
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRACTICAL ϵ-EXPLORING THOMPSON SAMPLING FOR
REINFORCEMENT LEARNING WITH CONTINUOUS CON-
TROLS

Anonymous authors
Paper under double-blind review

A ADDITIONAL RESULTS

Figure 1: Learning curves of PETS-POMP (Ours) and baselines on three continuous control tasks
from OpenAI Gym benchmark. The solid lines represent the mean and the shaded areas represent the
standard deviation among trials of 8 different seeds. As shown in the figure, our method achieves better
performance compared to baselines on InvertedPendulum and Cheetah while achieving comparable
results on Hopper. Moreover, PETS-POMP outperforms POMP on all tasks while also improving its
training stability.

B IMPLEMENTATION DETAILS

In this section, we provide some details for the implementation of our method.

B.1 DBAS DETAILS

Here we provide more implementation details for DBAS (?). The pseudocode for DBAS procedure
can be found in Algorithm 1. In our method, we use a mixture of Gaussians as the generative model
G. We use the Expectation-Maximization (E-M) algorithm (?) to train the mixture of Gaussians.
Furthermore, we use an initial set of actions drawn from the policy for xinit. We repeat the DBAS
procedure (Line 5 of Algorithm 1) for 10-20 iterations.

B.2 HYPERPARAMETERS

In Table 1 and Table 2 and 3 we present the set of hyperparameters used in PETS-POMP, PETS-MBPO
and PETS-SAC respectively.

B.3 ACTION INITIALIZATION

As we leverage gradient-based optimization to find the approximate optimal action, action initializa-
tion can make a difference in the quality of the approximation. This is also supported in our regret
analysis in Appendix C. We empirically have found that initializing the action from the action that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Algorithm 1 DBAS
Input: predictor oracle O(x), GenTrain(xi), percentage of least-performing samples [q = 0.9],
number of samples [M = 1000], initial data set [xinit = ∅]

1: set← xinit
2: if xinit is empty then
3: set← randomly initialized data
4: end if
5: while not converged do
6: G← GenTrain(set)
7: set← xi ∼ G
8: scoresi ← O(xi)
9: set← xi if it is not among the qth percentage least-performing samples based on scores

10: end while
11: return set0

would have been taken by the underlying algorithm without the exploration helps with getting better
approximations.

Table 1: Set of hyperparameters used in PETS-POMP.

Inverted
Pendulum Walker2d Cheetah Ant Humanoid Hopper

ϵ
exploration
probability 0.6 0.3 0.8 0.3 0.8 0.8

nsamples
number of

posterior samples 5 5 50 10 5 10

ngrad_steps
number of gradient

ascent steps 40 100 100 60 100 50

η′
gradient ascent

learning rate 0.002 0.01 0.01 0.05 0.05 0.005

Table 2: Set of hyperparameters used in PETS-POMP.

Cheetah Ant Hopper

ϵ
exploration
probability 0.8 0.4 0.4

nsamples
number of

posterior samples 50 5 5

ngrad_steps
number of gradient

ascent steps 100 40 40

η′
gradient ascent

learning rate 0.01 0.01 0.01

Table 3: Set of hyperparameters used in PETS-SAC.

Cheetah Ant Hopper

ϵ
exploration
probability 0.7 0.4 1.0

nsamples
number of

posterior samples 5 5 5

ngrad_steps
number of gradient

ascent steps 20 40 80

η′
gradient ascent

learning rate 0.02 0.01 0.01

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

C REGRET ANALYSIS

We expand upon the regret analysis presented in ?, extending it to approximate greedy policies.
We demonstrate that under certain assumptions on the action-value function, the regret bound of
Õ
(
d3/2H3/2

√
T
)

can be achieved, even when the optimal action a∗ cannot be trivially identified
and has to be approximated.

To this end, we first state the analysis setting. Consider an episodic MDP of the form (S,A, H,P, r)
where S is the state space, A is the continuous action space, H is the episode length, P = {Ph}Hh=1

are the state transition probability distributions, and r = {rh}Hh=1 are the reward functions where
rh : S ×A→ [0, 1].

Furthermore, πh(x) denotes the action that the agent takes in the state x at the h-th step in the episode,
and π is the set of policies. The value and action-value functions are defined as:

V π
h (x) = Eπ

[
H∑

h′=h

rh′ (xh′ , ah′) | xh = x

]
.

Qπ
h(x, a) = Eπ

[
H∑

h′=h

rh′ (xh′ , ah′) | xh = x, ah = a

]
.

