+1(ac, a) — PthkH(:r, a) < g4 (14)
where £+ is defined in Proposition|[C.3]

Proof. Applying the definition of IP;, we have:

[P Vis1] (2,0) = Epropy (asa) Vit1 (27) < Boromy (s Vit (27) + &4 (15)
= [PuVii1]| (@) + 2o (16)
where the first to the second line is by using Proposition [C.3} O

Lemma C.5. Let A\ = 1 in Eq[} Define the following event
E(K,H,0) = {’(ﬁ(a:,a)Tﬂ)\E —rp(z,a) — PthkH(x,aﬂ
< 5H\/E05H¢(a:,a)H(A,C)fl,V(h,k) € [H] x [K] and¥(z,a) € Sx A}.
h
a7

where we denote

1/2
2v2K Bs 5 2
= _— 1 —
Cs i% +lo 5

1
3 log(K + 1) + log (

and Bs = (%Hd\/?—i— 3%%(13/2), Then we have P(E(K, H,0)) > 1 — 6.
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Proof. We refer readers to Lemma. B5. of (?) for the proof. O]

Lemma C.6. Let A = 1 in EqH| For any § € (0,1) conditioned on the event E(K, H, ), for all
(h,k) € [H] x [K] and (z,a) € S x A, with probability at least 1 — 62, we have

— (ru(@, ) + PV (2, a) = Qi (, 0)lj (2, a)) (18)
2dlog(1/0
< | 5HVACs 45 2dlog(1/9) +4/3 | |o(z, a)l i -1, (19)
3BK ( h,)
where Cj is defined in Lemma|[C.3]
Proof. We refer readers to Lemma. B.6 of (?) for the proof. O

Lemma C.7. (Error bound). Let A\ = 1 in Eq{4} For any 6 € (0,1) conditioned on the event
E(K,H,06), forall (h,k) € [H] x [K] and (z,a) € S x A, with probability at least 1 — 6%, we have
2dlog(1/0)

—IF(z,a) < | 5BHVACs + 5
38K

+4/3> 6wl (ppy +eers QO)

Proof. using Lemma|[C.6]and Proposition [C.4 we have:

— (Th(z, a) + th/}ﬁ_l(x, a) — Qf(x, a).lﬁ(:ﬂ, a) + 6t*)

2dlog(1/6
=1z a) —et* < 5HVAC5 + 5 M +4/3 | ||lo(x,a)ll/ ey -1
38K (a%)

O

Lemma C.8. Let A = 1 in EqH} Conditioned on the event (K, H,6), for all (h, k) € [H] x [K]
and (r,a) € S x A, with probability at least 2\/% we have

— (rh(x, a) + IP’hV,f’Jrl(x, a) — Qﬁ(x, a)) <0 (21

Proof. We refer readers to Lemma. B.7 of (?) for the proof. O]

Lemma C.9. (Optimism). Let A\ = 1 in Eq Conditioned on the event £(K, H,96), for all
(h,k) € [H] x [K] and (x,a) € S x A, with probability at least —~—, we have

2v/2erm’
I (z,a) <0 (22)
Proof. We immediately get the stated result by using Proposition [C.4]on Lemma|C.§] O

‘We restate the main theorem:
Theorem C.10. Let A = 1 in Eq 3 = O(HVd) in Algorithmand § € (2\/%’ 1). For

any episode k € [K), let the learning rate n, = 1/ (4/\max (AE)), the update number for LMC in
Eq ?? be Jy, = 2k log(4H Kd) where ki, = Amax (Aﬁ) /Amin (AZ) is the condition number ofA’fL
defined in Proposition Under the assumption that the action-value function Qfl in Eq|3|has an
L-Lipschitz continuous gradient and satisfies the Polyak-Lojasiewicz Inequality (PL) inequality Eq/[8]
the regret of Algorithm 2 under the regret definition in Definition[l} satisfies

Regret(K) = 9] (d3/2H3/2\/T> , (23)

with probability at least 1 — §.
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Proof of Theorem By Lemma. 4.2 in (?), it holds that

K
k
Regret(T) =Y (Vi' (a) = V7" (a})) @4
k=1
K H K H
=D D Ene [(@Qh (@) mi (L an) =i (- 2n)) |2 = 2f] + )0 Dy (25)
k=1t=1 k=1t=1
(i) (ii)
K H K H
+ZZMZ+ZZ <l (s an) | 21 = af] =1 (k. ai)), (26)
k=1t=1 k=1h=1
(iii) (iv)
where (., .) denotes inner product which in continuous spaces is defined as (f, g) = [}, f nf

Furthermore, D,’j and MFE ¢ are defined as

Df = ((@h - Qi) (ah )k (ooh)) - (@h - Q) (ahah).

My =Py, ((Vifﬂ - Vi?:l)) (xliivalii) - (th+1 - Vhﬂfl) (:cﬁ) :

Bounding Term (i):  Using Proposition[C.3|we have Q(zp,a*) — Q(zn, ai+) < &4-.

