
Communication Acceleration of Local Gradient
Methods via an Accelerated Primal-Dual Algorithm

with Inexact Prox

Abdurakhmon Sadiev∗
KAUST†, MIPT‡, ISP RAS§

abdurakhmon.sadiev@kaust.edu.sa

Dmitry Kovalev
KAUST

dakovalev1@gmail.com

Peter Richtárik
KAUST

richtarik@gmail.com

Abstract

Inspired by a recent breakthrough of Mishchenko et al. [2022], who for the first
time showed that local gradient steps can lead to provable communication accelera-
tion, we propose an alternative algorithm which obtains the same communication
acceleration as their method (ProxSkip). Our approach is very different, however:
it is based on the celebrated method of Chambolle and Pock [2011], with several
nontrivial modifications: i) we allow for an inexact computation of the prox op-
erator of a certain smooth strongly convex function via a suitable gradient-based
method (e.g., GD, Fast GD or FSFOM), ii) we perform a careful modification of
the dual update step in order to retain linear convergence. Our general results offer
the new state-of-the-art rates for the class of strongly convex-concave saddle-point
problems with bilinear coupling characterized by the absence of smoothness in
the dual function. When applied to federated learning, we obtain a theoretically
better alternative to ProxSkip: our method requires fewer local steps (O(κ1/3) or
O(κ1/4), compared to O(κ1/2) of ProxSkip), and performs a deterministic number
of local steps instead. Like ProxSkip, our method can be applied to optimization
over a connected network, and we obtain theoretical improvements here as well.

1 Introduction

Communication efficiency of distributed stochastic gradient descent (SGD) can be improved, often
dramatically, via a simple trick: instead of synchronizing the parameters across the parallel workers
after every SGD step, let the workers perform multiple optimization steps using their local loss and
data only before synchronizing. This trick dates back at least to two or three decades ago [Mangasarian,
1995], and may be much older. Due to its simplicity, it has been repeatedly rediscovered [Povey et al.,
2014, Moritz et al., 2016, Ma et al., 2017]. It is the basis of the famous federated averaging (FedAvg)
algorithm of McMahan et al. [2016, 2017], which is the workhorse of federated learning [Konečný
et al., 2016b,a]; see also the recent surveys on federated learning [Li et al., 2020a, Kairouz et al.,
2019] and federated optimization [Wang et al., 2021b].
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1.1 Towards provable communication acceleration via delayed parameter synchronization

Until recently, this simple trick resisted all attempts at an appropriate theoretical justification. Through
collective effort of the federated learning community, the bounds of various local SGD methods were
progressively getting better [Haddadpour and Mahdavi, 2019, Li et al., 2019a,b, Khaled et al., 2019a,b,
2020, Li et al., 2020b, Woodworth et al., 2020, Stich, 2020, Gorbunov et al., 2020a, Malinovsky et al.,
2020, Pathak and Wainwright, 2020, Karimireddy et al., 2020, Malinovsky et al., 2021, Mishchenko
et al., 2021a, Wang and Joshi, 2021, Horváth et al., 2022], and the assumptions required to achieve
them weaker. A brief overview of the progress is provided in [Mishchenko et al., 2022]. However,
all known theoretical rates are worse than the rate of gradient descent, which synchronizes after
every gradient step. In a recent breakthrough, Mishchenko et al. [2022] developed a novel local
SGD method, called ProxSkip, which performs a random number of local gradient (or stochastic
gradient) steps before synchronization, and proved that it enjoys strong communication acceleration
properties. In particular, while the method needs O(κ log 1

ε ) iterations, only O(
√
κ log 1

ε ) of them
involve communication.

1.2 Problem formulation

In this paper, we consider the composite optimization problem

min
x∈Rdx

G(x) + F (Kx), (1)

where G : Rdx → R is a smooth and strongly convex function, F : Rdy → R ∪ {+∞} is a proper,
closed and convex function, and K : Rdx → Rdy is a linear map. Let us define

Lxy
def
= max

{
∥Kx∥ : x ∈ Rdx , ∥x∥ = 1

}
, (2)

where ∥ · ∥ refers to the standard Euclidean norm. Note that L2
xy ≥ λmax(KK

⊤) = λmax(K
⊤K).

It will be useful to formalize our assumptions at this point as we will refer to the various constants
involved in them throughout the text.
Assumption 1. Function G : Rdx → R is µx-strongly convex, i.e.,

G(x′)−G(x′′)− ⟨∇G(x′′), x′ − x′′⟩ ≥ µx

2
∥x′ − x′′∥2, ∀x′, x′′ ∈ Rdx . (3)

Assumption 2. The function G : Rdx → R is Lx-smooth, i.e.

∥∇G(x′)−∇G(x′′)∥ ≤ Lx∥x′ − x′′∥, ∀x′, x′′ ∈ Rdx . (4)

Assumption 3. Function F : Rdy → R ∪ {+∞} is proper, closed and convex.
Assumption 4 (See Kovalev et al. [2021a]). There exists a constant µxy > 0 such that

µ2
xy ≤

{
λ+min(KK

⊤), if ∂F ⋆(y) ∈ rangeK for all y ∈ Rdy ,

λmin(KK
⊤), otherwise.

1.3 ProxSkip

The most general version of the ProxSkip method5 of Mishchenko et al. [2022] was designed to solve
problems of the form (1). In each iteration, ProxSkip evaluates the gradient of G and then flips a
biased coin: with probability p, it additionally evaluates the proximity operator of F ⋆, and performs a
matrix-vector multiplication involving K. The method becomes relevant to the standard optimization
formulation of federated learning (FL), i.e., to the finite-sum optimization problem

min
x∈Rd

n∑
i=1

fi(x), (5)

through its application to its consensus reformulation

min
x1,...,xn∈Rd

{
n∑

i=1

fi(xi) + ψ(x1, . . . , xn)

}
= min

x∈Rdx
G(x) + F (x), (6)

5This variant is called SplitSkip in their paper.
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Table 1: Summary of the key complexity results obtained by our methods APDA (Algorithm 1;
Theorem 1) and APDA with Inexact Prox (Algorithm 2; Theorem 2) for solving the saddle-point
problem (7).

Algorithm
No

Prox
G

No
Prox
F⋆

Works
with

Ly = ∞

Linear
rate
with

µy = 0

# Outer Iterations(1) # Inner Iterations(1)

CP(a) ✗ ✗ ✓ ✗
Lxy√
µxµy

(2) uses prox of G

AltGDA(b) ✓ ✓ ✗ ✓ max

{
L
µx

, L2

µ2
xy

}
—(3)

APDG(c) ✓ ✓ ✗ ✓ max

{√
LxLy
µxy

, Axy

}
—(3)

Alg 1 ✗ ✗ ✓ ✓ Axy
(2) uses prox of G

Alg 2 ✓ ✗ ✓ ✓ Axy
(2) max

{
κxκxy, κ

1/2
x κ2

xy

}
(4)

Alg 2 ✓ ✗ ✓ ✓ Axy
(2) max

{
κ5/6
x κxy, κ

1/3
x κ2

xy

}
(5)

Alg 2 ✓ ✗ ✓ ✓ Axy
(2) max

{
κ3/4
x κxy, κ

1/4
x κ2

xy

}
(6)

(a) Chambolle and Pock [2011] assume that G and F⋆ are µx and µy -strongly-convex, respectively. We do not assume F⋆ to be strongly convex.
(b) Zhang et al. [2022] assume that the functions G and F⋆ are L-smooth (i.e., L = max{Lx, Ly, Lxy}), and that G is µx-strongly-convex.
(c) Kovalev et al. [2021a] assume that the functions G and F⋆ are Lx and Ly -smooth, respectively, and that G is µx-strongly-convex.
(1) For brevity, we let κxy

def
=

Lxy
µxy

, κx
def
= Lx

µx
, and Axy

def
= max

{
κ
1/2
x κxy, κ

2
xy

}
. We omit constant factors and a log 1

ε
factor in all expressions, for

brevity. So, for example, the expression Axy in the case of the method of our methods should be interpreted as O
(
Axy log 1

ε

)
.

(2) # outer iterations = # evaluations of the prox of F⋆ .
(3) There is no prox operator and hence no inner iterations.
(4) The iterative method M evaluating the prox of G inexactly in this case is: M = GD (see Lemma 1).
(5) The iterative method M evaluating the prox of G inexactly in this case is: M = FGD (Fast Gradient Descent) + GD. See Lemma 1.
(6) The iterative method M evaluating the prox of G inexactly in this case is: M = FSFOM + FGD (Fast Gradient Descent). See Lemma 1.

where dx
def
= nd, x def

= (x1, . . . , xn) ∈ Rnd, G(x) def
=
∑n

i=1 fi(xi), and F def
= ψ is the indicator

function of the constraint x1 = · · · = xn, i.e.,

ψ(x1, . . . , xn)
def
=

{
0 if x1 = · · · = xn
+∞ otherwise

.

The evaluation of the proximity operator of F is equivalent to averaging of the vectors x1, . . . , xn,
which necessitates communication. Therefore, if p is small, ProxSkip communicates very rarely.
Since G is block separable, the gradient steps involving G, taken in between two communications,
correspond to gradient steps with respect to the local loss functions {fi} taken by the clients. See
[Mishchenko et al., 2022] for the details; we will elaborate on this as well in Section 6.

ProxSkip inexactly solves problem (1) in O (κ log 1/ε) iterations, out of which only O
(√
κχ log 1

ε

)
involve communication, where χ is a condition number measuring the connectivity of the graph
(the standard setup in FL corresponds to a fully connected graph, in which case χ = 1; see (26) for
definition).

