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Abstract

Reinforcement Learning algorithms commonly sample multiple (n > 1) so-
lution attempts for each problem and reward them independently. This optimizes
for pass@1 performance and prioritizes individual sample performance over the
diversity and collective utility of a set of samples. Such algorithms under-utilize
the sampling capacity, limiting exploration and eventual improvement on harder
examples. As a fix, we propose Pass-at-k Policy Optimization (PXP0), a multi-
variate transformation on batches of rewards which leads to direct optimization
of pass@k performance, thus optimizing for sets of samples that feature a large
maximum reward when considered jointly. Our primary contribution is to derive
novel low variance unbiased estimators for the pass@k and its gradient, in both
the binary and continuous reward settings. We show that optimizing with these
estimators reduces to reinforcement learning with (batches of) rewards that have
been jointly transformed by a function that is stable and efficient to compute.

While previous efforts propose transformations for k& = n, our transforma-
tions are the first to enable robust optimization of the pass@k for any arbitrary
k < n. Rather than simply trading off pass@1 performance for pass@k gains,
our method allows annealing k during training, optimizing both metrics and often
achieving strong pass@]1 performance alongside significant pass@k gains.

We validate our transformations on illustrative toy experiments, which reveal
the variance reducing properties of our formulations. We also include real-world
examples using the open-source models GEMMA?2 and LLAMA3.1. We find that
our transformation effectively optimizes for the target k. Furthermore, higher &
values enable solving more and harder problems, while annealing k boosts both
the pass@1 and pass@k. Crucially, for challenging task sets where conventional
pass@1 optimization stalls, our pass@k approach unblocks learning, likely by
improving exploration through the prioritization of joint utility over the utility of
individual samples

1 Introduction

Recent years have seen the rapid rise of large language models (LLMs) trained with internet-scale
pretraining data [RNST 18] with post training using both supervised fine-tuning [WBZ*21]] and
reinforcement learning (RL) [AAA™ 23, [Tea23l [Ant, IGYZ"25]. The seminal paradigm of RL with
human feedback [CLBT17] is limited by the human-derived data it is based on and the reward
hacking issues that arise from the use of subjective signals more generally [ABCT21]. To enable
progress toward superhuman capabilities, current work is focusing on grounded reward signals that
are free of fine-grained human input as in code generation [SJTR23| LWG™22, DLJ " 24, [YTC™ 23|
GZC724] and mathematics [LCC™22} [AT]ICTO™25, [YSGT23].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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(a) g(x) and max,Qk. (b) g(z) and Vgmax,Qk.

Figure 1: The effect of k& on the optimal policy for a one-dimensional toy problem. The policy is nor-
mal with mean parameter ¢ and fixed standard deviation 0.1. For the max,Qk objective (left, defined
in Equation @)) the optimal 6 corresponds to the horizontal position with maximum max,Qk. For
the derivative (right, the estimation of which is the focus of this paper), the optimal # corresponds
to the location of the zero crossing. For larger k the optimal 8 is more risk tolerant, allowing more
samples to exceed one (getting zero reward) in order to increase the chance of obtaining at least one
sample close to, but less than one (getting a large reward). See Section @for more details.

The policy gradients family of RL methods [Wil92]] has proven effective in language model training
[GYZ™25]. To scale to new capabilities, model training needs to tackle challenging RL task sets
with no known solutions but for which correctness may be verified, as in formal mathematics envi-
ronments [AT]. In such settings, the RL training loop both updates model parameters and searches
for solutions to problems at the continuously advancing frontier of model capabilities.

The specific search algorithm introduces a coupling between inference and model updates, which
means that naively optimizing the expected single sample reward, or pass@l may be sub-
optimal. While various inference-time search methods are possible [HYM™24, KZA ™24/ LKB*23|
WSL 24/, simply taking multiple independent samples from the model has proven rather effective
[OIW23]. Our contribution is to couple this simple search method with model parameter updates
by enabling robust optimization of the pass@k objective, which is the expected maximum reward
over k independent samples.

Related Literature The pass@k was championed by [CTJ™21a] who gave a popular unbiased
estimator of the metric which we derive from a new perspective (to set up our gradient estimators)
as Theorem [} generalize to continuous rewards in Theorem [3] and provide additional characteri-
sations in Corollaries [2]and 3] Concurrently with our work [TZSM23] offered an elegant variance
reduction method for the gradient of the pass@k which corresponds to the special case n = k of
our Equation (33| . Interpreting pass@k in terms of a partial sort, [CTV19]] and [XDCT20] present
elegant approximations that are rather general but less efficient in our setting. Others have pro-
vided variational approximations for handling the closely related Best-of-N [CTG™ 24, [AVAC24]
and other more general [BSB™24] inference-time algorithms. The contrasting idea of training a
model to approximate the Best-of-N prediction with a single sample was addressed by [SDH™24].
Our contribution can be interpreted as a generalization and variance reduction of [TZSM?25]]. For
a general discussion of gradient estimation, variance reduction, and Monte Carlo, we recommend
[IMREM20\, |Owel3].

Overview and Contributions Our theme is constructing robust estimators of the pass@k and its
gradient given n > k samples by averaging (over all ( ) subsets of size k) simple estimators that are
functions of k samples. This is straightforward for binary rewards (Section [2), using the counting
proof of Theorem[d] We generalize to continuous rewards using the key trick of assuming without
loss of generahty that the rewards are sorted, as in Section[3] Finally, we give baselining methods
that require more involved derivations due to averaging over all subsets that do not include a given
element (to retain unbiasedness) but which boil down to the same easy-to-apply results in Section[d]
yielding our Pass-at-k Policy Optimization (PKPQ). We present toy experiments in Section[5.1| which
demonstrate the variance reduction afforded by our estimators. Finally, Section [5.2] demonstrates



that using our reward transformation solves more tasks and selectively optimizes pass@k through
RL experiments on GEMMA2 [TRP724] and LLAMA3.1 [GDJ™ 24|, showcasing real-world impact.

