
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Three axes of identifiability in 
causal representation learning. 

Table 1: Organization of reviewer comments. 

Figure 2: The underlying data generating process in ColoredMNIST and Bar experiments. (A) the LSD induced by the true ASCMs; (B) 
observations from domain Π!; (C) observations from Π"; (D) soft intervention on 𝑉#	in Π!, and (E) hard intervention on 𝑉" in Π".  Gray 
arrows indicate invariant distributions w.r.t. (B). Red arrows indicate distribution changes w.r.t. (B). E.g., In (B), 9 is likely violet, which 
will influence the bar to be likely blue, whereas in (D), the bar is likely to be yellow. 

Figure 3: (A) The CDM output of CRID for Color-Digit and Color-Bar. Correlation of learned representation of Color-Digit (B) and 
Color-Bar (C) w.r.t. ground-truth latent variables. Pink denotes the output disentanglement predicted by the CDM.  Lower correlation 
implies disentanglement and higher correlation implies entanglement. Since 𝑉$ is not known, there is no ground-truth to assess against. 

Figure 4: Image editing using learned representations of (A) digit color and (B) bar color. When editing digit color 𝑉" the digit number (𝑉!) 
and writing style (𝑉$) should not change while bar color 𝑉# can change because of the causal effect of 𝑉" on 𝑉#). When editing the bar color, 
the the digit number (𝑉!) and writing style (𝑉$) should not change while the digit color 𝑉" can change because of the potential entanglement. 
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Figure 1: Three axes of identifiability in causal representation learning.

Abstract

Considering various data modalities, such as images, videos, and text, humans1

perform causal reasoning using high-level causal variables, as opposed to operating2

at the low, pixel level from which the data comes. In practice, most causal reasoning3

methods assume that the data is described as granular as the underlying causal4

generative factors, which is often violated in various AI tasks. This mismatch5

translates into a lack of guarantees in various tasks such as generative modeling,6

decision-making, fairness, and generalizability, to cite a few. In this paper, we7

acknowledge this issue and study the problem of causal disentangled representation8

learning from a combination of data gathered from various heterogeneous domains9

and assumptions in the form of a latent causal graph. To the best of our knowledge,10

the proposed work is the first to consider i) non-Markovian causal settings, where11

there may be unobserved confounding, ii) arbitrary distributions that arise from12

multiple domains, and iii) a relaxed version of disentanglement. Specifically, we13

introduce graphical criteria that allow for disentanglement under various conditions.14

Building on these results, we develop an algorithm that returns a causal disentan-15

glement map, highlighting which latent variables can be disentangled given the16

combination of data and assumptions. The theory is corroborated by experiments.17

1 Introduction18

Causality is fundamental throughout various aspects of human cognition, including understanding,19

planning, decision-making. The ability to perform causal reasoning is considered one of the hallmarks20

of human intelligence [1–3]. In the context of AI, the capability of reasoning with cause-and-effect21

relationships plays a critical role in challenges of explainability, fairness, decision-making, robustness,22

and generalizability. One key assumption of most methods currently available in the causal literature23

is that the set of (endogenous) variables is at the right level of granularity. However, this is not the24

case in many AI applications, where various modalities, such as images, and text, come into play25

[4]. For example, images may capture a natural scene within a park, where the causal variables26

are the objects within the scene. The pixels themselves are not the causal variables, and thus AI27

must disentangle the latent causal variables given the pixels in order to represent the true underlying28
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