2 Summary of Contributions

Inspired by the results of Mishchenko et al. [2022], we propose an alternative and substantially
different algorithm which obtains the same guarantees for the number of prox evaluations (wrt F )
as ProxSkip, but has better guarantees for the number of gradient steps (wrt G) in between the prox
evaluations. Below we summarize the main contributions:

Saddle-point formulation. Unlike Mishchenko et al. [2022], we consider the saddle-point refor-
mulation of (1)

min
x∈Rdx

max
y∈Rdy

{G(x) + ⟨y,Kx⟩ − F ⋆(y)} , (7)

where F ⋆(y)
def
= supy′∈Rdy {⟨y, y′⟩ − F (y′)} is the convex conjugate of F . Since F is proper, closed

and convex, so is F ⋆. We assume throughout that (7) is solvable, i.e., there exists at least one solution
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(x⋆, y⋆). Such a solution then satisfies the first-oder optimality conditions6

0 ∈ ∂G(x⋆) +K⊤y⋆, 0 ∈ ∂F ⋆(y⋆)−Kx⋆, (8)
where ∂ denotes the subdifferential. By working with this reformulation, we can tap into the rich and
powerful philosophical and technical toolbox offered by proximal-point theory, fixed point theory,
and primal-dual methods, which facilitates the algorithm development and analysis. This ultimately
enables us to shed new light on the nature of local gradient-type steps as inexact computations of the
prox operator of G in a new appropriately designed Accelerated Primal-Dual Algorithm (APDA; see
Algorithm 1).

Modifications of Chambolle-Pock Our Algorithms 1 and 2 are inspired by the celebrated
Chambolle-Pock method [Chambolle and Pock, 2011], but with several important and nontriv-
ial modifications. While Chambolle-Pock achieves linear convergence when both G and F ⋆ are
strongly convex, F ⋆ is merely convex in our setting. Our modifications are:

i) Inspired by the ideas of Kovalev et al. [2021a], we perform a careful modification of the
dual update step (update of y) in order to retain linear convergence despite lack of strong
convexity in F ⋆. On the other hand, in contrast to the method of Kovalev et al. [2021a], we
do not assume F ⋆ to be smooth. This modification leads to a new method, which we call
APDA (Algorithm 1). APDA relies on the evaluation of the prox operators of bothG and F ⋆.

ii) Next, we remove the reliance on the prox operator of G, and instead allow for its inexact
evaluation via a suitable user-defined gradient-based method, which we call M (see (2) and
Lemma 1). We call the resulting method “APDA with Inexact Prox” (Algorithm 2). The
choice of method M will have a strong impact on the number of inexact/local steps, and
this is one of the places in which we improve upon the results of Mishchenko et al. [2022].

General theory Our general complexity results for Algorithms 1 and 2, covered in Theorems 7 and
2, respectively, contrasted with the key baselines, are summarized in Table 1). While the method of
[Chambolle and Pock, 2011] needs F ⋆ to be strongly convex to obtain a linear rate, we only need
convexity. While the AltGDA [Zhang et al., 2022] and APDG [Kovalev et al., 2021a] methods enjoy
linear rates without strong convexity of F ⋆, both require F ⋆ to be Ly-smooth. In contrast, we do not
need this assumption (i.e., we allow Ly = ∞). Our methods are the first to obtain linear convergence
rates in the regime when G is Lx-smooth and µx-strongly-convex, and F ⋆ is merely proper, closed
and convex, without requiring it to be Ly-smooth, nor µy-strongly-convex. This is important in some
applications. Our two methods offer two alternative ways of dealing with this regime: while APDA
(Algorithm 1) relies on the evaluation of the prox of G, APDA with Inexact Prox (Algorithm 2) does
not. As we shall see, the latter method has an important application in federated learning.

Federated learning and a third method When applied to the distributed/federated problem (5)
(see Section 6), APDA with Inexact Prox (Algorithm 2) turns out to be a theoretically better alternative
to ProxSkip [Mishchenko et al., 2022]. In the centralized case, our method requires the same optimal
number of communication rounds (Õ(

√
κ), where κ = Lx/µx) as ProxSkip, but requires fewer

local gradient-type steps (O(κ1/3) or O(κ1/4), compared to O(κ1/2) of ProxSkip, depending on the
choice of the inner method M). Like ProxSkip, our method can be applied to optimization over a
connected network, and we obtain theoretical improvements in this decentralized scenario as well.
However, in the decentralized regime, neither ProxSkip nor Algorithm 2 obtain the optimal bound
for the number of communication rounds. For this reason, we propose a third method (Algorithm 5)
which employs an accelerated gossip routine to remedy this situation. It is also notable that while
ProxSkip uses a random number of local steps, all our methods perform a deterministic number of
local steps. Our complexity results are summarized in Table 2.

3 From Proximal Point Method to Chambolle-Pock

In this section, we briefly motivate the development of the celebrated Chambolle-Pock method which
acts as a starting point of our algorithm design.

6Whenever we invoke Assumption 2 (Lx-smoothness of G), we have ∂G(x) = {∇G(x)}, and hence the
first condition can be replaced by 0 = ∇G(x⋆) +K⊤y⋆.
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Table 2: Summary of our general convergence results provided by Theorem 2 for Algorithm 2 (APDA
with Inexact Prox) and Theorem 3 for Algorithm 5 (APDA with Inexact Prox and Accelerated Gossip)
for solving the saddle-point reformulation (25) of the federated learning problem (5).

Algorithm
Method M(2)

for
Inexact Prox

Deter-
ministic
# comm.
rounds

Centralized case Decentralized case

Optimal
#comm.
rounds?

#Local
steps

per round

Optimal
#comm.
rounds?

#Local
steps

per round

ProxSkip
[Mishchenko et al., 2022] GD ✗ ✓ O

(√
κ
)

✓(1) Õ
(√

κ
)(1)

Alg 2; Thm 2

GD ✓ ✓ Õ
(√

κ
)

✗ Õ
(√

κ
)

FGD+GD ✓ ✓ Õ
(

3
√
κ
)

✗ Õ
(

3
√
κ
)

FGD+FSFOM ✓ ✓ Õ
(

4
√
κ
)

✗ Õ
(

4
√
κ
)

Alg 5; Thm 3

GD ✓ ✓ Õ
(√

κ
)

✓ Õ
(√

κ
)

FGD+GD ✓ ✓ Õ
(

3
√
κ
)

✓ Õ
(

3
√
κ
)

FGD+FSFOM ✓ ✓ Õ
(

4
√
κ
)

✓ Õ
(

4
√
κ
)

(1) This is true only when κ ≤ χ.
(1) GD = Gradient Descent; FGD = Fast Gradient Descent (i.e., Nesterov’s accelerated GD); FSFOM = a fixed-step first-order method from [Kim and Fessler, 2021].

3.1 Proximal-Point Method for finding zeros of monotone operators

Our starting point is the general problem of finding a zero of an (set-valued) operator A : H → 2H,
where H is a Hilbert space, i.e., find z ∈ H such that

0 ∈ A(z). (9)
If A is maximally monotone, its resolvent (Id + ηA)−1 is single valued, nonexpansive, and has full
domain. Moreover, 0 ∈ A(z) iff z = (Id + ηA)−1(z). The corresponding fixed point iteration, i.e.,
zk+1 = (Id + ηA)−1(zk), is called the proximal point method (PPM) [Rockafellar, 1976]. This can
be equivalently written as zk ∈ (Id + ηA)(zk+1), and subsequently as

zk+1 ∈ zk − ηA(zk+1).

From now on, for simplicity only, we will ignore the fact that in general, A(zk+1) is a set, and will
write zk+1 = zk − ηA(zk+1) instead to mean the same thing, i.e., that there exists u ∈ A(zk+1)
such that zk+1 = zk − ηu.

3.2 PPM applied to the saddle-point problem

The optimality conditions (8) of the saddle point problem (7) can be written in the form (9) with
z = (x; y) ∈ Rdx × Rdy as follows7:(

0
0

)
∈ A

(
x
y

)
def
=

(
∂G(x) +K⊤y
∂F ⋆(y)−Kx

)
. (10)

Allowing for different stepsizes ηx, ηy for each block of the vector z = (x; y), PPM applied to (10)
takes the form

xk+1 ∈ xk − ηx
(
∂G(xk+1) +K⊤yk+1

)
yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
.

The main advantage of this method is its unboundedly fast convergence rate under weak assumptions.
According to Theorem 4, the proof of which we provide in the appendix for completeness, if G and
F ⋆ are proper and closed, G is µx strongly convex and F ⋆ is µy strongly convex, then any choice of
stepsizes ηx > 0 and ηy > 0 (yes, without an upper bound!), PPM find an ε-accurate solution in

O
((

1 +
1

min{ηxµx, ηyµy}

)
log

1

ε

)
(11)

iterations. Unfortunately, PPM is not implementable since in order to compute xk+1, we need to
know yk+1, and vice versa.

7We replaced ∇G by ∂G here as the beginning of our story does not require G to be smooth.
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Algorithm 1 APDA

1: Input: Initial point (x0, y0) ∈ Rdx × Rdy , ȳ0 = y0; Step sizes ηx, ηy, βy > 0, θ ∈ [0, 1]
2: for k = 0, 1, . . . do
3: xk+1 = xk − ηx

(
∇G(xk+1) +K⊤ȳk

)
4: yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
− ηyβyK

(
K⊤yk +∇G(xk+1)

)
5: ȳk+1 = yk+1 + θ

(
yk+1 − yk

)
6: end for

3.3 Chambolle-Pock: Making PPM implementable, and fast

In order to overcome the above problem, Chambolle and Pock [2011] proposed to replace yk+1 with
yk (see Algorithm 1 in [Chambolle and Pock, 2011]), which leads to

xk+1 ∈ xk − ηx
(
∂G(xk+1) +K⊤yk

)
yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
.