How to Apply this Method It is easy to adapt any policy gradient algorithm to use our results.
Assume a vector (g(z1),g(z2),...,g9(x,)) " of per-sample rewards for a given task. For example,
the x; could be model samples of source code addressing a specific task (which should be the
same for all n samples), and g could provide a numeric score that measures how many tests the
code passes, or an overall binary pass indicator, or some combination with additional stylistic or
brevity terms, efc. Then in order to optimize the pass@k of Equation (] (or the continuous analog
max,Qk of Equation @) we simply transform the vector of rewards using either the sloo or the
sloo_minus_one function of Listing which map R” — R"ﬂ

2 Binary Rewards

Given a binary reward function f : X — {0, 1} on the action space X, the pass@k for the model
p(z|0) is the probability that at least one of k samples drawn i.i.d. is correct:

pass@k = PP [\/ [f(2i) = 1]] (1)
i=1
=E 1H(1f(xi))], 2)
i=1
where the expectation is over i.i.d. x1, 2, -,z ~ p(z|0).

2.1 An Unbiased pass@k Estimator

An estimator for the pass@k was given in [CTJ21a]: given n > k ii.d. samples of which c are
correct, the estimator is

p(n,c, k) =1— (i) .

(%)

The following was proven in [CTJ™21al); we give a different proof that sets up our gradient estimator.

3)

Theorem 1. p(n,c, k) is an unbiased estimator of the pass@k.

Proof. Let x1,29, - , 2y ~ p(x|8), fi = f(x;), and Z be a set of k elements sampled uniformly
without replacement from {1,2, ..., n}. Then

passQk = K, 2, 2. Ez

1-J[a- fi)] : (4)

i€z
Averaging over all subsets of size k recovers p:
1 1
oy Z (1_H(1_fi)> =1- =5 Z H(l_fi) &)
k) (k) 1€T

|T|=k i€eT |
7C{1,2,...,n} 7C{1,2,...,n}

@) ©
k
= p(n7 c, )a (7)

where (6) holds because the sum on the r.h.s. of (3) is the number of subsets of size k of the (n — ¢)
incorrect elements. Since averaging in this way retains unbiasedness, this completes the proof. [
We show in Corollary [2|that no such unbiased estimator exists for n < k, and in Corollary 3| that the
asymptotic variance of this estimator decreases at a rate of 1/n.
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Figure 2: The effect k has on the effective weight u;/ (Z) of (T12) for a mini-batch of size n = 8.
This is the weight of the contribution of each sample assuming that the samples have been sorted
in ascending order from left to right. The horizontal axis is the sort index. For & = n = 8 only
the largest sample is included; for £ = 1 all samples are weighted equally. Intermediate values
interpolate these extremes in a precise manner that gives rise to unbiased gradient estimation.

2.2 An Unbiased pass@Qk Gradient Estimator

Given a mini-batch of n i.i.d. samples 1,23, ..., 2, from p(z|f) with corresponding correctness
labels f; € {0,1}, we want to optimize the pass@k w.r.t. the model parameters §. Letting ¢ =
>~ fi be the number of correct samples, we will demonstrate unbiasedness of the estimator

. & k if fi=1
V:ZriVQIng(xi\Q), where r; = {zop(nl ch—1) if ; ~0 (8)

=1

that assigns more weight to correct samples, while also assigning some reward to incorrect samples
to encourage exploration. The following well-known results will be used to show that (8] is unbiased.

Lemma 1 (Policy Gradients). For any absolutely continuous distribution p(x|6)
Emwp(m|0) [r(x)VG logp(ﬂg)] = VHE.th(r\G) ['I’({I?)] . 9

Corollary 1. If c is constant w.r.t. both 0 and x then E,;)9) [cV ¢ log p(z(0)] = 0.

Proof. By Lemmal[l] B, 9) [V log p(2|0)] = V4E [¢] = Vge = 0. O

We can now give our first main result:
Theorem 2. V is an unbiased estimator of the gradient of the passQk:
By o, znmp(z]0) {6} = Vypass@Qk. (10)

See Appendix [A.3]|for a proof.

3 Continuous Rewards

We generalize the pass@k to non-binary rewards g : X — R as

max,Qk = E [max ({g(xl)}f:l)} . (11)

"'While our experiments focus on sloo_minus_one, we recommend experimenting with both estimators.



3.1 An Unbiased max,Qk Estimator

The following estimator for the max,@k is a direct analog of p: givenn > ki.i.d. samples, assuming
w.l.o.g. that the rewards g; = g(z;) are sorted, so that g; < g2 < -+ < g, the estimator is

1 n
PO (n, e k) = = > pigi, (12)

1—1
i = <k_1>. (13)

To compute this stably we cancel factors in the binomial coefficients to ge

where

(9) 3 i—J
P (n, e, k) = n_kHZgz‘l_[n_J+1 (14)

j=1

Theorem 3. p\9)(n, c, k) is an unbiased estimator of the max,Qk.

Proof. The proof is similar to Theorem|[I] Here we exploit the assumption that the g; are sorted, so

(rll) > meaggz—(ln) > Gmasier (15)

k |Z|=k k |Z|=k
IC{1,2,...,n} IC{1,2,...,n}
1 n
= o > His (16)
(k) i=k
=9 (n,c, k), (17)
since p; is the number of subsets of 1,2, ...,7— 1 of size k — 1, which equals (,1:11) The sum starts

at k because all subsets of size k include elements that are greater than or equal to gy.
See Line|17|of Listing|1|for an implementation of p(9).

