
Supplemental Materials for: Robust Inverse Reinforcement Learning Through439

Bayesian Theory of Mind440

A Additional Related Work441

Bayesian IRL Ramachandran and Amir [57] first proposed a Bayesian formulation of IRL to solve442

the reward ambiguity problem. A MAP inference approach was proposed in [58] and a variational443

inference approach was proposed in [59]. Their formulations considers non-entropy-regularized444

policies and the dynamics model is fixed during reward inference. In contrast, simultaneous estimation445

of reward and dynamics can potentially infer the demonstrator’s biased beliefs about the environment,446

which is desirable for psychology and human-robot interaction studies [15, 19, 17]. Despite the447

attractiveness, simultaneous estimation is challenging because of the need to invert the agent’s448

planning process, especially in continuous domains. Reddy et al. [17] avoids this by representing449

agent discrete action policies using neural network-parameterized Q functions and regularizing450

the Bellman error to be small over the entire state-action space. This method however cannot be451

straightforwardly adapted to the continuous action case. Kwon et al. [60] avoids this by first training452

a task-conditioned policy on a distribution of environments with known parameters using meta453

reinforcement learning and then use the meta-trained policy to guide inference. This precludes the454

method from being used in general settings with unknown task distributions. To our knowledge, our455

proposed algorithms are the first to address simultaneous estimation in general environments.456

Decision-aware model learning Decision-aware model learning aims to solve the objective mismatch457

problem in model-based RL [61]. Many proposed methods in this class use value-targeted regression458

similar to our model loss in (16) [62, 63]. Our analysis and that of Vemula et al. [52] suggest that459

value-targeted model objectives may be related to robust objectives. Furthermore, since the set460

of value-equivalent models only shrink for increasingly larger set of policy and values [62], using461

value-aware model objective alone may not be optimal and additional prediction-based regularizations462

may be needed.463

B Missing Proofs464

B.1 Proofs For Section 3.1465

Derivation of BTOM Gradients (section 3.1). Recall the definition of the optimal entropy-466

regularized policy and value functions:467

⇡̂(a|s; ✓) =
exp(Q✓(s, a))P
ã exp(Q✓(s, ã))

Q✓(s, a) = R✓1(s, a) + �EP̂✓2 (·|s,a)
[V✓(s

0)]

V✓(s) = log
X

ã

exp(Q✓(s, ã))

(20)

The gradient of the policy log likelihood in terms of the Q function gradient is obtained as follow:468

r✓ log ⇡̂(a|s; ✓) = r✓Q✓(s, a)�r✓V✓(s)

= r✓Q✓(s, a)�
1

Z✓
r✓

X

ã

exp(Q✓(s, ã))

= r✓Q✓(s, a)�
1

Z✓

X

ã

exp(r✓Q✓(s, ã))

= r✓Q✓(s, a)� Eã⇠⇡̂(·|s;✓)[r✓Q✓(s, ã)]

(21)

where Z✓ =
P

a0 exp(Q✓(s, a0)) is the normalizer.469

13

Recall ⇢⇡̂
P̂
(s̃, ã|s, a) is the discounted state-action occupancy measure starting from pair (s, a). We470

define for any function f(s, a):471

E⇢⇡̂
P̂
(s̃,ã|s,a)[f(s, a)] = E⌧⇠(P̂ ,⇡̂)

" 1X

t=0

�tf(s, a)

����s0 = s, a0 = a

#
(22)

We now derive Q function gradients with respect to the reward parameters ✓1 and dynamics parameters472

✓2, respectively.473

r✓1Q✓(s, a) = r✓1R✓1(s, a) + �Es0⇠P̂✓2 (·|s,a)
[r✓1V✓(s

0)]

= r✓1R✓1(s, a) + �Es0⇠P̂✓2 (·|s,a),a0⇠⇡̂(·|s0;✓)[r✓1Q✓(s
0, a0)]

= r✓1R✓1(s, a) + �Es0⇠P̂✓2 (·|s,a),a0⇠⇡̂(·|s0;✓)



r✓1R✓1(s
0, a0) + �Es00⇠P̂✓2 (·|s0,a0),a00⇠⇡̂(·|s00;✓)[r✓1Q✓(s

00, a00)]

�

= r✓1R✓1(s, a) + E⌧⇠(P̂ ,⇡̂)