Although this method is implementable, it has its own disadvantages, one of which is its weak
iteration complexity bound

O

(
L2
xy

µxµy
log

1

ε

)
. (12)

Chambolle and Pock [2011] proposed to fix this problem via an extrapolation step of the dual variable
(see Algorithm 3 in [Chambolle and Pock, 2011]):

xk+1 ∈ xk − ηx
(
∂G(xk+1) +K⊤ȳk

)
yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
ȳk+1 = yk+1 + θ(yk+1 − yk).

This new method enjoys the much better iteration complexity bound

O
(

Lxy√
µxµy

log
1

ε

)
. (13)

4 Accelerated Primal-Dual Algorithm (Algorithm 1)

Recall that the Chambolle-Pock method requires F ⋆ to be strongly-convex to obtain a linear conver-
gence rate. However, in our setting, F ⋆ is not strongly convex8 (see Assumption 3), and Chambolle-
Pock method does not converge linearly in this scenario.

4.1 Modifying Chambolle-Pock to preserve linear rate without strong convexity of F ⋆

To obtain a linear rate, we modify the dual update step of the algorithm using a trick proposed by
Kovalev et al. [2021a] that was shown to work in the regime when F ⋆ is smooth; the innovation here
is that we do not need this assumption (see Table 1). From this point onwards, we will also need to
assume G to be Lx-smooth (see Assumption 2). In particular, we propose to modify the update step
for yk+1 in the Chambolle-Pock method as follows:

xk+1 = xk − ηx
(
∇G(xk+1) +K⊤ȳk

)
yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
− ηyβyK

(
K⊤yk +∇G(xk+1)

)
ȳk+1 = yk+1 + θ(yk+1 − yk).

This is a new method, which we call APDA (formalized as Algorithm 1).

8We would need to assume F to be smooth to ensure that F ⋆ is strongly convex. However, we do not want to
do this as this is not satisfied in many scenarios, in particular, in our key application to federated learning.
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4.2 APDA converges linearly

Our first result shows that APDA indeed converges linearly, without the need for F ⋆ to be strongly
convex.
Theorem 1 (Convergence of APDA; informal). Let Assumptions 1, 2,3 and 4 hold. Then, with a
suitable selection of stepsizes, APDA (Algorithm 1) solves problem (7) in

O

(
max

{√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
(14)

iterations.

The formal statement and proof can be found in the appendix (see Theorem 7).

5 Accelerated Primal-Dual Algorithm with Inexact Prox (Algorithm 2)

The key disadvantage of APDA is that it requires the evaluations of the proximity operator of G,
which can be very expensive in some applications. To remedy the situation, we first notice that Line
3 of APDA can be equivalently written in the form

xk+1 = arg min
x∈Rdx

{
Ψk(x)

def
= G(x) +

1

2ηx

∥∥x−
(
xk − ηxK

⊤ȳk
)∥∥2} ; (15)

that is, this step involves the evaluation of the prox of G. The key idea of this section is to replace
this by an inexact prox computation via a suitably selected iterative method M (this is the method
performing the inner iterations in Table 1). This leads to our next method: APDA with Inexact Prox
(Algorithm 2).

Algorithm 2 APDA with Inexact Prox

1: Input: Initial point (x0, y0) ∈ Rdx ×Rdy , ȳ0 = y0; Step sizes ηx, ηy, βy > 0, θ ∈ [0, 1]; # inner
iterations T

2: for k = 0, 1, . . . do
3: Find x̂k as a final point of T iteration of some method M for following problem:

x̂k ≈ arg min
x∈Rdx

{
Ψk(x)

def
= G(x) +

1

2ηx

∥∥x−
(
xk − ηxK

⊤ȳk
)∥∥2}

4: xk+1 = xk − ηx
(
∇G(x̂k) +K⊤ȳk

)
5: yk+1 ∈ yk − ηy

(
∂F ⋆(yk+1)−Kx̂k

)
− ηyβyK

(
K⊤yk +∇G(x̂k)

)
6: ȳk+1 = yk+1 + θ

(
yk+1 − yk

)
7: end for

5.1 Gradient methods for finding a stationary point of convex functions

A key feature of Algorithm 2 is its reliance on a subroutine M for an inexact evaluation of the prox
of G via solving the auxiliary problem (15). Our theory requires the method M to be able to output,
after T iterations, a point x̂k such that

∥∇Ψk(x̂k)∥2 ≤ O
(

1

Tα

)
, (16)

where α ≥ 2. In other words, we require a reduction of the squared norm of the gradient with a fast
sublinear rate. In the next lemma, we present three examples of such methods.
Lemma 1. Let Ψ : Rdx → R be an L-smooth convex function, and let w⋆ be a minimizer of Ψ. Then
there exists a gradient-based method M which after T iterations outputs a point wT satisfying

∥∇Ψ(wT )∥2 ≤ AL2∥w0 − w⋆∥2

Tα
, (17)

for all starting points x0 ∈ Rdx and some universal constant A > 0. In particular,
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(i) if M is GD, then ∥∇Ψ(wT )∥2 ≤ 4L2∥w0−w⋆∥2

T 2 ,

(ii) if M is a combination9 of Fast GD [Nesterov, 2004] and GD, then ∥∇Ψ(wT )∥2 ≤
64L2∥w0−w⋆∥2

T 3 ,

(iii) if M is a combination10 of Fast GD [Nesterov, 2004] and FSFOM [Kim and Fessler, 2021],
then ∥∇Ψ(wT )∥2 ≤ 256L2∥w0−w⋆∥2

T 4 .

Let w⋆k = arg min
w∈Rdx

Ψk(w). Since Ψk is
(
Lx + η−1

x

)
-smooth, Lemma 1 implies that T iterations

of a method M satisfying (17) applied to the auxiliary problem (15) with starting point w0 = xk

yield point wT = x̂k for which

∥∇Ψk(x̂k)∥2 ≤
A
(
η−1
x + Lx

)2 ∥xk − w⋆k∥2

Tα
=
A (1 + ηxLx)

2 ∥xk − w⋆k∥2

η2xT
α

. (18)

5.2 APDA with Inexact Prox converges linearly

Now we can provide the main theorem with the total complexity of gradient computation ∇G and
proximity operator computation ∂F ⋆.
Theorem 2. Let Assumptions 1, 2, 3, 4 hold. Then there exist parameters of Algorithm 2 such that
the total # of evaluations of prox F ⋆ and the total number evaluations of the gradient of ∇G to find
an ε solution of problem (7) are

O

(
max

{√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
, O

(
max

{(
Lx

µx

) 2+α
2α Lxy

µxy
, α

√
Lx

µx

L2
xy

µ2
xy

}
log

1

ε

)
, (19)

respectively. In particular,

(i) if the inner method M is GD, then the total number of ∇G computations is equal to

O

(
max

{
Lx

µx

Lxy

µxy
,

√
Lx

µx

L2
xy

µ2
xy

}
log

1

ε

)
, (20)

(ii) if the inner method M is combination of Fast GD and GD, then the total number of ∇G
computations is equal to

O

(
max

{(
Lx

µx

) 5
6 Lxy

µxy
, 3

√
Lx

µx

L2
xy

µ2
xy

}
log

1

ε

)
, (21)

(iii) if the inner method M is combination of Fast GD and FSFOM, then the total number of
∇G computations is equal to

O

(
max

{(
Lx

µx

) 3
4 Lxy

µxy
, 4

√
Lx

µx

L2
xy

µ2
xy

}
log

1

ε

)
. (22)

The proof relies on several lemmas; their statements and the proof of the theorem can be found in the
appendix.

Note that our way of performing inexact computation of prox of G allows us to keep the same
complexity as APDA (Algorithm 1) in terms of the number of evaluations of the prox of F ⋆. When

9The first half of the iterations is solved via the Fast Gradient Descent (FGD) method of Nesterov [2004],
and the second half via Gradient Descent (GD).

10The first half of the iterations is solved via the Fast Gradient Descent (FGD) method of Nesterov [2004],
and the second half via the fixed-step first-order method (FSFOM) of Kim and Fessler [2021].
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M is chosen to be Gradient Decent (α = 2), the number of computations of the gradient of ∇G,
given by (20), is larger than the number of computations of the prox of G for APDA. Fortunately, we
can reduce this if GD is replaced with a faster method. For example, if we choose M to be a simple
combination of Fast GD (FGD) and GD, in which case α = 3, Theorem 2 says that the number
of computations of the gradient of ∇G is can be reduced to (21) (this choice is mentioned in the
second-to-last row of Table 2). A further reduction is possible if we instead employ a combination of
FSFOM and Fast GD; see (22) and the last row of Table 2.

6 Accelerated Primal Dual Algorithm with Inexact Prox and Accelerated
Gossip (Algorithm 5)

In this section, we consider the most significant applications of Algorithm 2: decentralized optimiza-
tion over a network G = (V, E), and federated learning. In particular, we consider the finite-sum
optimization problem

min
x∈Rd

n∑
i=1

fi(x)

(see (5)) interpreted as follows: n = |V| is the number of clients/agents in the network. Communica-
tion can only happen between clients connected by an edge. The prevalent paradigm in federated
learning, where a single server orchestrates communication in rounds, arises as a special case of this
with G being the fully connected network.