Note that 7 is approximately greedy w.r.t Q¥ and 7% (a;+) = 1 where a, is the approximate optimal
greedy action from Eq[12} The largest value that (Q¥ (zy,,-) , % (- | @x) — 7} (- | @4)) in Eq[25|can
take is Q(xn, a*) — Q(xn, as+ ) which happens if 7} (a*) = 1 where a* = argmax,, Q¥ (zp, ). This
completes the proof using Eq[12]

Bound for Term (ii): With probability 1 — §/3 we have:
K H
> > Dy < V2H?Tlog(3/6) (27)
k=1h=1

We refer the readers to the Appendix. B.2 of (?) for the proof.

Bound for Term (iii): With probability 1 — §/3 we have:
K H
>N M < V/2H?Tlog(3/9). (28)
k=1h=1

We refer the readers to the Appendix. B.2 of ? for the proof.

. . . eqe _ é _ 1
Bound for Term (iv): With probability at least (1 57 3ven

) we have:

K H
SN (B [ (onvan) |1 = k] — 1 (ah,af)) < O (a¥2HY2VT) (29)

k=1h=1
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Suppose the event £ (K, H, §’) holds. by union bound, with probability 1 — (5’ 2+ 5 \/12?) , we have,

=

M=

(Ene [} (xnyan) | 21 = 2] = 15, (), af)) (30)

=~
[
—
>
Il

—li (=5, af) 31)

[N
N
M= 0=

i 2dlog (1/5")
<> 5HVdCys + 5 T ¢ (zf, af H apy K He (32)
k=1h=1 P
K H
_ <5H¢&05,+5 e LD 3) 23116 (b ah) | g + K Her (33)
P k=1h=1
2dlog (1/6' ul i
< <5Hf0 +5 (;i;/)% 3) Z\/?<ZH¢ 2t af) [ ) > + K Hey-
K h=1
(34)
/
< <5H\/QC(;/ +5 26“%(1/5) + 4/3) H\/2dK log(1 + K) + K Hey- (35)
K
/
- <5H\/305/ +5 2‘“%(1/5) + 4/3) V2dHT log(1 + K) + K He,- (36)
K
/
- <5H¢&05/ +5 M@W + 4/3) V2dHT log(1 + K) + (d3/2H3/2\/:F) 37)
K
-0 (d3/2H3/2\/T) . (38)

Here the first, the second, and the third inequalities follow from Lemma[C.9] Lemma|[C.7]and the
Cauchy-Schwarz inequality respectively. The last inequality follows from Lemma [C.5| The last
equality follows from W = 10HVdCjy +3 8 which we defined in Lemma By Lemma
the event £ (K, H, ¢") occurs with probability 1 — ¢’. Thus, by union bound, the event £ (K, H, 0 )
occurs and it holds that
K H N
Z (Er- [l’,i (Zp,ap) | 21 = m’ﬂ — 1k (mﬁ,aﬁ)) <0 (d3/2H3/2\/T)

k=1h=1

By applying union bound for (i), (ii), (iii) and (iv), the final regret bound is 0] (d3/2H3/2\/T) with
at least probability 1 — § where § € (-—7=— \/7 1).

Theorem C.11. Let A = 1 in Eq [Tk = O(H\/E) in Algorithm 2| and 6 € (2\/%, 1). For

any episode k € [K], let the learning rate m; = 1/ (4Amax (A})), the update number for LMC
in Eq ?? be Ji, = 2k log(4HKd) where ki, = Amax (AE) /Amin (AZ) is the condition number
of A’,?L defined in Proposition Let W = [wy,ws,...,w,]|T be the extended parameter space
and Q(x,a) = max;c[n) Qu, (T, a) be the optimistic action-value function. Under the assumption

that the action-value function Qh in Eq I has an L-Lipschitz continuous gradient and satisfies
the Polyak-Lojasiewicz Inequality (PL) inequality Eq[8| the regret of Algorithm[2lunder the regret
definition in Definition[l] satisfies

Regret(K) = O (d3/2H3/2\/T) , 39)

with probability of 1 — € for any ¢ € (0,1).
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Proof of Theorem In Lemma B.9 we prove that the estimation Q¥ (x, a) is optimistic with a

constant probability of at least 3 \/12? In other words, the failure probability is at most 1 — —*X

2v2er”
By extending the parameter space 1 = [wy, ws, . . ., w,]T and modelling the optimistic action-value
function using Q(z, a) = max;e[n) Qu, (, a), the failure probability will be at most (1 — 2\/12?)”
We want this probability to be arbitrarily small. To guarantee that the failure probability is less than

¢ it suffices to find an n that is large enough such that (1 — 5 \/12?)” < €. If we solve for n we have

_ loge’ . log(1/6) ,
n > T p—— We can express the latter quantity as log(2v3er) —log (22 —1) € Qlog(1/¢€)).

So, we can extend the parameter space by a factor of (log(1/€’)) to ensure that the failure probability
is less than €’. Finally, we can apply the union bound on (i), (ii), (iii), and (iv) to conclude that the
regret bound in Theorem holds with a probability of 1 — ¢’ for any ¢’ € (0,1).
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