The Bellman equation and Bellman optimality equations are as follows:

Qπ
h(x, a) =

(
rh + PhV

π
h+1

)
(x, a), V π

h (x) = Qπ
h (x, πh(x)) , V π

H+1(x) = 0.

Q∗
h(x, a) =

(
rh + PhV

∗
h+1

)
(x, a), V ∗

h (x) = Q∗
h (x, π

∗
h(x)) , V ∗

H+1(x) = 0.

where V ∗
h (x) = V π∗

h (x), Q∗
h(x, a) = Qπ∗

h (x, a), π∗ is the optimal policy and [PhVh+1] (x, a) =
Ex′∼Ph(·|x,a)Vh+1 (x

′).

We measure the suboptimality of an agent by the total regret defined as

Regret(K) =

K∑
k=1

[
V ∗
1

(
xk
1

)
− V πk

1

(
xk
1

)]
(1)

where xk
1 is the initial state and πk is the policy agent uses for episode k. and K is the total number of

episodes which the agent interacts with the environment with the goal of learning the optimal policy.

Consider the following loss function for the action-value function from ?:

Lk
h (wh) =

k−1∑
τ=1

[
rh (x

τ
h, a

τ
h) + max

a∈A
Qk

h+1

(
xτ
h+1, a

)
−Q (wh;ϕ (xτ

h, a
τ
h))

]2
+ λ ∥wh∥2 (2)

where ϕ(., .) is a feature vector, wh is the Q function parameters and λ is the regularization constant.
We consider a linear function approximation for the Q function and:

Qk
h(·, ·)← min

{
ϕ(·, ·)⊤wk,Jk

h , H − h+ 1
}+

(3)

where wk,Jk

h is the parameter vector obtained after Jk iterations of the Langevin Monte Carlo (LMC)
process, applied to the loss function defined in Eq. equation 4, as described in Algorithm 2. We
further denote V k

h (xk
h) = maxa∈A Qk

h

(
xk
h, a
)
.

Note that while the action-value function Qk
h is linear with respect to the parameter vector w, it

is not necessarily linear in the action a. Furthermore, the loss function Lk
h(wh) includes the term

V k
h+1(x

τ
h+1), which, in a high-dimensional continuous action space, cannot be computed exactly due

to infinite actions. Consequently, in Algorithm 2 and our regret analysis, we substitute this term with
the approximate value function, V̂ k

h , as defined in Equation equation ??. This approach leads to the
formulation of the following modified loss function:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 2 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) with Approximate
Greedy Policy
Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function
Lk(w)

1: Initialize w1,0
h = 0 for h ∈ [H], J0 = 0

2: for episode k = 1, 2, . . . ,K do
3: Receive the initial state sk1
4: for step h = H,H − 1, . . . , 1 do
5: wk,0

h = w
k−1,Jk−1

h
6: for j = 1, . . . , Jk do
7: ϵk,jh ∼ N (0, I)

8: wk,j
h = wk,j−1

h − ηk∇Lk
h

(
wk,j−1

h

)
+
√
2ηkβ

−1
k ϵk,jh

9: end for
10: Qk

h(·, ·)← min
{
Q
(
wk,Jk

h ;ϕ(·, ·)
)
, H − h+ 1

}+

11: initialize set of actions akh,0
12: for iteration t = 1, 2, . . . , t∗ do
13: akh,t = akh,t−1 +∇Q(., akh,t−1) {as outlined in Eq ??}
14: end for
15: V̂ k

h (·)← Q(., akh,t∗) {approximate optimal value}
16: end for
17: for step h = 1, 2, . . . ,H do
18: Take approximate optimal action akh based on akh,t∗ , observe reward rkh

(
skh, a

k
h

)
and next

state skh+1
19: end for
20: end for

Lk
h (wh) =

k−1∑
τ=1

[
rh (x

τ
h, a

τ
h) + V̂ k

h+1(x
τ
h+1)−Q (wh;ϕ (xτ

h, a
τ
h))
]2

+ λ ∥wh∥2 (4)

We present a modified version of the Langevin Monte Carlo Least Squares Value Iteration
(LMC_LSVI) algorithm (?) in Algorithm 2. Contrasting with Algorithm 1 in ?, Algorithm 2
incorporates the use of an approximate value function, denoted as V̂ , and employs approximate
optimal actions. In the subsequent sections, we demonstrate that under certain assumptions about the
action-value function, Algorithm 2 achieves the same target regret bound.
Proposition C.1. As defined in ?, let wk,Jk be the approximation of posterior parameters after Jk
iterations of LMC as defined in Eq ?? for the k’th episode where h is the horizon step. Under the loss
defined in Eq 4, wk,Jk follows a Gaussian distribution where the mean vector and covariance matrix
are defined as:

µk,Jk

h = AJk

k . . . AJ1
1 w1,0

h +

k∑
i=1

AJk

k . . . A
Ji+1

i+1

(
I −AJi

i

)
ŵi

h, (5)

Σk,Jk

h =

k∑
i=1

1

βi
AJk

k . . . A
Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJk

k , (6)

where Ai = I − 2ηiΛ
i
h for i ∈ [k].