If Ŵ is the Laplacian11 of graph G, and let W = Ŵ ⊗ Idn. Then problem (5) can be rewritten in
following equivalent way:

min√
Wx=0

P (x) = min
x∈Rdn

P (x) + ψ(
√
Wx), (23)

where x⊤ = (x⊤1 , x
⊤
2 , . . . , x

⊤
n ), P (x) =

∑n
i=1 fi(xi) and ψ(x) = 0 iff x = 0, and ψ(x) = +∞

otherwise. Problem (23) is a special case of (1). By dualizing the nonsmooth (but proper, closed and
convex) penalty, we get the equivalent saddle point formulation

min√
Wx=0

P (x) = min
x∈Rdn

max
y∈Rdn

{
P (x) + ⟨y,

√
Wx⟩ − ψ⋆(y)

}
, (24)

As we can see, this problem (24) is the particular case of the problem (7). It means that we can solve
it by Algorithm 2, for example. Moreover, we do not have to compute the prox of ψ⋆ due to the fact
that ψ⋆(·) ≡ 0, because ψ(·) is the indicator function of {0}. We thus arrive at the final formulation

min
x∈Rdn

max
y∈Rdn

{
P (x) + ⟨y,

√
Wx⟩

}
. (25)

6.1 Application of Algorithm 2 to (25)

Before providing the complexity results related to the application of Algorithm 2 to problem (25),

note that Lxy =
√
λmax(W ) and µxy =

√
λ+min(W ) and define

χ
def
=
λmax(W )

λ+min(W )
. (26)

According to Theorem 2, the total number of evaluations of the prox of ψ⋆, i.e., the communication
complexity, and the total number of evaluations of ∇P , i.e., computation complexity, are

♯comm = Õ (max {√κχ, χ}) , ♯comp = Õ
(
max

{
κ

2+α
2α

√
χ, α

√
κχ
})

, (27)

respectively. For example, in centralized case, when G is the complete graph (χ = 1) and M is
chosen to be GD (α = 2), we obtain the same complexities as ProxSkip [Mishchenko et al., 2022]:

♯comm = Õ
(√
κ
)
, ♯comp = Õ (κ) . (28)

11In fact, it is enough for Ŵ to satisfy the less restrictive Assumption 6.
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However, this can be improved by using a more elaborate subroutine M. If instead of GD we use
either FGD + GD (α = 3) or FGD + FSFOM (α = 4) in place of M, the number of communication
rounds will be the same as in the case of ProxSkip (or Algorithm 2 used with M = GD). However,
the total number of gradient computations gets improved to ♯comp = Õ

(
κ

5
6

)
in the first case, and

to ♯comp = Õ
(
κ

3
4

)
in the second case.

6.2 Improvement on Algorithm 2 via accelerated gossip

Compared to the ProxSkip computation complexity Õ
(√
κχ
)
, in the general decentralized case (i.e.,

χ > 1), complexity (27) of our Algorithm 2 is worse if κ ≤ χ. To tackle this problem, we propose to
enhance Algorithm 2 using the accelerated gossip technique [Scaman et al., 2017]. Based on this
approach, we propose one more (and final) method: Algorithm 5. For this method, we prove the
following result.
Theorem 3. Let Assumptions 1 and 2 hold for function P . Then there exist parameters of Algorithm 5
such that in order to find an ε-solution of problem (7), the total number of communications and the
total number of gradient computations can be bounded by

♯comm = Õ (
√
κχ) , ♯comp = Õ

(
κ

2+α
2α

)
, (29)

respectively. In particular, if the inner method M is

(i) GD, then the number of local steps is equal to Õ
(
κ1/2
)

and the total number of gradient
computations is equal to Õ (κ);

(ii) FGD + GD, then the number of local steps is equal to Õ
(
κ1/3
)

and the total number of
gradient computations is equal to Õ

(
κ5/6
)
;

(iii) FGD + FSFOM, then the number of local steps is equal to Õ
(
κ1/4
)

and the total number of
gradient computations is equal to Õ

(
κ3/4
)
.

The communication complexities obtained this way are substantially better than those of decentralized
ProxSkip; see Table 3 and the commentary in the next subsection.

Recall that in Table 2, we already compared ProxSkip and our Algorithm 2 in the centralized case. In
Table 3 we add to this a comparison in the decentralized case, and include our Algorithm 5 as well.
In particular, in Table 3 we compare the complexity results of our methods (Algorithms 2 and 5) for
solving the decentralized optimization problem (5) to two selected benchmarks: D-SGD [Koloskova
et al., 2020] and ProxSkip [Mishchenko et al., 2022].

First, observe that ProxSkip has vastly superior communication complexity to D-SGD, both in the
centralized case (i.e., for fully-connected network; χ = 1), where the improvement is from O(κ) to
Õ(

√
κ), and the decentralized case (χ > 1), where the improvement is from Õ(κχ) to Õ(

√
κχ).

In the decentralized case, both our methods match the Õ(
√
κχ) communication complexity of

ProxSkip. However, Algorithm 2 does so only when
√
κχ ≥ χ (i.e., when κ > χ). On the other hand,

both our methods have an improved bound on the number of local gradient computations, depending
on what subroutine M they employ. The improvement is from Õ(

√
κ) to Õ ( 3

√
κ) (when M = FGD

+ GD) to Õ ( 4
√
κ) (when M = FGD + FSFOM).
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A Additional Related Work

An alternative approach to achieving improved communication efficiency is through the use of
communication compression via (unbiased) quantization [Zhu et al., 2017, Alistarh et al., 2017,
Horváth et al., 2019a, Mishchenko et al., 2021b], sketching [Hanzely et al., 2018, Safaryan et al.,
2021] or sparsification [Wangni et al., 2017, Wang et al., 2018, Mishchenko et al., 2020]. Modern
variants offering with variance reduction for the variance caused by compression Mishchenko et al.
[2019], Horváth et al. [2019b], Gorbunov et al. [2020b], Safaryan et al. [2021], Mishchenko et al.
[2021b], Wang et al. [2021a], Shulgin and Richtárik [2021], adaptivity [Mishchenko et al., 2021b],
bidirectional compression [Horváth et al., 2019a, Tang et al., 2019, Philippenko and Dieuleveut, 2020]
or acceleration Li et al. [2020c] enjoy better theoretical rates and practical performance. Variance-
reduction for communication compression has been extended to work over arbitrary connected
networks [Kovalev et al., 2021b], and to second-order methods [Islamov et al., 2021, Safaryan et al.,
2022, Qian et al., 2022, Islamov et al., 2022]. The current state-of-the-art communication complexity
in the smooth nonconvex regime is offered by the MARINA [Gorbunov et al., 2021, Szlendak et al.,
2022] and DASHA [Tyurin and Richtárik, 2022] methods.

Greedy (biased) compressors, such as Top-K sparsification [Alistarh et al., 2018] or Rank-K ap-
proximation [Vogels et al., 2019], require a different approach via an error-feedback/compensation
mechanism [Stich et al., 2018, Stich and Karimireddy, 2019, Tang et al., 2019, Gorbunov et al.,
2020c]. For a more modern treatment of error feedback offering current state-of-the-art rates, we
refer the reader to [Richtárik et al., 2021, Fatkhullin et al., 2021, Richtárik et al., 2022, Qian et al.,
2020]. An alternative approach based on the transformation of a biased compressor into a related
induced unbiased compressor was proposed in [Horváth and Richtárik, 2021], and a unified treatment
of variance reduction and error-feedback was proposed in [Condat et al., 2022].

For a systems-oriented survey, we recommend the reader the work of Xu et al. [2020].

In this work we do not consider the communication compression approach to communication
efficiency since this area is much more understood, and many methods already improve on the theo-
retical communication complexity of vanilla GD and SGD, often by significant data and dimension-
dependent margins. Instead, we focus on the practice of delayed parameter synchronization via
local training, and contribute to the theoretical foundations of this immensely popular yet poorly
understood approach to achieving communication efficiency.

A.1 Summary of complexity results for Algorithms 2 and 5 applied to decentralized
optimization

In this section we provide the brief summery of our obtained results (comperison between Algorithms
2 , 5 applied to decentralized optimization) and previous ProxSkip of Mishchenko et al. [2022],
D-SGD of Koloskova et al. [2020].

B Analysis of the Proximal-Point Method

In this section we justify the claims we made in Section 3.2 about the Proximal-Point Method
(Algorithm 3). In particular, we prove the complexity result (11). The result is not new of course, but
we could not find a source for the proof we include here.

B.1 The Proximal-Point Method

We have described the Proximal-Point Method informally in Section 3.2. Here we state it formally as
Algorithm 3.

B.2 Bonding the distance of the primal iterates to the primal solution

In our first lemma, we will provide a bound on ∥xk+1 − x⋆∥2.
Lemma 2. Let Assumption 1 hold and choose any ηx, ηy > 0. Then the iterates of the Proximal-Point
Method (Algorithm 3) for all k ≥ 0 satisfy

(1 + 2µxηx)
1

ηx
∥xk+1−x⋆∥2 ≤ 1

ηx
∥xk−x⋆∥2− 1

ηx
∥xk+1−xk∥2−2⟨K⊤yk+1−K⊤y⋆, xk+1−x⋆⟩.
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Table 3: Complexity results for Algorithms 2 and 5 applied to solving the decentralized optimization
problem (5) formulated as the saddle-point problem (25). Our results improve upon those of ProxSkip,
both in communication complexity (for Algorithm 5), and the number of local gradient steps (for
both our methods, given a proper choice of M).