" 1X

h=1

�h
r✓1R✓1(sh, ah)

����s0 = s, a0 = a

#

= E⇢⇡̂
P̂
(s̃,ã|s,a) [r✓1R✓1(s̃, ã)]

(23)

In line two we used the result that r�V�(s) for both � = ✓1 and � = ✓2 corresponds to the second474

term in (21) .475

r✓2Q✓(s, a) = r✓2R✓1(s, a) +r✓2�Es0⇠P̂✓2 (·|s,a)
[V✓(s

0)]

= �
X

s̃

V✓(s̃)r✓2 P̂✓2(s̃|s, a) + �Es0⇠P̂✓2 (·|s,a),a0⇠⇡̂(·|s0;✓)[r✓2Q✓(s
0, a0)]

= �
X

s̃

V✓(s̃)r✓2 P̂✓2(s̃|s, a) + �Es0⇠P̂✓2 (·|s,a),a0⇠⇡̂(·|s0;✓)



�
X

s̃

V✓(s̃)r✓2 P̂✓2(s̃|s
0, a0) + �Es00⇠P̂✓2 (·|s0,a0),a00⇠⇡̂(·|s00;✓)[r✓2Q✓(s

00, a00)]

�

= �
X

s̃

V✓(s̃)r✓2 P̂✓2(s̃|s, a) + E⌧⇠(P̂ ,⇡̂)

" 1X

h=1

�h+1
X

s̃

V✓(s̃)r✓2 P̂✓2(s̃|sh, ah)

����s0 = s, a0 = a

#

= E⇢⇡̂
P̂
(s̃,ã|s,a)

"
�
X

s0

V✓(s
0)r✓2 P̂✓2(s

0
|s̃, ã)

#

(24)

We make a quick remark on the identifiability of simultaneous estimation.476

Remark B.1. Simultaneous reward-dynamics estimation of the form (5) without specific assumptions477

on the prior P (✓) is in general unidentifiable.478

Proof. Let R 2 R|S||A| and P 2 R|S||A|⇥|S|
+ ,

P
s0 P

a
ss0 = 1, Q 2 R|S||A| and V 2 R|S| be a set479

of Bellman-consistent reward, dynamics, and value functions in matrix form. Let P0
6= P be an480

alternative dynamics model. We can always find an alternative reward R0 = R+�R, where:481

�R = (Q�Q)� �(P0V �PV)

= ���PV
(25)

without changing the value functions and optimal entropy-regularized policy.482

14

Remark B.1 implies that existing simultaneous estimation approaches which do not use explicit or483

implicit regularizations, such as the SERD algorithm by [18], cannot in general accurately estimate484

expert reward. Paired with theorem 3.1, it shows that these algorithms cannot in general achieve good485

performance.486

B.2 Proofs For Section 3.2487

Derivation of discounted likelihood (14).488

EP (⌧)

" 1X

t=0

�t log ⇡̂(at|st; ✓)

#

= EP (⌧)

" 1X

t=0

�t (Q✓(st, at)� V✓(st))

#

= EP (⌧)

" 1X

t=0

�t
⇣
R✓1(st, at) + �Es0⇠P̂✓2 (·|st,at)

[V✓(s
0)]
⌘#

� EP (⌧)

" 1X

t=0

�tV✓(st)

#

= EP (⌧)

" 1X

t=0

�tR✓1(st, at)

#
� Eµ


V✓(s0)

�

+ EP (⌧)

" 1X

t=0

�t+1Es0⇠P̂✓(·|st,at)
[V✓(s

0)]

#
� EP (⌧)

" 1X

t=1

�tV✓(st)

#

= EP (⌧)

" 1X

t=0

�tR✓1(st, at)

#
� Eµ


V✓(s0)

�

+ EP (⌧)

" 1X

t=0

�t+1Es0⇠P̂✓(·|st,at)
[V✓(s

0)]

#
� EP (⌧)

" 1X

t=0

�t+1Es0⇠P (·|st,at)[V✓(s
0)]

#

= E⇢⇡
P


R✓1(st, at)

�
� Eµ


V✓(s0)

�

| {z }
`(✓)

+ �E⇢⇡
P


Es0⇠P̂✓(·|st,at)