3.2 An Unbiased max,Qk Gradient Estimator

‘We propose the gradient estimator

9) :Zsnglogp(xiW), (18)

i=1

where if we assume w.l.0.g. that the g; are sorted, the s; are a weighted combination of them,

1 n
= v D Miidss (19)
(k) =
where the diagonals are
i—1 Yy
o (kfl) ifi>k-—1 20
i {0 otherwise, 0)
and the off-diagonals are
j—2 . . . P >
- (k72) if (4 >.Z) ANG=k)N(k>2) 21
0 otherwise.

Theorem 4. V9 is an unbiased estimator of the gradient of the max,Qk:

Eoyy g, 2 ep(al6) [ﬁg)} = Vymax, k. (22)

>We thank to Ruixu Zhou of Tsinghua University for correcting errors in equations and



Proof. The proof is analogous to that of Theorem [2] Here we have

V= p(g)(n7 ¢, k)Vy Zlogp(xﬂ@) (23)
i=1

1 n
=0 > max g Z Vo logp(x:]0) (24)

|T|=k i=1

IC{1,2,...,n}
E 1 n n

= > Vologp(zil0) > mijg;, (25)

(k) i=1 j=1

By assumption the g; are sorted, $0 max;ez g = Gmax;er- Lherefore m;; is the number of subsets
Zof{1,2,...,n} that

1. are of size k,
2. have j > i as the largest element (so that we can factor out g;),
3. include 7 (so that (23] holds in expectation by Corollary [I).

Due to the second condition, the form of m;; depends on whether ¢ = j.

The diagonals my; are zero if ¢ < k since the largest element of any subset of size k is at least k. If
1 > k then we fix 7 and are left with ¢ — 1 elements from which to choose £ — 1 which we can do

(;71) ways in line with (20).

The m;; for i # j are obtained by fixing ¢ and j leaving j — 2 elements 1,2,...,7 — 1,...,i +
1,...,5 — 1 from which to choose k — 2 which we can do (]~2) ways in line with I). O

Theorem 5. s1, s2, ..., s, can be computed in total time O(k + nlogn).

See Appendix [A.4]for the proof and Line [36]of Listing|[T] for an implementation based on it.

4 Variance Reduction

4.1 Leave-One-Out Baseline for the Simple Case

A popular variance reduction method [MREFM?20, [OweT3] IGYZ™25|| for point-wise rewards g(x)

subtracts the mean of the leave one out (LOO) rewards within each mini-batch x1, x5, ..., z,:
1 n
(loo) (.} — A )
o0 e3) = ) = =5 2 (ws) 26)
j=
i

Since the subtracted part does not depend on x;, by Corollary [I]this retains unbiasedness.

4.2 Leave-One-Out Baseline for max,Qk

Baselining the s; of in this way introduces bias, however, as each s; depends on all z1, ..., z,.
We instead apply LOO to the following form of s; that follows from Theorem [ and the proof
thereof:

1
Si = 7oy max g (27)
k) I§|=:k jet
i€
IC{1,2,...,n}
= S(i, k,{1,2,...,n}), (28)
We can then retain unbiasedness by excluding 7 from the baseline, by defining
(loo) __ . 1 - . .
S :S(ka7{1727"'7n})7mzls(]akv{lv27"'7n}\7’)' (29)
]:
J#i



Theorem 6. sgl“"), sgl‘"’), ..., 5 can be computed in total time O(k + nlogn).

Proof. Given (9) it is sufficient to consider computing, fori =1,2,...,n,
0 =383k {1,2,.. 0} \ ). (30)
j=1
2

By assuming w.l.o.g. an ascending ordering of g(x;), excluding the first index does not change the
ordering of the remaining indices. The first term is therefore?

N N

1 ,
= (W=
where (31)) follows from @9). From (9) we obtain for 1 < i < n the left to right recursion
k k 1 .
b§+)1 = bE )+ (n_l) (9(zi) — g(@ig1)) (mis + mi—1,:(i — 2)). (32)
k
Similar arguments to the proof of Theorem 5] therefore imply the same time complexity. O

Line|52|of Listingimplements s{1o0) using the recursion in the above proof.

4.3 max,Q(k — 1) Leave-One-Out Baseline for max,Qk

The baseline bz(-k) is an average of the max,Qk estimates over sets of size k. For a number of samples
n equal to k, there are no such subsets to construct the baseline. [TZSM?25] recently overcame this
issue for the specific case n = k by using max,@(k — 1) as the baseline statistic. We generalize
their approach to k < n and to averaging over all subsets by defining similarly to Equation

(loo—1) 1 Z _,
K B = (maxg; — max gv)- Gy
ieT
IC{1,2,...,n}

Averaging smaller but more numerous subsets in the baseline reduces variance but introduces bias
(in the baseline, not 8(100—1)). Given our previous results it is straightforward to show

i

Theorem 7' Sgl0071)7 8510071)7 ey S’gbl0071)

can be computed in total time O(k + nlogn).

Proof. By the linearity of the expectation we can split the two terms in the parentheses of Equa-
tion into two separate sums. The first summation is by definition simply s; of Equation (T9).
The (negation of the) second summation can be computed efficiently using

1 1 k (k—1)
Y Max gp = 7+ max g, = ——=b; 7, (34)
) L;Ek beT\i () |B§;1 beB n(k—1)
JC{1,2,...,n} BC{1,2,...,n}\1
where the final equality follows with a little algebra from Equation (28) and Equation (30). O
Listingimplements 5107 ysing (34); Figurecompares si,58°% and s Y,

5 Experiments

5.1 One-Dimensional Toy Example

We start with a policy that is Gaussian with a fixed standard deviation and mean parameter 6 we
wish to learn, so that z ~ A (6,0.1). We set the raw reward to be

2?2 0<z<1
= - 35
9(x) {0 otherwise. (35)

The optimal policy under the max,Qk reward varies with k£ (see Figure . The variance of our
estimators is compared in Figurewhere s(°0=1) i the strongest.