Alg. Inner
Method
M

Deter-
ministic
#local
steps

Centralized case Decentralized case

#comm.
rounds

#local
steps

per round
GA(1) #comm.

rounds

#local
steps

per round

D-SGD(3) GD ✓ Õ (κ) τ ✗ Õ (κχ) τ

ProxSkip(4) GD ✗ Õ (
√
κ) O (

√
κ) ✗ Õ

(√
κχ

)(1) Õ (
√
κ)(2)

Alg. 2
GD ✓

Õ (
√
κ)

Õ (
√
κ) ✗

Õ
(√

κχ ∨ χ
)(5)

Õ (
√
κ)

FGD + GD ✓ Õ ( 3
√
κ) ✗ Õ ( 3

√
κ)

FGD + FSFOM ✓ Õ ( 4
√
κ) ✗ Õ ( 4

√
κ)

Alg. 5
GD ✓

Õ (
√
κ)

Õ (
√
κ) ✓

Õ
(√

κχ
) Õ (

√
κ)

FGD + GD ✓ Õ ( 3
√
κ) ✓ Õ ( 3

√
κ)

FGD + FSFOM ✓ Õ ( 4
√
κ) ✓ Õ ( 4

√
κ)

(1) Does not use Accelerated Gossip technique (AG).
(2) Valid only when κ ≤ χ.
(3) This method was analyzed by Koloskova et al. [2020].
(4) This method was proposed and analyzed by Mishchenko et al. [2022].
(5) For a, b ∈ R, we denote a ∨ b = max{a, b}

Algorithm 3 Proximal-Point Method

1: Input: Initial point (x0, y0) ∈ Rdx × Rdy ; Stepsizes ηx, ηy > 0
2: for k = 0, 1, . . . do
3: xk+1 = xk − ηx

(
∂G(xk+1) +K⊤yk+1

)
4: yk+1 = yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
5: end for

Proof. By writing xk+1 as xk + (xk+1 − xk), and using line 3 of Algorithm 3, which reads xk+1 =
xk − ηx

(
∂G(xk+1) +K⊤yk+1

)
, we get

1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 + 2

ηx
⟨xk+1 − xk, xk − x⋆⟩+ 1

ηx
∥xk+1 − xk∥2

=
1

ηx
∥xk − x⋆∥2 + 2

ηx
⟨xk+1 − xk, xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2

=
1

ηx
∥xk − x⋆∥2 − 2⟨∂G(xk+1) +K⊤yk+1, xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2.

We now split the inner product into two parts by applying the optimality condition (see (8))
0 ∈ ∂G(x⋆) +K⊤y⋆,

obtaining12

1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 − 2⟨∂G(xk+1)−∂G(x⋆), xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2

−2⟨K⊤yk+1−K⊤y⋆, xk+1 − x⋆⟩.
Finally, this allows us to replace the first inner product using strong convexity of G as follows:

1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 − 2µx∥xk+1 − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2

−2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩.
12Abusing notation, here by ∂G(x⋆) we refer to the subgradient gG(x⋆) ∈ ∂G(x⋆) for which 0 = gG(x

⋆) +
K⊤y⋆, i.e., gG(x⋆) = −K⊤y⋆.
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B.3 Bonding the distance of the dual iterates to the dual solution

In our second lemma, we will provide a bound on ∥yk+1 − y⋆∥2. For this, we will rely on an
additional assumption (strong convexity of F ⋆):
Assumption 5. The function F ⋆ : Rdy → R is µy-strongly convex (but can be non-differentiable),
i.e.,

F ⋆(y′)− F ⋆(y′′)− ⟨gF⋆(y′′), y′ − y′′⟩ ≥ µy

2
∥y′ − y′′∥2, ∀y′, y′′ ∈ Rdy , (30)

where gF⋆(y′′) ∈ ∂F ⋆(y′′) is any subgradient of F ⋆ at y′′ ∈ Rdy .
Lemma 3. Let Assumptions 3 and 5 hold and choose any ηx, ηy > 0. Then the iterates of the
Proximal-Point Method (Algorithm 3) for all k ≥ 0 satisfy

(1 + 2µyηy)
1

ηy
∥yk+1−y⋆∥2 ≤ 1

ηy
∥yk−y⋆∥2− 1

ηy
∥yk+1−yk∥2+2⟨K⊤yk+1−K⊤y⋆, xk+1−x⋆⟩.

Proof. By writing yk+1 as yk + (yk+1 − yk), and using line 4 of Algorithm 3, which reads yk+1 =
yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
, we get

1

ηy
∥yk+1 − y⋆∥2 =

1

ηy
∥yk − y⋆∥2 + 2

ηy
⟨yk+1 − yk, yk − y⋆⟩+ 1

ηy
∥yk+1 − yk∥2

=
1

ηy
∥yk − y⋆∥2 + 2

ηy
⟨yk+1 − yk, yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2

=
1

ηy
∥yk − y⋆∥2 − 2⟨∂F ⋆(yk+1)−Kxk+1, yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2.

We now split the inner product into two parts by applying the optimality condition (see (8))

0 ∈ ∂F ⋆(y⋆)−Kx⋆,

obtaining13

1

ηy
∥yk+1 − y⋆∥2 =

1

ηy
∥yk − y⋆∥2 − 2⟨∂F ⋆(yk+1)−∂F ⋆(y⋆), yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2

+2⟨Kxk+1 −Kx⋆, yk+1 − y⋆⟩.
Finally, this allows us to replace the first inner product using strong convexity of F ⋆ as follows:

1

ηy
∥yk+1 − y⋆∥2 ≤ 1

ηy
∥yk − y⋆∥2 − 2µy∥yk+1 − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩.

B.4 Complexity of the Proximal-Point Method

We now formulate the main result describing the iteration complexity of the Proximal-Point Method.
As we shall see, it follows by combining the above two lemmas. Note that the theorem postulates
arbitrarily fast linear convergence, with the speed controlled via the primal and dual stepsizes ηx and
ηy , respectively. The larger the stepsizes, the faster the rate becomes. In the limit, as ηx → +∞ and
ηy → +∞, the result obtained predicts convergence in a single iteration.
Theorem 4. Let Assumptions 1 and 5 hold, and choose any ηx, ηy > 0. Then the iterates of the
Proximal-Point Method (Algorithm 3) for all k ≥ 0 satisfy

∆k+1 ≤ ∆k

min {1 + 2µxηx, 1 + 2µyηy}
,

13Abusing notation, here by ∂F ⋆(y⋆) we refer to the subgradient gF⋆(y⋆) ∈ ∂F ⋆(y⋆) for which 0 =
gF⋆(y⋆)−Kx⋆, i.e., gF⋆(y⋆) = Kx⋆.
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where the Lyapunov function is defined by

∆k def
=

1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2.

This implies the following statement:

k ≥
(
1 +

1

min {2µxηx, 2µyηy}

)
log

1

ε
⇒ ∆k ≤ ε∆0.

Proof. By adding the inequalities from Lemma 2 and Lemma 3, we obtain

(1 + 2µxηx)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

−2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩+ 2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2.

Thus, if we denote ∆k def
= 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2 and m def

= min {1 + 2µxηx, 1 + 2µyηy},
the above inequality can be written in the following way:

∆k+1 ≤ 1

m
∆k =

(
1− m− 1

m

)
∆k.

Using standard arguments, the above implies that

k ≥ m

m− 1
log

1

ε
⇒ ∆k ≤ ε∆0.
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C Analysis of the Chambolle-Pock Method

In this section we justify the claims we made in Section 3.3 about the Chambolle-Pock Method
(Algorithm 4). In particular, we provide formal statements and proofs of the complexity results (12)
and (13) mentioned in Sections C.4 and C.5, respectively.

C.1 The Chambolle-Pock Method

We have described the Chambolle-Pock Method informally in Section 3.2. Here we state it formally
as Algorithm 4.

Algorithm 4 Chambolle-Pock Method [Chambolle and Pock, 2011]

1: Input: Initial point (x0, y0) ∈ Rdx × Rdy , ȳ0 = y0; Stepsizes ηx, ηy > 0, Extrapolation
parameter θ ∈ [0, 1]

2: for k = 0, 1, . . . do
3: xk+1 = xk − ηx

(
∂G(xk+1) +K⊤ȳk

)
4: yk+1 = yk − ηy

(
∂F ⋆(yk+1)−Kxk+1

)
5: ȳk+1 = yk+1 + θ

(
yk+1 − yk

)
6: end for

C.2 Bonding the distance of the primal iterates to the primal solution

In our first lemma, we will provide a bound on ∥xk+1 − x⋆∥2. The result is identical to Lemma 2
with a single exception: instead of the fresh dual point yk+1, we now have ȳk on the right-hand side.
This lemma applies both to the θ = 0 and θ > 0 cases.
Lemma 4. Let Assumption 1 hold and choose any ηx > 0. Then the iterates of the Chambolle-Pock
Method (Algorithm 4) for all k ≥ 0 satisfy

(1 + 2µxηx)
1

ηx
∥xk+1−x⋆∥2 ≤ 1

ηx
∥xk−x⋆∥2− 1

ηx
∥xk+1−xk∥2−2⟨K⊤ȳk−K⊤y⋆, xk+1−x⋆⟩.

Proof. Identical to the proof of Lemma 2; one just needs to replace yk+1 by ȳk everywhere.

C.3 Bonding the distance of the dual iterates to dual solution

We do not need a new bound on ∥yk+1 − y⋆∥2 for Algorithm 4 since Lemma 3 we proved for the
Proximal-Point Method applies here as well.

C.4 Formal statement and proof of (12) (Chambolle-Pock in the θ = 0 case)

We are now ready to state and prove the main complexity result for the Chambolle-Pock Method in
the θ = 0 case. This is the formal version of the informal complexity result (12).
Theorem 5 (Complexity of the Chambolle-Pock Method in the θ = 0 case). Let Assumptions 1, 5
hold. Consider the Chambolle-Pock Method (Algorithm 4) with the extrapolation parameter set as

θ = 0,

and the primal and dual stepsizes set as

ηx =
µy

L2
xy

, ηy =
µx

L2
xy

.

Then for the Lyapunov function

∆k def
=

1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2

and all k ≥ 0 we have

∆k+1 ≤ ∆k

min {1 + µxηx, 1 + 2µyηy}
=

∆k

1 +
µxµy

L2
xy

.
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This implies the following statement:

k ≥
(
1 +

1

min {µxηx, 2µyηy}

)
log

1

ε
=

(
1 +

L2
xy

µxµy

)
log

1

ε
⇒ ∆k ≤ ε∆0.

Proof. By adding the inequalities from Lemma 4 (and noting that ȳk = yk in the θ = 0 case) and
Lemma 3, we obtain

(1 + 2µxηx)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

− 2⟨K⊤yk −K⊤y⋆, xk+1 − x⋆⟩+ 2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩ (31)

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2

− 1

ηy
∥yk+1 − yk∥2 + 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩, (32)

where in the last step we have used the bound − 1
ηx
∥xk+1 − xk∥2 ≤ 0.