Proof. We refer readers to Proposition B.1 of ? for the proof.

Definition C.2. (Model Prediction Error). For any (k, h) ∈ [K]×[H], we define the model prediction
error associated with the reward rh,

lkh(x, a) = rh(x, a) + PhV̂
k
h+1(x, a)−Qk

h(x, a). (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition C.3. For an action-value function Q(x, .) that has an L-Lipschitz continuous gradient
and satisfies the Polyak-Łojasiewicz Inequality (PL) inequality for some µ > 0 as stated below:

1

2
∥∇Qk

h(x, a)∥2 ≥ µ
(
Qk

h(x, a)−Qk
h(x, a

∗)
)
, ∀a. (8)

where
a∗ = argmaxaQ

k
h(xh, a)

is the optimal action. For t∗ >=
(

L
µ log(KH

Qk
h(xh,a

∗)−Qk
h(xh,a0)

d3/2H3/2
√
T

)
)

iterations we have:

V k
h (xh)− V̂ k

h (xh) ≤ εt∗ (9)

where εt∗ = d3/2H3/2
√
T

KH .

Proof. As proved in Theorem 1. of ?, with the step size of 1
L , for an action-value function Q(x, .)

that has an L-Lipschitz continuous gradient and satisfies the PL inequality, we have

Qk
h(xh, a

∗)−Qk
h(xh, at) ≤

(
1− µ

L

)t (
Qk

h(xh, a
∗)−Qk

h(xh, a0)
)

(10)

where at is the action after t iteration of gradient ascent:

at+1 = at +∇Qk
h(xh, at) (11)

using 1− u ≤ exp(−u) on Eq 10 we have

Qk
h(xh, a

∗)−Qk
h(xh, at) ≤ exp

(
−t µ

L

) (
Qk

h(xh, a
∗)−Qk

h(xh, a0)
)
.

So for t∗ >= L
µ log(KH

Qk
h(xh,a

∗)−Qk
h(xh,a0)

d3/2H3/2
√
T

) we have:

Qk
h(xh, a

∗)−Qk
h(xh, at∗) ≤

d3/2H3/2
√
T

KH
= εt∗ (12)

by applying the definition of V k
h we have:

V k
h (xh)− V̂ k

h (xh) ≤ εt∗ (13)

Proposition C.4. Under the approximate value function V̂ k
h we have:

PhV
k
h+1(x, a)− PhV̂

k
h+1(x, a) ≤ εt∗ (14)

where εt∗ is defined in Proposition C.3

Proof. Applying the definition of Ph we have:

[PhVh+1] (x, a) = Ex′∼Ph(·|x,a)Vh+1 (x
′) ≤ Ex′∼Ph(·|x,a)V̂h+1 (x

′) + εt∗ (15)

=
[
PhV̂h+1

]
(x, a) + εt∗ (16)

where the first to the second line is by using Proposition C.3.

Lemma C.5. Let λ = 1 in Eq 4, Define the following event

E(K,H, δ) =
{∣∣ϕ(x, a)⊤ŵk

h − rh(x, a)− PhV
k
h+1(x, a)

∣∣
≤ 5H

√
dCδ∥ϕ(x, a)∥(Λk

h)
−1 ,∀(h, k) ∈ [H]× [K] and ∀(x, a) ∈ S ×A } .

(17)

where we denote

Cδ =

[
1

2
log(K + 1) + log

(
2
√
2KBδ/2

H

)
+ log

2

δ

]1/2
and Bδ =

(
16
3 Hd

√
K +

√
2K

3βKδd
3/2
)

. Then we have P(E(K,H, δ)) ≥ 1− δ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof. We refer readers to Lemma. B5. of (?) for the proof.

Lemma C.6. Let λ = 1 in Eq 4. For any δ ∈ (0, 1) conditioned on the event E(K,H, δ), for all
(h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1− δ2, we have

−
(
rh(x, a) + PhV

k
h+1(x, a)−Qk

h(x, a)l
k
h(x, a)

)
(18)

≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1 , (19)

where Cδ is defined in Lemma C.5.

Proof. We refer readers to Lemma. B.6 of (?) for the proof.