Table 1: Results for GEMMA2-9B on the MATH benchmark.

GEMMA2-9B k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 2224 £ 050 2535+£0.55 30.73+£059 37.08+064 4259+ 0.68
k_opt=2 2146 £0.51 28.61 £0.56 3292+0.61 39.59+066 4534+0.70
k_opt=4 21.25+£053 27.15+£058 3493 +063 41.71 £0.69 47.05+0.74
k_opt=8 20.69 £0.56 26.78 = 0.60 33.68 £0.66 42.62+0.72 48.37 +0.77
[TZSM25] 1948 +£0.61 2541 +0.67 31.17+£0.73 39.34 +£0.79 44.82 + 0.83
EntropyReg  20.85 £0.58 26.05+0.64 3248 4+0.70 38.21 £0.76 43.95+ 0.81
Table 2: Results for LLAMA3.1-8B on the MATH benchmark.
LLAMA3.1-8B k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 51.15+£0.61 51.82+0.64 53.69+068 5541 +0.72 56.83+0.76
k_opt=2 4972 £0.62 53.51 066 5545+070 5723+0.74 5871 +0.78
k_opt=4 4918 £0.64 5220+0.68 57.83+0.72 58474+0.77 59.28 +0.81
k_opt=8 48.63 £0.67 52.14+0.71 5628 +0.75 59.04 +0.80 61.88 +0.84
[TZSM25] 4821 £0.70 5093 +0.75 5438+0.80 57.11+0.85 58.55+0.90
EntropyReg 4851 £0.68 5195+0.73 5533+£0.78 5695+0.83 58.18+0.88
Table 3: Results for GEMMA2-9B on the Coding benchmark.
GEMMA2-9B k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 37.71 £0.60 42.03+0.65 48.19+£0.69 55.07+0.75 6098 +0.79
k_opt=2 36.84 +0.61 46.56 + 0.67 52.68 £0.72 59.73 £0.78 65.86 £+ 0.84
k_opt=4 3649 £0.63 44954+0.69 57.09+0.76 63.64+0.83 69.51 +0.88
k_opt=8 3575 +£0.67 4441 +0.73 55.08 £0.80 65.56 +0.88 71.91 +0.94
[TZSM25]] 3436 +£0.72 4281 +£0.78 5236 +0.86 61.07 095 6641 +1.01
EntropyReg 3591 +£0.70 43.75+£0.76 53.28+£0.84 60.13+0.93 65.29 +0.99
Table 4: Results for LLAMA3.1-8B on the Coding benchmark.

LLAMA3.1-8B k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 6738 £0.72 6745+0.76 69.22+080 71.11 £0.84 72.84+0.88
k_opt=2 6491 £0.73 69.73+0.78 72.03 £0.82 74.08£0.87 75.894+0091
k_opt=4 6425+ 0.75 6847080 74.67 085 7501£090 77.75+0095
k_opt=8 63.57 £0.78 68.39+0.83 72.84 £0.88 76.82+094 79.33 +0.99
[TZSM25] 62.77 £0.82 66.86 £0.88 70.83 £094 7395+1.01 7547 +1.06
EntropyReg 6391 £0.80 67.85+086 71.78 092 7299 +098 7431 +1.04

5.2 RL on Open Source LLMs

We demonstrate promising RL results with the 2B and 9B parameter variants of GEMMA?2 [TRP"24]]
and the 8B parameter variant of LLAMA3.1 on real-world problems in MATH [HBK™21]], code
generation [AONT21]] [CTJ"21b], and the easy public subset of ARC-AGI-1 [CKKL23]|. The latter
is a challenging reasoning task-set even for state-of-the-art models much larger than GEMMA2.

For GEMMA2-2B we use a vblitepod-128 [Goo|] which needs around 4 hours per 1000 train-
ing steps. Each RL training run [SWD™17] involves sampling a fixed n number of completions
{x;}1_, for a given prompt at a given training step. For our experiments, we set n = 16. The re-
wards are computed for every completion using a reward function g(-). We transform these rewards
{g(x;)}7, using our unbiased estimator s!°°~1) of (33), which we favour due to Figure |4} and
which we refer to as PKPO. We repeat the training for a selection of k°P*, thus optimizing a different
pass@kOPt each time. Since k°P* = 1 leads to no reward transformation, this is our baseline (al-



Table 5: Results for GEMMA2-9B on the ARC-AGI-1 benchmark.

GEMMA2-9B  Cumulative Solve Rate pass@1 pass@16

k_opt=1 12.00 £+ 04.33 02.00 £ 01.69  08.18 £ 04.00
k_opt=4 82.33 £ 04.14 22.00 £ 02.00 38.18 £ 04.67
k_opt=8 84.14 £+ 04.67 26.67 £ 02.50 44.50 + 04.33
[TZSM25]] 22.00 &+ 04.44 06.00 +£ 02.67 10.16 £ 04.57
EntropyReg 24.67 £ 04.50 04.00 £ 02.33  08.89 + 04.89

Table 6: Results for LLAMA3.1-8B on the ARC-AGI-1 benchmark.

LLAMA3.1-8B  Cumulative Solve Rate pass@1 pass@16

k_opt=1 22.00 £ 04.18 03.33 £02.00 08.00 £ 04.50
k_opt=4 87.17 £ 04.14 24.33 £ 02.33  42.00 £ 04.16
k_opt=8 88.89 £+ 04.33 29.67 + 02.67 43.13 £ 04.67
[TZSM25]| 36.00 £+ 02.50 08.00 = 04.00 18.00 £ 04.89
EntropyReg 28.00 £+ 04.44 08.00 + 02.50 14.67 £ 04.44

though we use basic LOO mean centering of Equation (26), without which the training diverges).
For each run, we measure pass@k®¥? for every k°v?le {1,2,4, 8,12, 16} at each step. Additionally,
we also track model entropy and cumulative solve rate during training. The latter is defined as the
fraction of tasks from the task-set for which the model has sampled a correct solution at least once;
this is a critical metric that reflects the success of the model’s exploration and measures its ability to
find novel solutions.