Using the Cauchy-Schwarz inequality, the definition of Lxy as the norm of K (see (2)), and applying
Young’s inequality, we can bound the inner product by

2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ ≤ 2∥K⊤yk+1 −K⊤yk∥∥xk+1 − x⋆∥
(2)
≤ 2Lxy∥yk+1 − yk∥∥xk+1 − x⋆∥

≤ Lxy

(
C∥yk+1 − yk∥2 + 1

C
∥xk+1 − x⋆∥2

)
,

for any C > 0. Plugging this into (32), and rearranging the inequality so that all terms involving
∥xk+1 − x⋆∥2 appear on the left-hand side, we get(

1 + 2µxηx − Lxyηx
C

)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2

− (1− CLxyηy)
1

ηy
∥yk+1 − yk∥2.

Taking C =
Lxy

µx
and ηy = µx

L2
xy

, we obtain the simplified bound

(1 + µxηx)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2 −

(
1−

L2
xyηy

µx

)
1

ηy
∥yk+1 − yk∥2

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2. (33)

If we let

m
def
= min {1 + µxηx, 1 + 2µyηy} = min

{
1 +

µxµy

L2
xy

, 1 + 2
µxµy

L2
xy

}
= 1 +

µxµy

L2
xy

,

then inequality (33) implies

∆k+1 ≤ 1

m
∆k =

(
1− m− 1

m

)
∆k ∀k ≥ 0.
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Using standard arguments, the above implies that

k ≥ m

m− 1
log

1

ε
=

(
1 +

1

m− 1

)
log

1

ε
=

(
1 +

L2
xy

µxµy

)
log

1

ε
⇒ ∆k ≤ ε∆0.

C.5 Formal statement and proof of (13) (Chambolle-Pock in the θ > 0 case)

We now study the case when the extrapolation parameter θ is set to a positive value, and show that
this helps to get better rates.
Lemma 5. Under Assumption 1, the iterates of the Chambolle-Pock Method (Algorithm 4) with
θ > 0 for any C > 0 and all k ≥ 1 satisfy

2⟨K⊤yk+1 −K⊤ȳk, xk+1 − x⋆⟩ ≤ 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+θLxyC∥xk+1 − xk∥2 + θLxy

C
∥yk − yk−1∥2. (34)

Proof. Using line 5 from Algorithm 4, which reads ȳk = yk + θ
(
yk − yk−1

)
, we obtain

2⟨K⊤yk+1 −K⊤ȳk, xk+1 − x⋆⟩ = 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk+1 − x⋆⟩

= 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk+1 − xk⟩. (35)

Using the Cauchy-Schwarz inequality, the definition of Lxy as the norm of K (see (2)), and applying
Young’s inequality, we can bound the last inner product by

−2θ⟨K⊤yk −K⊤yk−1, xk+1 − xk⟩ ≤ 2θ∥K⊤yk −K⊤yk−1∥∥xk+1 − xk∥
≤ 2θLxy∥yk − yk−1∥∥xk+1 − xk∥

≤ θLxy

(
C∥yk − yk−1∥2 + 1

C
∥xk+1 − xk∥2

)
.

It only remains to plug this inequality into (35).

We are now ready to state and prove the general theorem.
Theorem 6 (Complexity of the Chambolle-Pock Method in the θ > 0 case). Let Assumptions 1, 5
hold. Consider the Chambolle-Pock Method (Algorithm 4) with the extrapolation parameter set as

θ = max

{
1

1 + 2µxηx
,

1

1 + 2µyηy

}
, (36)

and primal and dual stepsizes set as

ηx =
1

Lxy

√
µy

µx
, ηy =

1

Lxy

√
µx

µy
. (37)

Then for the Lyapunov function defined for k ≥ 0 via

∆k+1 def
= (1 + 2µxηx)

1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

+
1

ηy
∥yk+1 − yk∥2 − 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ (38)
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and for k = 0 via

∆0 def
= (1 + 2µxηx)

1

ηx
∥x0 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥y0 − y⋆∥2, (39)

we have

0 ≤ ∆k ≤ θk∆0 ∀k ≥ 0. (40)

Proof. We will proceed in several steps.

Showing that ∆k ≥ 0 for all k ≥ 0. First, let us show that ∆k ≥ 0 for every k. This is clear for
k = 0 from (39). Let us show that ∆k+1 ≥ 0 for k ≥ 0. Using Young’s inequality and (2), we obtain
the inequality

∆k+1 (38)
= (1 + 2µxηx)

1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

+
1

ηy
∥yk+1 − yk∥2 − 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩

≥ (1 + 2µxηx)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

+
1

ηy
∥yk+1 − yk∥2 − LxyB∥yk+1 − yk∥2−Lxy

B
∥xk+1 − x⋆∥2

=

(
1 + 2µxηx − Lxyηx

B

)
1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

+(1− LxyBηy)
1

ηy
∥yk+1 − yk∥2, (41)

which holds for all B > 0. Selecting B = 1
Lxyηy

, the blue term is zeroed out, and using the primal
and dual stepsizes (37), we get

∆k+1
(41)
≥

(
1 + 2µxηx − L2

xyηxηy
) 1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

(37)
=

2
√
µxµy

Lxy
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2

≥ 0.

Establishing technical bounds. Denote

Wk+1 def
= (1 + 2µxηx)

1

ηx
∥xk+1 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk+1 − y⋆∥2. (42)

Combining Lemma 4, which provides a bound on ∥xk+1 − x⋆∥2, and Lemma 3, which provides a
bound on ∥yk+1 − y⋆∥2, we obtain

Wk+1 ≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 − 2⟨K⊤ȳk −K⊤y⋆, xk+1 − x⋆⟩

+
1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2 + 2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩

≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤ȳk, xk+1 − x⋆⟩. (43)
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This is the same inequality as (31) with the exception that yk was replaced by ȳk. Using Lemma 5 to
bound the inner product in (43), we get

Wk+1
(43)+(34)

≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+θLxyC∥xk+1 − xk∥2 + θLxy

C
∥yk − yk−1∥2

≤ 1

ηx
∥xk − x⋆∥2 −

(
1

ηx
− θLxyC

)
∥xk+1 − xk∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+
θLxy

C
∥yk − yk−1∥2

=
1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+θ2L2
xyηxηy

1

ηy
∥yk − yk−1∥2, (44)

where in the last step we have made the choice C def
= (θηxLxy)

−1.

Showing that ∆k+1 ≤ θ∆k for k ≥ 1. By combining (38) and (42), and applying inequality (44),
for k ≥ 1 we get

∆k+1 (38)+(42)
= Wk+1 +

1

ηy
∥yk+1 − yk∥2 − 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩

(44)
≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2− 1

ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+θ2L2
xyηxηy

1

ηy
∥yk − yk−1∥2

+
1

ηy
∥yk+1 − yk∥2−2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩

(A)

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2 − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩+ θ2L2

xyηxηy
1

ηy
∥yk − yk−1∥2

(B)

≤ 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2 − 2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩+ θ2

1

ηy
∥yk − yk−1∥2

(C)

≤ θ

(
(1 + 2µxηx)

1

ηx
∥xk − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥yk − y⋆∥2

)
+θ

(
1

ηy
∥yk − yk−1∥2 − 2⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

)
(38)
= θ∆k, (45)

where in step (A) we annihilated the red and blue terms as their sum is zero, in step (B) we used the
fact that L2

xyηxηy ≤ 1, which follows from the stepsize choice, and in (C) we used the inequalities
1 ≤ θ(1 + 2µxηx), 1 ≤ θ(1 + 2µyηy), and θ ≤ 1, which follow from (36).

Showing that ∆k+1 ≤ θ∆k for k = 0. We start with inequality (43) for k = 0:

W1
(43)
≤ 1

ηx
∥x0 − x⋆∥2 − 1

ηx
∥x1 − x0∥2 + 1

ηy
∥y0 − y⋆∥2 − 1

ηy
∥y1 − y0∥2

+2⟨K⊤y1 −K⊤y0, x1 − x⋆⟩. (46)
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According to (38) and (36), we have

∆1 (38)+(42)
= W1 +

1

ηy
∥y1 − y0∥2 − 2⟨K⊤y1 −K⊤y0, x1 − x⋆⟩

(46)
≤ 1

ηx
∥x0 − x⋆∥2 − 1

ηx
∥x1 − x0∥2 + 1

ηy
∥y0 − y⋆∥2

≤ 1

ηx
∥x0 − x⋆∥2 + 1

ηy
∥y0 − y⋆∥2

≤ θ

(
(1 + 2µxηx)

1

ηx
∥x0 − x⋆∥2 + (1 + 2µyηy)

1

ηy
∥y0 − y⋆∥2

)
= θ∆0

where in the last inequality we used the inequalities 1 ≤ θ(1+ 2µxηx) and 1 ≤ θ(1+ 2µyηy), which
follow from (36).

The informal result (13) mentioned in Section C.5 is a simple corollary of the above theorem. Indeed,
using the definition of θ, we can obtain:

k ≥ 1

1− θ
log

1

ε
⇒ ∆k ≤ ε∆0.

It remains to remark that

1

1− θ
log

1

ε
= O

((
1 + max

{
1

2µxηx
,

1

2µyηy

})
log

1

ε

)
= O

((
1 +

Lxy√
µxµy

)
log

1

ε

)
,

which is the result from (13).

27



D Analysis of the Accelerated Primal-Dual Algorithm (APDA; Algorithm 1)

In this section we perform convergence analysis for our new method APDA (Algorithm 1). We start
by establishing three lemmas, followed by the proof of the main theorem.