V✓(s
0)� Es00⇠P (·|st,at)V✓(s

00)

�

| {z }
T1

(26)

The following lemma shows that T1 is negligible if the estimated dynamics is accurate under the489

expert distribution, which is available from the offline dataset.490

Lemma B.2. Let ✏ = E(s,a)⇠P (⌧)DKL(P (·|s, a)||P̂ (·|s, a)) and Rmax = maxs,a |R✓(s, a)| +491

log |A|, it holds that492

|T1| 
�Rmax

(1� �)2
p

2✏ (27)

Proof.

|T1| =

�����

1X

t=0

�t+1E(st,at)⇠P (⌧)

"
X

s0

V✓(s
0)
⇣
P̂ (s0|st, at)� P (s0|st, at)

⌘#�����

(1)


1X

t=0

�t+1E(st,at)⇠P (⌧)

"
X

s0

|V✓(s
0)|

���P̂ (s0|st, at)� P (s0|st, at)
���

#

(2)


1X

t=0

�t+1
kV✓(·)k1E(st,at)⇠P (⌧)

h���P̂ (·|st, at)� P (·|st, at)
���
1

i

(3)


1X

t=0

�t+1
kV✓(·)k1

q
2E(st,at)⇠P (⌧)DKL(P ||P̂)

=
�

1� �
kV✓(·)k1

p

2✏

15

where (1) follows from Jensen’s inequality, (2) follows from Holder’s inequality, and (3) follows493

from Pinsker’s inequality.494

Finally, given H(⇡(a|s)) = �
P

a ⇡(a|s) log ⇡(a|s)  �
P

a ⇡(a|s) log
1

|A| = log |A|, we have495

kV✓(·)k1  E [
P1

t=0 �
t (maxs,a |R✓(s, a)|+ log |A|)] = Rmax

1�� .496

497

B.3 Proofs For Section 3.4498

We first restate a slight modification of the result from [52], which decomposes the real environment499

performance gap between the expert and the learner into their policy and model advantages in the500

estimated dynamics:501

Lemma B.3. (Performance difference via advantage in model; Lemma 4.1 in [52]) Let d⇡P denote the502

marginal state-action distribution following policy ⇡ in environment P . The following relationship503

holds:504

E(s,a)⇠d⇡
P

⇥
log ⇡̂P̂ (a|s)

⇤
= Es⇠d⇡

P

⇥
Ea⇠⇡Q

⇡̂
P̂
(s, a)� V ⇡̂

P̂
(s)

⇤
(28)

= (1� �)Es⇠µ

⇥
V ⇡
P (s)� V ⇡̂

P (s)
⇤

| {z }
Performance difference in real environment

(29)

+ �E(s,a)⇠d⇡̂
P

⇥
Es0⇠PV

⇡̂
P̂
(s0)� Es00⇠P̂V

⇡̂
P̂
(s00)

⇤
| {z }

Model (dis)advantage under learner distribution

(30)

+ �E(s,a)⇠d⇡
P

⇥
Es0⇠P̂V

⇡̂
P̂
(s0)� Es00⇠PV

⇡̂
P̂
(s00)

⇤
| {z }

Model advantage under expert distribution

(31)

The performance bound in theorem 3.1 can be obtained from lemma B.3 as follow:505

Theorem B.4. (Restate of theorem 3.1) Let ✏⇡̂ = �E(s,a)⇠d⇡
P
[log ⇡̂P̂ (a|s)] be the policy estimation506

error and ✏P̂ = E(s,a)⇠d⇡
P
DKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics estimation error. Let Rmax =507

maxs,a |R✓(s, a)|+ log |A|. Assuming bounded expert-learner marginal state-action density ratio508 ���d⇡̂
P (s,a)

d⇡
P (s,a)

���
1

 C, we have the following (absolute) performance bound for the IRL agent:509

|JP (⇡̂)� JP (⇡)| 
1

1� �
✏⇡̂ +

�(C + 1)Rmax

(1� �)2
p

2✏P̂ (32)

Proof.

|JP (⇡̂)� JP (⇡)|


1

1� �
✏⇡̂

+
�

1� �
E(s,a)⇠d⇡

P

����
d⇡̂P (s, a)

d⇡P (s, a)

�
Es0⇠PV

⇡̂
P̂
(s0)� Es00⇠P̂V

⇡̂
P̂
(s00)