Entropy regularization baseline In addition to our PKPO and the special case thereof of [TZSM23],
we also add the entropy regularization baseline, which is PPO with an additional entropy term in the
objective. We give this baseline an arguably unfair advantage by performing a small sweep over the
values 0.001,0.005,0.01,0.05,0.1 for the entropy_coefficient for each (model, benchmark)
pair and only report the best result as EntropyReg.

5.2.1 Choosing k°P selectively optimizes pass@k°** and solves more tasks

We use the training split of Hendrycks MATH [HBK™21]] which contains 12,000 problems as our
task set. Figure |6a| shows that a higher k°P' in our transformation leads to a consistently higher
cumulative solve rate throughout training, as well as a higher entropy. By optimizing pass@k instead
of pass@1, the model appears to better utilize the exploration budget thus finding more solutions.

In Figure [7, we compare pass@k®'®! across our runs (k°P* € {1,4,8}) for various k°V®!, We find
the best pass@k°®®! when kPt = k°¥al (or k°Pt is closest to k°V®! among available k°P*). Non-
transformed rewards optimize pass@1, leading to sub-optimal pass@k®¥® for k°¥#'=£ 1, and the
deficit worsens as k°V®! increases. Thus, our experiments also demonstrate that setting k°Pt:= keva!
in our transformation suffices to optimize pass@k®"®! for a k°¥*< n. This generalizes the already
powerful result of [TZSM25] by alleviating the coupling that restricts to optimizing either pass@n
or pass@1. In other words, since RL training of LLMs typically samples a large batch (n > 1),
failing to use our transformation results in sub-optimal pass@k performance, especially for modest
values of k.

As k°P* — n, the variance of our estimator increases as there are fewer subsets in (see
Figure . We presume this is why 1) gains of k°P* = 8 over k°P' = 4 are more prominent when
keval € £12,16} than when k'3 = 8. That is, when k°¥?! is further away from k°P' € {4,8} than
when it is closer, and 2) the special case n = k°P' of [TZSM23] struggles to optimize the pass@n.

5.2.2 PKPO robustly improves pass@k on held out evaluations

Tables above (and Tables in the appendix) present performance on held-out sets for two
tasks. We report the mean and standard error based on three runs with different random seeds. For
math, we train on the train split and evaluate on the test split of Hendrycks MATH [HBK™21]. To
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Figure 3: Annealing k°P* during PKPO training improves pass@k®"® without sacrificing pass@1.
For kannealed e train with k°P* = 8 up to step 1500 and k°P* = 1 thereafter.

evaluate coding, we use MBPP [AONT21]| for training and evaluate on HUMANEVAL [CTJ™21b].
MBPP has multiple unit tests per problem and hence we use this not only as a proxy for additional
benchmarks but also to showcase our handling of a continuous reward function (% unit tests passed).

5.2.3 Improving pass@k without sacrificing pass@1

Figure [3| demonstrates that as PKPO can use any arbitrary k°P' < n, this allows varying k°P' over
the course of training to good effect. We show a simple annealing procedure which starts training
with a high k°P* = 8 and reduces it to k°P' = 1 after 1500 steps. This trains the model to initially
prioritize exploration (optimize pass@k) and then consolidate the single-sample policy (optimize
pass@1). This switch is apparent in Figure at step 1500 where the slope of k*"caled changes.
While traditional methods like [TZSM25] suffer from a trade-off between pass@k and pass@1, we
get a final model which has higher pass@k®V! for all k°* > 1 with no sacrifice in pass@1.

5.2.4 PKPO is essential for learning on hard problems

Figure 8| shows the limitation of traditional pass@1 optimization through RL on an especially chal-
lenging task-set. We use the easy subset of ARC-AGI-1 [CKKL25]. We observe that conventional
pass@1 optimization stalls. However, our pass@k approach unblocks learning, and results in higher
pass@k°Va! across all k! including k°V*'= 1. Furthermore, we see higher k°P* leads to more effec-
tive and faster learning. This is likely because the benefits of prioritizing joint utility over individual
sample utility are more prominent on a harder task-set.

Tables [5] and [f] show more extensive experiments on ARC-AGI-1. We make an 80:20 train:test split
of the same easy subset as before and report the cumulative solve rate on the train set and pass@Qk
rate on the test set. We train to saturation (no change in cumulative rate for 1k steps), and again use
three random restarts to provide standard errors. By encouraging exploration in a direct and stable
manner, our method unblocks learning unlike other methods. Entropy Regularization does indeed
sacrifice pass@1 and slightly improves pass@k by promoting exploration, but it is hard to tune, and
is significantly outperformed by our method. Moreover, it has no explicit way to optimize for a
specific k_eval. [TZSM?25]] targets the same objective as PKPO, but couples the minibatch size to k
and thereby incurs higher variance than PKPO with k < n.

6 Conclusions and Outlook

In RL training with multiple independent samples per task, optimizing the pass@k maximizes the
expectation of the best reward in the set of samples, rather than the average one. This preserves
model output diversity, which leads to solving more problems and ultimately yields stronger policies.
We provide drop-in replacements for more traditional RL reward transformations that robustly and
efficiently optimize the pass@k. This work can be extended in various ways, such as to other
inference-time search algorithms, and to more sophisticated baseline techniques.
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A Additional Theoretical Statements and Proofs

A.1 Statement and proof that n > k samples are required to unbiasedly estimate passQk

This result is a direct consequence of a well-known theorem concerning the unbiased estimability of
parametric functions for the Bernoulli distribution.