Lemma C.7. (Error bound). Let λ = 1 in Eq 4. For any δ ∈ (0, 1) conditioned on the event
E(K,H, δ), for all (h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1− δ2, we have

−lkh(x, a) ≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1 + εt∗ , (20)

Proof. using Lemma C.6 and Proposition C.4 we have:

−
(
rh(x, a) + PhV̂

k
h+1(x, a)−Qk

h(x, a).l
k
h(x, a) + εt∗

)
= lkh(x, a)− εt∗ ≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1

Lemma C.8. Let λ = 1 in Eq 4. Conditioned on the event E(K,H, δ), for all (h, k) ∈ [H]× [K]
and (x, a) ∈ S ×A, with probability at least 1

2
√
2eπ

, we have

−
(
rh(x, a) + PhV

k
h+1(x, a)−Qk

h(x, a)
)
≤ 0 (21)

Proof. We refer readers to Lemma. B.7 of (?) for the proof.

Lemma C.9. (Optimism). Let λ = 1 in Eq 4. Conditioned on the event E(K,H, δ), for all
(h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1

2
√
2eπ

, we have

lkh(x, a) ≤ 0 (22)

Proof. We immediately get the stated result by using Proposition C.4 on Lemma C.8.

We restate the main theorem:

Theorem C.10. Let λ = 1 in Eq 4, 1
βk

= Õ(H
√
d) in Algorithm 2 and δ ∈

(
1

2
√
2eπ

, 1
)

. For

any episode k ∈ [K], let the learning rate ηk = 1/
(
4λmax

(
Λk
h

))
, the update number for LMC in

Eq ?? be Jk = 2κk log(4HKd) where κk = λmax

(
Λk
h

)
/λmin

(
Λk
h

)
is the condition number of Λk

h

defined in Proposition C.1. Under the assumption that the action-value function Qk
h in Eq 3 has an

L-Lipschitz continuous gradient and satisfies the Polyak-Łojasiewicz Inequality (PL) inequality Eq 8,
the regret of Algorithm 2 under the regret definition in Definition 1, satisfies

Regret(K) = Õ
(
d3/2H3/2

√
T
)
, (23)

with probability at least 1− δ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof of Theorem C.10. By Lemma. 4.2 in (?), it holds that

Regret(T) =

K∑
k=1

(
V ∗
1

(
xk
1

)
− V πk

1

(
xk
1

))
(24)

=

K∑
k=1

H∑
t=1

Eπ∗
[〈
Qk

h (xh, ·) , π∗
h (· | xh)− πk

h (· | xh)
〉
| x1 = xk

1

]
︸ ︷︷ ︸

(i)

+

K∑
k=1

H∑
t=1

Dk
h︸ ︷︷ ︸

(ii)

(25)

+

K∑
k=1

H∑
t=1

Mk
h︸ ︷︷ ︸

(iii)

+

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
︸ ︷︷ ︸

(iv)

, (26)

where ⟨., .⟩ denotes inner product which in continuous spaces is defined as ⟨f, g⟩ =
∫
D
f(t)g(t) dt.

Furthermore, Dk
h andMk

h are defined as

Dk
h :=

〈(
Qk

h −Qπk

h

) (
xk
h, ·
)
, πk

h

(
·, xk

h

)〉
−
(
Qk

h −Qπk

h

) (
xk
h, a

k
h

)
,

Mk
h := Ph

((
V k
h+1 − V πk

h+1

)) (
xk
h, a

k
h

)
−
(
V k
h+1 − V πk

h+1

) (
xk
h

)
.

Bounding Term (i): Using Proposition C.3 we have Q(xh, a
∗)−Q(xh, at∗) ≤ εt∗ .

Note that πk
h is approximately greedy w.r.t Qk

h and πk
h(at∗) = 1 where at∗ is the approximate optimal

greedy action from Eq 12. The largest value that
〈
Qk

h (xh, ·) , π∗
h (· | xh)− πk

h (· | xh)
〉

in Eq 25 can
take is Q(xh, a

∗)−Q(xh, at∗) which happens if π∗
h(a

∗) = 1 where a∗ = argmaxaQ
k
h(xh, a). This

completes the proof using Eq 12.

Bound for Term (ii): With probability 1− δ/3 we have:

K∑
k=1

H∑
h=1

Dk
h ≤

√
2H2T log(3/δ) (27)

We refer the readers to the Appendix. B.2 of (?) for the proof.

Bound for Term (iii): With probability 1− δ/3 we have:

K∑
k=1

H∑
h=1

Mk
h ≤

√
2H2T log(3/δ). (28)

We refer the readers to the Appendix. B.2 of ? for the proof.