�����

�

+
�

1� �
E(s,a)⇠d⇡

P

⇥��Es0⇠P̂V
⇡̂
P̂
(s0)� Es00⇠PV

⇡̂
P̂
(s00)

��⇤


1

1� �
✏⇡̂

+
�

1� �

����
d⇡̂P (·, ·)

d⇡P (·, ·)

����
1

��V ⇡̂
P̂
(·)

��
1 E(s,a)⇠d⇡

P

h���P̂ (·|s, a)� P (·|s, a)
���
1

i

+
�

1� �

��V ⇡̂
P̂
(·)

��
1 E(s,a)⇠d⇡

P

h���P̂ (·|s, a)� P (·|s, a)
���
1

i

=
1

1� �
✏⇡̂ +

�(C + 1)Rmax

(1� �)2
p
2✏P̂

(33)

where the last line uses results from lemma B.2.510

16

C Further Algorithm Details and Pseudo Code511

We estimate the dynamics gradient in (16) and (18) using the REINFORCE method with baseline:512

r✓2EV✓(s, a) =
X

s0

V✓(s
0)r✓2 P̂✓2(s

0
|s, a)

= Es0⇠P̂ (·|s,a)

h
(V✓(s

0)� b(s, a))r✓2 log P̂✓2(s
0
|s, a)

i

Following Rigter et al. [45], we set the baseline to b(s, a) = Q✓(s, a)�R✓1(s, a) to reduce gradient513

variance and further normalize V✓(s0) � b(s, a) across the mini-batch to stabilize training. In the514

continuous-control setting, the value function can be estimated as V✓(s) = Ea⇠⇡̂✓ [Q✓(s, a) �515

log ⇡̂(a|s; ✓)] with a single sample. We apply this gradient for a fixed number of steps, which is a516

hyperparameter.517

Pseudo code for the proposed algorithms are listed in Algorithm 1 and Algorithm 2.518

Algorithm 1 Deep Bayesian Theory of Mind (BTOM)

Require: Dataset D = {⌧}, dynamics model P̂✓2(s
0
|s, a), reward model R✓1(s, a), hyperparameters

�1, �2

1: for k = 1 : K do

2: Run MBPO to update learner policy ⇡̂(a|s; ✓) and value function Q✓(s, a) in dynamics P̂
3: Sample real trajectory ⌧real starting from (s, a) ⇠ D and following P̂ and ⇡̂
4: Sample fake trajectory ⌧fake starting from s ⇠ D, afake ⇠ ⇡̂(·|s; ✓) and following P̂ and ⇡̂
5: Evaluate (15) and take a gradient step
6: Evaluate (16) and take a few gradient steps.
7: end for

Algorithm 2 Robust Theory of Mind (RTOM)

Require: Dataset D = {⌧}, dynamics model P̂✓2(s
0
|s, a), reward model R✓1(s, a), hyperparameters

�1, �2

1: for k = 1 : K do

2: Run MBPO to update learner policy ⇡̂(a|s; ✓) and value function Q✓(s, a) in dynamics P̂
3: Sample fake trajectory ⌧fake starting from s ⇠ D and following P̂ and ⇡̂
4: Evaluate (17) and take a gradient step
5: Evaluate (18) and take a few gradient steps
6: end for

D Implementation Details519

Our implementation builds on top of the official RAMBO implementation1 [45].520

D.1 MuJoCo Benchmarks521

For the MuJoCo benchmarks described in section 4.2, we follow standard practices in model-based522

RL.523

D.1.1 Dynamics Pre-training524

We use an ensemble of K = 7 neural networks where each network outputs the mean and covariance525

parameters of a Gaussian distribution over the difference between the next state and the current state526

� = s0 � s:527

P̂ (k)
✓2

(�|s, a) = N (�|µ(k)
✓2

(s, a),⌃(k)
✓2

(s, a)) (34)

1https://github.com/marc-rigter/rambo

17

https://github.com/marc-rigter/rambo

Each network is a 4-layer feedforward network with 200 hidden units and Sigmoid linear unit (SiLU)528

activation function. For the initial pre-training step, we maximize the likelihood of dataset transitions529

using a batch size of 256 and early stop when all models stop improving for more than 1 percent.530