Theorem 8 (Kolmogorov [Kol50]). Let Yi,...,Y, be ii.d. Bernoulli random variables with suc-
cess probability p € [0,1]. A function p(p) is unbiasedly estimable from this sample if and only if it
can be expressed as a polynomial in p of degree at most n.

A sketch of a proof of TheoremB] can be found in Lehmann and Casella [Leh98§].

Corollary 2. Given a sequence of n i.i.d. model samples x1, s, ..., Ty, the passQk is unbiasedly
estimable if and only if n > k.

Proof. 1t is sufficient to consider a single a fixed and observed correctness function f, so that the
independence of the x; implies the independence of the correctness events [f(z;) = 1]. Let p =
P[[f(z:) = 1]] be the probability that any single sample is correct. The pass@k is defined as the
complement of the probability that all k£ samples are incorrect, which for the specific assumptions
adopted in this proof is 1 — (1 — p)¥. Because this expression is a polynomial in p of degree k, the
result follows immediately from Theorem O

A.2 Characterization of the Variance

Our proof of Theorem identifies the pass@k estimator p(n, ¢, k) as a U-statistic. To characterize
its variance, we apply Hoeffding’s asymptotic theory.

Theorem 9 (Hoeffding [Hoed4S8|)). Let Xi,...,X,, be independent and identically distributed
random variables with distribution F.  Let h(xi,...,z) be a symmetric kernel with
E[h(X1,...,Xk)?] < cc. Define the parameter j = Ep[h(X1, ..., Xx)] and the U-statistic:

-1
n
U, = <k> S Xy, X, (36)

1<iy <-+-<ix<n
Let hy(z) = E[h(z, Xa, ..., X})] be the projection of the kernel onto a single variable. Hoeffding
proved that if ¢, = Var(h1(X1)) > 0, then as n — oo:
Vi(Un — ) 5 N(0,k2Cy). (37)

In the standard application of pass@k we evaluate the estimator on a specific problem defined by
a prompt and a correctness oracle. While the true pass rate v is unknown to the observer, it is a
fixed property of the model-problem pair. Consequently, the correctness outcomes of the generated
samples are i.i.d. conditioned on the problem.

The following lemma derives the variance parameter ¢; under this conditioning. We abuse the
notation by allowing the X; to denote correctness.

Lemma 2 (Conditional Variance of the Projection). Fix a problem instance such that the correct-

nesses X; are i.i.d. Bernoulli(v). For the passQk kernel h(z1,...,x,) = max(xq,...,x), the
variance of the first-order projection is:
G k) =v(1—v)* L (38)
Proof. The projection hq(x) is the expected value of the kernel given the first sample is fixed to z,
while X5, ..., X} remain random variates drawn from Bernoulli(v).
hi(z) = Elmax(z, Xa, ..., Xg)]. (39)

We evaluate this for the two possible realizations of x:
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1. Case x = 1 (Success): The maximum is 1 regardless of the remaining samples.
hi(1) =1.

2. Case x = 0 (Failure): The maximum is O if and only if all remaining £ — 1 samples fail.
Since the remaining samples are i.i.d. with failure probability (1 — v),
hi(0)=1—(1—w)*1

The projection h(X7) is thus a binary random variable taking value hq(1) with probability v and
h1(0) with probability 1 — v, so that

1 =v(1 =) (hi(1) — hi(0))?
—y(l-v)(1-[1—1—p)1)?
=v(1—v) (1 - v)*)?

_ l/(l _ V)Qkfl

O
We can now substitute this explicit form back into Hoeffding’s general result.

Corollary 3. For a fixed problem with pass rate v, as n — 00, the asymptotic variance of the
estimator p(n, ¢, k) is:
1 X
Var(p) ~ — [k*v(1 —v)** 1. (40)

“n
A.3  Proof of Theorem
Although Theorem 2]is a special case of Theorem [ we include both because the following proof

uses a different approach from that of the more general statement, and is arguably the easier of the
two.

Proof. By LemmalI|the gradient Vypass@k has the unbiased estimator

V = p(n, e, k)Vy Zlogp(am@) 41)
i=1
1 n
= Y (1 -[Ia- fz-)) >V log p(a:il6) (42)
(k |Z|=k i€L i=1
IC{1,2,...,n}
1 n
= Y miVslogp(ail6), (43)

(Z) i=1

where (@2)) substitutes the Lh.s. of (3). m; is the number of subsets Z of {1,2,...,n} that

1. are of size k,

2. contain at least one correct element, so that (1 — [],.-(1 — f;)) = 1,

3. contain i, so that (3] holds in expectation by Corollary I}
Due to the second condition, m; therefore equals one of two values, which we denote by m® and
m(©), depending on whether f; = 1 or f; = 0, respectively.

If f; = 1 then all subsets that include 7 also include at least one correct element (i itself), so that

mW is just the number of subsets of size k of {1,2,...,n} that include ¢, which equals the number
of subsets of size k — 1 of {1,2,...,n —1}:

O AL 44

= (1 7)). @)
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If f; = 0 then we assume w.l.o.g. that ¢ = n, so that m(©) is the number of subsets of size k — 1 of

{1,2,...,n — 1} with at least one correct element,
n—1
m© — 3 1-J[a-#) E(k_JpM—qu—1L (45)
JC{1,2,....,n—1} jeT
T2k

where we again used (3)), this time to get an expression in terms of p. Using m(® and m™) we can
compute 7(?) and +(*) using @3) as

o_m Gk

— = = (46)
(¥) (v) n
and
© (" Hpn-1,e,k—1) &
MO T?n) _ (k—l) (n) = cp(n—1,¢,k —1), “47)
k k
in line with (8). O

A.4 Proof of Theorem

Proof. The vector s = (s1,52,...,5,)! can be written as s = Mg where we have introduced
g = (9(z1),9(x2),...,9(x,))T as well as the matrix M with

1. diagonal elements m;; given by (20),
2. upper diagonals m;; for i < j given by which is independent of 7,

3. lower diagonals m;; for i > j equal to zero.