Bound for Term (iv): With probability at least
(
1− δ

3 −
1

2
√
2eπ

)
we have:

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
≤ Õ

(
d3/2H3/2

√
T
)

(29)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Suppose the event E (K,H, δ′) holds. by union bound, with probability 1−
(
δ′2 + 1

2
√
2eπ

)
, we have,

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
(30)

≤
K∑

k=1

H∑
h=1

−lkh
(
xk
h, a

k
h

)
(31)

≤
K∑

k=1

H∑
h=1

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)∥∥ϕ (xk
h, a

k
h

)∥∥
(Λk

h)
−1 +KHεt∗ (32)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
K∑

k=1

H∑
h=1

∥∥ϕ (xk
h, a

k
h

)∥∥
(Λk

h)
−1 +KHεt∗ (33)

≤

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
H∑

h=1

√
K

(
K∑

k=1

∥∥ϕ (xk
h, a

k
h

)∥∥2
(Λk

h)
−1

)1/2

+KHεt∗

(34)

≤

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
H
√
2dK log(1 +K) +KHεt∗ (35)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)√
2dHT log(1 +K) +KHεt∗ (36)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)√
2dHT log(1 +K) +

(
d3/2H3/2

√
T
)

(37)

= Õ
(
d3/2H3/2

√
T
)
. (38)

Here the first, the second, and the third inequalities follow from Lemma C.9, Lemma C.7 and the
Cauchy-Schwarz inequality respectively. The last inequality follows from Lemma C.5 The last
equality follows from 1√

βK
= 10H

√
dCδ′ +

8
3 which we defined in Lemma C.9. By Lemma C.7,

the event E (K,H, δ′) occurs with probability 1− δ′. Thus, by union bound, the event E (K,H, δ′)
occurs and it holds that

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
≤ Õ

(
d3/2H3/2

√
T
)

By applying union bound for (i), (ii), (iii) and (iv), the final regret bound is Õ
(
d3/2H3/2

√
T
)

with

at least probability 1− δ where δ ∈ (1
2
√
2eπ

, 1).

Theorem C.11. Let λ = 1 in Eq 4, 1
βk

= Õ(H
√
d) in Algorithm 2 and δ ∈

(
1

2
√
2eπ

, 1
)

. For

any episode k ∈ [K], let the learning rate ηk = 1/
(
4λmax

(
Λk
h

))
, the update number for LMC

in Eq ?? be Jk = 2κk log(4HKd) where κk = λmax

(
Λk
h

)
/λmin

(
Λk
h

)
is the condition number

of Λk
h defined in Proposition C.1. Let w⃗ = [w1, w2, . . . , wn]

T be the extended parameter space
and Q(x, a) = maxi∈[n] Qwi(x, a) be the optimistic action-value function. Under the assumption
that the action-value function Qk

h in Eq 3 has an L-Lipschitz continuous gradient and satisfies
the Polyak-Łojasiewicz Inequality (PL) inequality Eq 8, the regret of Algorithm 2 under the regret
definition in Definition 1, satisfies

Regret(K) = Õ
(
d3/2H3/2

√
T
)
, (39)

with probability of 1− ϵ′ for any ϵ′ ∈ (0, 1).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proof of Theorem C.11. In Lemma B.9 we prove that the estimation Qk
h(x, a) is optimistic with a

constant probability of at least 1
2
√
2eπ

. In other words, the failure probability is at most 1− 1
2
√
2eπ

.
By extending the parameter space w⃗ = [w1, w2, . . . , wn]

T and modelling the optimistic action-value
function using Q(x, a) = maxi∈[n] Qwi(x, a), the failure probability will be at most (1− 1

2
√
2eπ

)n.
We want this probability to be arbitrarily small. To guarantee that the failure probability is less than
ϵ′ it suffices to find an n that is large enough such that (1− 1

2
√
2eπ

)n < ϵ′. If we solve for n we have

n > log ϵ′

log(1− 1
2
√

2eπ
)
. We can express the latter quantity as log(1/δ)

log(2
√
2eπ)−log(2

√
2eπ−1)

∈ Ω(log(1/ϵ′)).

So, we can extend the parameter space by a factor of Ω(log(1/ϵ′)) to ensure that the failure probability
is less than ϵ′. Finally, we can apply the union bound on (i), (ii), (iii), and (iv) to conclude that the
regret bound in Theorem C.11 holds with a probability of 1− ϵ′ for any ϵ′ ∈ (0, 1).

9

	Additional Results
	Implementation Details
	DBAS Details
	Hyperparameters
	Action Initialization

	Regret Analysis