We then select the 5 best models in terms of mean-squared-error on a 10 % holdout validation set.531

During model rollouts, we randomly pick one of the 5 best models (elites) to sample the next state.532

Table 2: Shared hyperparameters across different environments

Hyparameter BTOM RTOM

SA
C

+
M

B
PO

critic learning rate 3e-4 3e-4
actor learning rate 3e-4 3e-4
discount factor (�) 0.99 0.99

soft target update parameter (⌧) 5e-3 5e-3
target entropy -dim(A) -dim(A)

minimum temperature (↵) 0.1 0.001
batch size 256 256
real ratio 0.5 0.5

model retain epochs 5 5
training epochs 500 300
steps per epoch 1000 1000

D
yn

am
ic

s

model networks 7 7
elites 5 5

adv. rollout batch size 1000 256
adv. rollout steps 10 10
adv. update steps 50 50

adv. loss weighting (�1) 0.01 0.01
supervised. loss weighting (�2) 1 1

learning rate 1e-4 1e-4
adv. update steps 50 50

R
ew

ar
d

max reward 10 10
rollout batch size 1000 64

rollout steps 40 100
l2 penalty 1e-3 1e-3

learning rate 1e-4 1e-4
update steps 1 1

Table 3: Environment-specific hyperparameters

Environment Hyperparameter BTOM
model rollout batch size 50000

HalfCheetah model rollout steps 5
model rollout frequency 250
model rollout batch size 10000

Hopper model rollout steps 40
model rollout frequency 250
model rollout batch size 10000

Walker2d model rollout steps 40
model rollout frequency 250

D.1.2 Policy Training533

Our policy training process follows MBPO [37] which uses SAC with automatic temperature tuning534

[64]. Shared hyperparameters across different environments are listed in Table 2 and environment-535

specific hyperparameters are listed in Table 3. For the actor and critic, we use feedforward neural536

networks with 2 hidden layers of 256 units and ReLU activation. We train the actor and critic537

networks using a combination of real and simulated samples. We use a real ratio of 0.5, which is538

standard practice in model-based RL and IRL. We found that BTOM requires a higher minimum539

temperature to stablize training, which is set to ↵ = 0.1.540

18

We found that different MuJoCo environments require different model rollout hyperparameters, simi-541

lar to what’s reported in [41]. Specifically, Hopper and Walker2d only work with significantly larger542

rollout steps. We decrease their rollout batch size to reduce computational overhead. HalfCheetah on543

the other hand works better with smaller rollout steps and larger rollout batch size. In contrast to Lu544

et al. [41], we did not use different rollout hyperparameters for different datasets.545

D.1.3 Reward and Dynamics Training546

We use 10 random trajectories from the D4RL MuJoCo expert dataset after removing all expert547

trajectories that resulted in terminal states.548

We use the same network architecture as the actor-critic to parameterize the reward function. We549

further clip the reward function to a maximum range of ±10 and apply l2 regularization on all weights550

with a penalty of 0.001.551

As described in the main text, we update the reward function by simulating sample trajectories and552

taking a single gradient step. For RTOM, we randomly sample expert trajectory segments of length553

“rollout steps” and use the first step as the start of our simulated sample paths.554

We update the dynamics using on-policy rollouts branched from the dataset state-actions. We use555

the same batch size for reward and dynamics rollouts, which is 1000 for BTOM and 256 for RTOM.556

Because only the first step in BTOM’s real sample paths come from the dataset, it requires a larger557

batch size to iterate more data samples. We also train BTOM for more epochs than RTOM.558

To compute the dynamics log likelihood in the REINFORCE gradient in (34), we treat the ensemble559

as a uniform mixture and compute the likelihood as:560

P̂✓2(�|s, a) =
1

K

KX

k=1

P̂ (k)
✓2

(�|s, a) (35)

We set the dynamics adversarial loss weighting to �1 = 0.01 for both BTOM and RTOM. We found561

this to work better than what’s in the official RAMBO implementation, which is �1 = 0.0768. Note562

that the RAMBO author reported �1 = 3e-4 in their paper but forget to average their REINFORCE563

loss over the mini-batch of size 256 in their implementation, which is instead treated as a sum by564

default by TensorFlow. We empirically found that small �1 leads to severe model exploitation.565

19