Because of the structure of M, we have that
1

Sn = 7oy Mnn g(xn)y (48)
(%)

and, for 1 < ¢ < n, the right to left recursion
1
Si = Si+1 + @ (g(xz)mu + g(@iv1) (mait1 — mi+1,i+1)>~ (49)
k

The ratios of m;;, m; ;41 and m;11 ;41 divided by (Z) can be simplified by cancelling factors in the
binomial coefficients and writing the remaining factors as a product of & ratios similarly to (I4), for
a total cost of O(nk); this computation can be further simplified by noting that the required ratios
can be lazily computed in sequence (for example to obtain m;y; ;41 from m;;) at a cost of O(1)
after computing the first at a cost of O(k), giving a total cost of O(k+n). The additional O(nlogn)
comes from assuming the ¢ are sorted in increasing order of g(z;). O
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Implementation

def _m_normed(N: int, K: int, i: int, j: int) -> float:
if i == j and i >= K-1:
return (
K / (N-K+1) *
np.prod(np.arange (i-K+2, i+1) / np.arange (N-K+2, N+1))
)
elif j > i and j >= K-1 and K >= 2:
return (
K / (N-K+1) * (K-1) / N *
np.prod(np.arange (j-K+2, j) / np.arange(N-K+2, N))

return O

def _m_diagonal(N: int, K: int) -> np.ndarray:
return np.array([_m_normed(N, K, i, i) for i in range(N)])

def rho(g: np.ndarray, K: int) -> float:

""" See Equation (12).”"”

return (np.sort(g) * _m_diagonal(len(g), K)).sum()

def _delta(N: int, K: int, i: int) -> float:
return _m_normed(N, K, i, i+1) - _m_normed(N, K, i+1, i+1)

def _deltas(N: int, K: int) -> np.ndarray:
return np.array([_delta(N-1, K, i) for i in range(N-2)1])

def _sorted_apply(func: Callable) -> Callable:
def inner(x: np.ndarray, *args, **xkwargs) -> np.ndarray:

i_sort = np.argsort(x)
func_x = np.zeros_like (x)
func_x[i_sort] = func(x[i_sort], *args, *xkwargs)

return func_x
return inner

@_sorted_apply

def s(g: np.ndarray, K: int):
”””See Equation Lo
N = len(g)
c = g * _m_diagonal (N, K)
cl[:(N-1)] += g[1:] * _deltas(N+1, K)
return np.cumsum(c[::-1]) [::-1]

3 @_sorted_apply

def _b(g: np.ndarray, K: int) -> np.ndarray:
N = len(g)
w = (_m_diagonal (N-1, K) * np.arange(l, N)).astype(float)
wl1:] += _deltas(N, K) * np.arange(l, N-1)
cl = np.array([(w * g[1:]1).sum() 1)
c2 = (gl:-11 - gl1:1) * w
return np.cumsum(np.concatenate ((cl, c2)))

def sloo(g: np.ndarray, K: int) -> np.ndarray:
”””See Equation (29).""”
return s((g, K) - _b(g, K) / (len(g) - 1)

def sloo_minus_one(g: np.ndarray, K: int) -> np.ndarray:
""" See Equation (33).""”"
return s(g, K) - _b(g, K-1) * K / (K-1) / len(g)

Listing 1: Python reward batch transformations. Functions with names that begin with an underscore
are helpers, while the remaining four functions rho, s, sloo and sloo_minus_one implement p(g ),

Uoo)and>sﬂoofl)

7 %

, respectively. For simplicity this implementation costs O(nk + nlogn) —

reducing this to O(k + nlogn) would require optimizing _deltas and m diagonal.
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C Additional Figures

Variance of Estimated Gradient of pass,@k for k=4
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Figure 4: The variance of different estimators of the gradient of max,@k with k = 4 for the one-
dimensional problem depicted in Figure [T] at the location = 1. Each data-point is the sample
variance of 10,000 independent unbiased gradient estimates (lower is better). The horizontal axis
denotes the number of samples n used to construct each of the 10,000 estimates. We compare the
following methods:

all subsets baselined: 5(1°°) — our novel estimator of Equation (29) that analytically sums over all
subsets of size k of the n samples with our unbiased baseline method that subtracts for each element
¢ the mean of the estimator over all subsets of size k that do not include 3.

all subsets no baseline: s — our novel estimator of Equation (I9) that analytically sums over all
subsets of size k of the n samples but that does not include a variance-reducing baseline.

naive partitioned baselined — a naive transformation that sets all & transformed rewards in a
subset of k samples equal to the largest raw reward in that subset. To extend this method to n > k
we partition the n samples (for integer multiples of k) into disjoint subsets of size k and average
the estimated gradient obtained from each. Furthermore, as a simple variance reduction method,
for each such set of k& samples we subtract the mean of the transformed rewards from the other
sets of k samples (thereby averaging over (n — k) samples and subtracting the result from the k
samples and repeating n/k times in a leave-one-out fashion over the subsets of size k). If we were
to randomly sample an increasing number of partitions of the samples and average over all of them,
then intuitively the resulting estimator would approach the variance of s(1°°), but this would be
expensive and indeed the limiting case of considering all partitions is intractable for general n and
k. Our estimators have the key property of summing over all such partitions while nonetheless being
efficient to compute.

naive partitioned no baseline — a similar method to the previous one, but without the naive mean
subtraction based variance reduction step.