D.1 Three lemmas

The first result is a variant of Lemma 4, offering a bound on the distance of the primal iterates from
the primal optimal solution. Compared to Lemma 4, this result is strengthened by the additional
assumption of Lx-smoothness of G (Assumption 2).
Lemma 6. Let Assumptions 1 and 2 hold and choose any ηx, ηy > 0. Then the iterates of APDA
(Algorithm 1) for all k ≥ 0 satisfy

(1 + µxηx)
1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 − 2⟨K⊤ȳk −K⊤y⋆, xk+1 − x⋆⟩

− 1

Lx
∥∇G(xk+1)−∇G(x⋆)∥2.

Proof. By writing xk+1 as xk + (xk+1 − xk), and using line 3 of Algorithm 1, which reads xk+1 =
xk − ηx

(
∇G(xk+1) +K⊤ȳk

)
, we get

1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 + 2

ηx
⟨xk+1 − xk, xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2

=
1

ηx
∥xk − x⋆∥2 − 2⟨∇G(xk+1) +K⊤ȳk, xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2.

We now split the inner product into two parts by applying the optimality condition (see (8))

∇G(x⋆) +K⊤y⋆ = 0,

obtaining
1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 − 2⟨∇G(xk+1)−∇G(x⋆), xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2

−2⟨K⊤ȳk−K⊤y⋆, xk+1 − x⋆⟩. (47)

Since G is µx-strongly-convex and Lx-smooth, we can lower-bound [Nesterov, 2004] the inner
product appearing in (47) as follows:

2⟨∇G(xk+1)−∇G(x⋆), xk+1 − x⋆⟩ ≥ µx∥xk+1 − x⋆∥2 + 1

Lx
∥∇G(xk+1)−∇G(x⋆)∥2. (48)

Finally, by plugging (48) into (47), we get
1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 − µx∥xk+1 − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2

−2⟨K⊤ȳk −K⊤y⋆, xk+1 − x⋆⟩ − 1

Lx
∥∇G(xk+1)−∇G(x⋆)∥2.

The second result is a technical lemma borrowed from [Kovalev et al., 2021a] for lower-bounding the
term ∥K⊤y −K⊤y⋆∥.
Lemma 7 (See Kovalev et al. [2021a]). Let Assumption 4 hold and let (x⋆, y⋆) be a solution of (7).
Then

∥K⊤y −K⊤y⋆∥ ≥ µxy∥y − y⋆∥, ∀y ∈ Rdy .

The third result offers a bound on the distance between the dual iterates and the dual optimal solution.
When analyzing the Proximal Point method and the Chambolle-Pock method, in this step we relied on
Lemma 3, in the proof of which we required F ⋆ to be µx-strongly convex. However, for APDA we
explicitly wish to avoid using this assumption. As we shall see, in order to obtain linear convergence,
it is enough will invoke Assumption 4. The next lemma is an analogue of Lemma 3 without the need
to assume µx-strong-convexity of F ⋆.
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Lemma 8. Let Assumptions 2, 3, and 4 be satisfied, and choose

βy ≤ 1

2L2
xyηy

. (49)

Then the iterates of APDA (Algorithm 1) for all k ≥ 0 satisfy

1

ηy
∥yk+1 − y⋆∥2 ≤ (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 − 1

2ηy
∥yk+1 − yk∥2 + 2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩

+ βy∥∇G(xk+1)−∇G(x⋆)∥2.

Proof. By writing yk+1 as yk + (yk+1 − yk), and using line 4 from Algorithm 1, which reads

yk+1 = yk − ηy
(
∂F ⋆(yk+1)−Kxk+1

)
− ηyβyK

(
K⊤yk +∇G(xk+1)

)
,

we get

1

ηy
∥yk+1 − y⋆∥2 =

1

ηy
∥yk − y⋆∥2 + 2

ηy
⟨yk+1 − yk, yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2

=
1

ηy
∥yk − y⋆∥2 − 2⟨∂F ⋆(yk+1)−Kxk+1, yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2︸ ︷︷ ︸

Ak

−2βy⟨K⊤yk +∇G(xk+1),K⊤yk+1 −K⊤y⋆⟩︸ ︷︷ ︸
Bk

. (50)

We split the inner product appearing in Ak into two parts by applying the optimality condition (see
(8))

0 ∈ ∂F ⋆(y⋆)−Kx⋆,

obtaining

Ak =
1

ηy
∥yk − y⋆∥2 − 2⟨∂F ⋆(yk+1)−∂F ⋆(y⋆), yk+1 − y⋆⟩ − 1

ηy
∥yk+1 − yk∥2

+2⟨Kxk+1 −Kx⋆, yk+1 − y⋆⟩. (51)

Applying the parallelogram identity14 to Bk, and using the optimality condition (see (8)),

∇G(x⋆) +K⊤y⋆ = 0, (52)

we can write

Bk = βy∥∇G(xk+1) +K⊤y⋆∥2 − βy∥K⊤yk −K⊤y⋆∥2

+βy∥K⊤yk −K⊤yk+1∥2 − βy∥∇G(xk+1) +K⊤yk+1∥2
(52)
= βy∥∇G(xk+1)−∇G(x⋆)∥2 − βy∥K⊤yk −K⊤y⋆∥2

+βy∥K⊤yk −K⊤yk+1∥2 − βy∥∇G(xk+1) +K⊤yk+1∥2. (53)

14Here we refer to the identity 2⟨a+ b, c− d⟩ = −∥b+ d∥2 + ∥a− d∥2 −∥a− c∥2 + ∥b+ c∥2 which holds
for all a, b, c, d ∈ Rdx .
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Plugging (51) and (53) back into (50), and using convexity of F ⋆, we get

1

ηy
∥yk+1 − y⋆∥2 (50)

= Ak +Bk

(51)+(53)
=

1

ηy
∥yk − y⋆∥2 −2⟨∂F ⋆(yk+1)−∂F ⋆(y⋆), yk+1 − y⋆⟩︸ ︷︷ ︸

≤0

− 1

ηy
∥yk+1 − yk∥2

+2⟨Kxk+1 −Kx⋆, yk+1 − y⋆⟩
+βy∥∇G(xk+1)−∇G(x⋆)∥2 − βy∥K⊤yk −K⊤y⋆∥2

+βy∥K⊤yk −K⊤yk+1∥2 −βy∥∇G(xk+1) +K⊤yk+1∥2︸ ︷︷ ︸
≤0

≤ 1

ηy
∥yk − y⋆∥2 − 1

ηy
∥yk+1 − yk∥2

+2⟨Kxk+1 −Kx⋆, yk+1 − y⋆⟩
+βy∥∇G(xk+1)−∇G(x⋆)∥2 − βy∥K⊤yk −K⊤y⋆∥2

+βy∥K⊤yk −K⊤yk+1∥2. (54)

It now only remains to plug the bounds ∥K⊤yk −K⊤y⋆∥2 ≥ µ2
xy∥yk − y⋆∥2 (see Lemma 7) and

∥K⊤yk −K⊤yk+1∥2 ≤ L2
xy∥yk − yk+1∥2 into (54), and apply the restriction (49) on βy .

D.2 Main result

We are now ready to state the formal version of Theorem 1.

Theorem 7 (Covergence of APDA; formal). Let Assumptions 1, 2, 3, and 4 hold and choose the
various parameters of the method as follows:

βy = min

{
1

Lx
,

1

2L2
xyηy

}
, (55)

ηx =
1

2
√
Lxµx

µxy

Lxy
, (56)

ηy =

√
Lxµx

Lxyµxy
, (57)

θ = max

{
1

1 + µxηx
, 1− µ2

xyβyηy

}
. (58)

Then for the Lyapunov function defined for k ≥ 0 via

Ξk+1 def
= (1 + µxηx)

1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2

+
1

2ηy
∥yk+1 − yk∥2 − 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩ (59)

and for k = 0 via

Ξ0 def
= (1 + µxηx)

1

ηx
∥x0 − x⋆∥2 + 1

ηy
∥y0 − y⋆∥2,

we have

0 ≤ µx∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 ≤ Ξk ≤ θk∆0 ∀k ≥ 0. (60)

Proof. We will proceed in several steps.
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Showing that Ξk ≥ 0 for all k ≥ 0. First, we will show that Ξk ≥ 0 for every k. This is clear for
k = 0. Let us show that Ξk+1 ≥ 0 for every k ≥ 0. Using Young’s inequality with any parameter
B > 0, and the definition of Lxy from (2), we obtain

Ξk+1 (59)
= (1 + µxηx)

1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2

−2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩

≥ (1 + µxηx)
1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2

−LxyB∥yk+1 − yk∥2 − Lxy

B
∥xk+1 − x⋆∥2

= (1 + µxηx)
1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 +

(
1

2
− LxyBηy

)
1

ηy
∥yk+1 − yk∥2

−Lxy

B
∥xk+1 − x⋆∥2. (61)

Using (61) with B = 1
2Lxyηy

, and noticing that 2L2
xyηxηy = 1 (this follows from (56) and (57)), we

get

Ξk+1 ≥ (1 + µxηx)
1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 −

2L2
xyηxηy

ηx
∥xk+1 − x⋆∥2

= µx∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2

≥ 0.