loo minus one partitioned — a method that uses the same partitioning approach as the previous two,
but instead of using the naive estimate (which sets every transformed reward to simple max of the
raw reward in a given set of k samples) it uses the s1°°—1) method applied separately to each disjoint
set of k samples, and averages that over all such subsets. In this way, this is a trivial generalization of
[TZSM25]] which extends to n > k by applying the basic method to disjoint subsets and averaging
the results. We do not subtract a baseline across sets as this did not improve the variance, possibly
because the method within each k already includes a variance reduction baseline.

loo minus one all subsets: s°°~1) — our novel estimator of Equation that analytically sums
over all subsets of size k of the n samples and uses all appropriate subsets of size k — 1 to form the
variance-reducing baseline that retains unbiasedness, thereby non-trivially generalizing [TZSM25]]
to all n > k with strong variance reduction.
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Figure 5: The effect of the LOO baseline on the effective rewards derived from n = 32 raw re-
wards g(x;) sampled uniformly from [—1/2,+1/2]. The non baselined effective rewards (a) from
(T9) include a vertical offset that grows with k despite being a function of raw rewards (horizontal
axis) that are centered around zero. The baselined effective rewards (b) and (c) from 29) and (33)
respectively are more centered, and give rise to reduced gradient estimator variance. To construct
the figure we grouped reward values into regularly spaced bins and averaged the transformed reward
for each bin to construct the curves. Note: because our transformations are from R™ — R"™ it is not
possible to directly inspect a one-dimensional transformation.

Cumulative solve rate Entropy when optimizing pass@k°Pt
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Figure 6: (a): Increasing k°P* in PKPO training solves more problems during GEMMA2 RL. (b):
A higher k°P* makes the model learn to have higher entropy during RL. Thus, by optimizing for
pass@k with £ > 1 instead of pass@1, the model tends to have higher entropy leading to better
exploration and solving more problems. Note that the size of one epoch, which is 750 steps, is
evident in (a), where we see the slope decrease at each epoch boundary.
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Figure 7: Effect of k°P' (used in our PKPO training) on the rolling pass@k®'® in GEMMA2 RL.
Setting k°P* = k°V&! usually achieves the best pass@k®'?!, Prior work [TZSM25] (which is equiva-
lent to the specific case of k°P* = n = 16 in our notation) is also shown for comparison, and suffers
here presumably due to the larger estimator variance and unreliable gradient (see also Figure E[)
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Figure 8: Our PKPO (k°Pt > 1) dramatically improves progress on the challenging ARC-AGI-1.

Table 7: Results for GEMMA2-2B on the MATH benchmark.

GEMMA2-2B

k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 1591 £ 040 18.124+043 23.37 048 29.58 +£0.53 35.02 +0.58
k_opt=2 1515+041 2073 +£045 2581050 31.96+0.55 37.75+0.60
k_opt=4 14.86 £0.43 19.86 =047 27.59 +0.52 34.27 £0.58 38.91 +0.62
k_opt=8 1419 £ 046 1933 £0.50 26.45+0.55 3549 +0.60 40.73 +0.65
[TZSM25]] 13.11 £0.50 18.09 £0.54 2458 £0.60 31.81 £0.66 37.24+0.71
EntropyReg 1451 £048 18.95+0.52 2533+£0.58 3095+0.64 36.18+0.69

Table 8: Results for GEMMA2-2B on the Coding benchmark.

GEMMA2-2B k_eval=1 k_eval=2 k_eval=4 k_eval=8 k_eval=16
k_opt=1 19.82 +0.53 2381 £0.57 29.754+0.62 3633 +0.66 42.04+0.71
k_opt=2 18.70 = 0.54 26.94 +0.59 33.82 +0.64 40.95 +0.69 47.03 +0.74
k_opt=4 18.69 £ 0.56 2643 +£0.61 36.81 £0.67 4481 +0.73 50.55=+0.78
k_opt=8 17.94 £ 0.59 25.86 +0.64 35.88+0.70 46.45+0.77 52.83 + 0.83
[TZSM25]] 16.81 £0.65 2427 +0.69 33.11 +£0.76 4198 +£0.84 47.26 +0.89
EntropyReg 18.05 £0.62 25.13+£0.67 34.01 £0.74 40.88+0.81 46.15+0.86
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the abstract and introduction are typical and represent the paper’s contribution
and scope.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

o The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper is largely theoretical, and the theorems include appropriate quali-
fiers and assumptions.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

o The authors are encouraged to create a separate “Limitations” section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: we have made every effort to ensure that the results are precise and rigorous.
Guidelines:

e The answer NA means that the paper does not include theoretical results.

o All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: the main contribution is a reward transformation method that need only mod-
ify a standard RL algorithm by mapping batches of scalar rewards to their transformed
values. We have provided the code for this transformation in Listing

Guidelines:

e The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: the main non-trivial code that is required to transform the rewards is provided
in the document as

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

o The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Every effort has been made to report this information to an appropriate level
of detail.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: the paper is typical in that due to the computational cost of the experiments,
we do not provide detailed condifence intervals, efc. However, we made every effort to
provide a suitable level of detail on the scope and significance of the experimental results.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we have provided as much information as we are permitted to by our organi-
zation at this stage. The compute requirements are already strongly indicated by the fact
that we specify that we are training with the open source 2B GEMMA2 model. We can
expand on this for the camera ready.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: The paper conforms rather comfortably, as it is mainly a theoretical paper
with standard experimental results on existing publicly available data.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: this is a methodological work that is not tied to any specific applications.
There is no new and direct path from this paper to specific societal impacts.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: this paper poses no such risks.
Guidelines:

e The answer NA means that the paper poses no such risks.

28



12.

13.

14.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we have made every effort to include these details.
Guidelines:

e The answer NA means that the paper does not use existing assets.
e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: the paper does not introduce new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: the paper does not use human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

e Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

e According to the Neur[PS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: see above.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

e Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the LLM training in our experiments is standard and on standard publicly
available tasks.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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