Establishing technical bounds. Denote

Wk+1 def
= (1 + µxηx)

1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2. (62)

By adding the inequalities from Lemmas 6 and 8, we obtain

Wk+1 ≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 − 1

Lx
∥∇G(xk+1)−∇G(x⋆)∥2

+(1− µ2
xyβyηy)

1

ηy
∥yk − y⋆∥2 − 1

2ηy
∥yk+1 − yk∥2 + βy∥∇G(xk+1)−∇G(x⋆)∥2

+2⟨K⊤yk+1 −K⊤y⋆, xk+1 − x⋆⟩ − 2⟨K⊤ȳk −K⊤y⋆, xk+1 − x⋆⟩

≤ 1

ηx
∥xk − x⋆∥2 − 1

ηx
∥xk+1 − xk∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 − 1

2ηy
∥yk+1 − yk∥2

+2⟨K⊤yk+1 −K⊤ȳk, xk+1 − x⋆⟩, (63)

where in the last step we used the bound

βy∥∇G(xk+1)−∇G(x⋆)∥2 − 1

Lx
∥∇G(xk+1)−∇G(x⋆)∥2 ≤ 0,

which follows from the restriction βy ≤ 1
Lx

; see (55). Using line 5 from Algorithm 1, which says

ȳk+1 = yk+1 + θ(yk+1 − yk), (64)
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applying Cauchy-Schwarz inequality, and subsequently using Young’s inequality with constant
C > 0, the inner product from (63) can for k ≥ 1 be further bounded as follows

2⟨K⊤yk+1 −K⊤ȳk, xk+1 − x⋆⟩ (64)
= 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩

−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩
+2θ⟨K⊤yk −K⊤yk−1, xk+1 − xk⟩

≤ 2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩
+2θLxy∥yk − yk−1∥∥xk+1 − xk∥

≤ +2⟨K⊤yk+1 −K⊤yk, xk+1 − x⋆⟩
−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

+θLxyC∥yk − yk−1∥2 + θLxy

C
∥xk+1 − xk∥2. (65)

Showing that Ξk+1 ≤ θΞk for all k ≥ 1. Plugging the bounds (62) and (65) into the Lyapunov
function (59), for any k ≥ 1 we get

Ξk+1
(59)+(62)+(65)

≤ 1

ηx
∥xk − x⋆∥2 −

(
1

ηx
− θLxy

C

)
∥xk+1 − xk∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2

−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩+ θLxyC∥yk − yk−1∥2
C=θηxLxy

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2

−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩+ θ2L2
xyηxηy

1

ηy
∥yk − yk−1∥2

(56)+(57) & θ≤1

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2

−2θ⟨K⊤yk −K⊤yk−1, xk − x⋆⟩+ θ
1

2ηy
∥yk − yk−1∥2

≤ max

{
1

1 + µxηx
, 1− µ2

xyβyηy

}(
(1 + µxηx)

1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2

)
+θ

(
1

2ηy
∥yk − yk−1∥2 − 2⟨K⊤yk −K⊤yk−1, xk − x⋆⟩

)
(58)+(59)

= θΞk.

Showing that Ξk+1 ≤ θΞk for k = 0. This can be done using similar arguments as those used in
the proof of Theorem 6.

D.3 Proof of Theorem 1 (informal)

We now provide the iteration complexity of Algorithm 1 as a corollary of Theorem 7. Note that in
view of (60), we get

k ≥ O
(

1

1− θ
log

1

ε

)
⇒ Ξk ≤ εΞ0.
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Using the definition of θ given in (58), we have

O
(

1

1− θ
log

1

ε

)
= O

(
max

{
1 +

1

µxηx
,

1

µ2
xyβyηy

}
log

1

ε

)
= O

(
max

{
1 +

1

µxηx
,
Lx

µ2
xyηy

,
L2
xy

µ2
xy

}
log

1

ε

)

= O

(
max

{
1 +

√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
.

This proves the statement of Theorem 1 mentioned in Section 4 in the main body of the paper.
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E Analysis of the Accelerated Primal-Dual Algorithm with Inexact Prox
(Algorithm 2)

In this section we provide convergence analysis for our second new method, APDA with Inexact Prox
(Algorithm 2). We start with statements of three lemmas, followed by the proof of the main theorem.

E.1 Three Lemmas

The first result is essentially a modification of Lemma 6, providing a bound on the distance of the
primal iterates from the primal optimal solution. Compare to Lemma 6, these changes consist in
using the definition of function Ψk (see the problem (15)) to prove this key fact.

Lemma 9. Let w⋆k be an exact solution to the problem (15). Then under Assumptions 1, 2, we have(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 + (2ηx + µxη

2
x)∥∇Ψk(x̂k)∥2 − 1

2ηx
∥xk − w⋆k∥2

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩ − 1

Lx
∥∇G(x̂k)−∇G(x⋆)∥2.

Proof. In view of line 4 of Algorithm 2, which reads

xk+1 = xk − ηx
(
∇G(x̂k) +K⊤ȳk

)
, (66)

and writing xk+1 as xk + (xk+1 − xk), we get

1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 + 2

ηx
⟨xk+1 − xk, xk+1 − x⋆⟩ − 1

ηx
∥xk+1 − xk∥2

(66)
=

1

ηx
∥xk − x⋆∥2 − 2

ηx
⟨ηx
(
∇G(x̂k) +K⊤ȳk

)
, xk+1 − x⋆⟩ − 1

ηx

∥∥ηx (∇G(x̂k) +K⊤ȳk
)∥∥2

=
1

ηx
∥xk − x⋆∥2 − 2⟨∇G(x̂k) +K⊤ȳk, x̂k − x⋆⟩ − ηx

∥∥∇G(x̂k) +K⊤ȳk
∥∥2

− 2

ηx

〈
ηx
(
∇G(x̂k) +K⊤ȳk

)
, xk+1 − x̂k

〉
.

Using the identity −2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a+ b∥2 to rewrite the second inner product from the
previous equation, we get

1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 − 2⟨∇G(x̂k) +K⊤ȳk, x̂k − x⋆⟩ − ηx∥∇G(x̂k) +K⊤ȳk∥2

+
1

ηx

(∥∥ηx (∇G(x̂k) +K⊤ȳk
)∥∥2 + ∥xk+1 − x̂k∥2

)
− 1

ηx

∥∥ηx (∇G(x̂k) +K⊤ȳk
)
+ xk+1 − x̂k

∥∥2
(66)
=

1

ηx
∥xk − x⋆∥2 − 2⟨∇G(x̂k)−∇G(x⋆), x̂k − x⋆⟩

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩+ 1

ηx
∥xk+1 − x̂k∥2 − 1

ηx
∥xk − x̂k∥2, (67)

where in the last equation we applied the optimality condition (see (8))

∇G(x⋆) +K⊤y⋆ = 0.

Due to the fact that G is µx-strongly-convex and Lx-smooth, we can estimate the inner product
2⟨∇G(x̂k)−∇G(x⋆), x̂k − x⋆⟩ from below similarly as in the proof of Lemma 6:

2⟨∇G(x̂k)−∇G(x⋆), x̂k − x⋆⟩ ≥ µx∥x̂k − x⋆∥2 + 1

Lx
∥∇G(x̂k)−∇G(x⋆)∥2. (68)
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Now, by plugging (68) into (67), we obtain
1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 − µx∥x̂k − x⋆∥2 − 1

Lx
∥∇G(x̂k) +∇G(x⋆)∥2

+
1

ηx
∥xk+1 − x̂k∥2 − 1

ηx
∥xk − x̂k∥2 − 2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩.

Applying the inequality ∥a− b∥2 ≥ 1
2∥a− c∥2 − ∥b− c∥2 to ∥x̂k − x⋆∥2 and taking c = xk+1, we

obtain
1

ηx
∥xk+1 − x⋆∥2 ≤ 1

ηx
∥xk − x⋆∥2 − µx

2
∥xk+1 − x⋆∥2 − 1

Lx
∥∇G(x̂k)−∇G(x⋆)∥2

+(1 + µxηx)
1

ηx
∥xk+1 − x̂k∥2 − 1

ηx
∥xk − x̂k∥2

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩

≤ 1

ηx
∥xk − x⋆∥2 − µx

2
∥xk+1 − x⋆∥2 − 1

Lx
∥∇G(x̂k)−∇G(x⋆)∥2

+(1 + µxηx)
1

ηx
∥xk+1 − x̂k∥2 − 1

2ηx
∥xk − w⋆k∥2 + 1

ηx
∥x̂k − w⋆k∥2

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩, (69)

where in the last inequality we used the bound ∥a − b∥2 ≥ 1
2∥a − c∥2 − ∥b − c∥2 to estimate

1
ηx
∥xk − x̂k∥2. From line 3 of Algorithm 2, according to the definition of function Ψk(x), we get

∇Ψk(x̂k) = ∇G(x̂k) +K⊤ȳk +
1

ηx

(
x̂k − xk

)
= ∇G(x̂k) +K⊤ȳk +

1

ηx

(
x̂k − xk+1

)
+

1

ηx

(
xk+1 − xk

)
(66)
=

1

ηx

(
x̂k − xk+1

)
. (70)

Finally, substituting (70) into (69), we gain
1

ηx
∥xk+1 − x⋆∥2 =

1

ηx
∥xk − x⋆∥2 − µx

2
∥xk+1 − x⋆∥2 − 1

Lx
∥∇G(x̂k)−∇G(x⋆)∥2

+
(
2ηx + µxη

2
x

)
∥∇Ψk(x̂k)∥2 − 1

2ηx
∥xk − w⋆k∥2

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩,

where we also use 1
ηx

-strong convexity of function Ψk(x) (see problem (15)).

The second result offers a bound on the distance between the dual itarates and the dual optimal
solution as Lemma 8. Since the line 4 of Algorithm 1 coincides with the line 5 of Algorithm 2, the
statement and proof of the following lemma coincides with Lemma 8 and its proof with the only
change of replacing xk+1 with x̂k.
Lemma 10. Then under Assumptions 2, 3, and 4 be satisfied, and choose

βy ≤ 1

2L2
xyηy

. (71)

Then the iterates of APDA with Inexact Prox (Algorithm 2) for all k ≥ 0 satisfy
1

ηy
∥yk+1 − y⋆∥2 ≤ (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 − 1

2ηy
∥yk+1 − yk∥2 + 2⟨K⊤yk+1 −K⊤y⋆, x̂k − x⋆⟩

+ βy∥∇G(x̂k)−∇G(x⋆)∥2.

Proof. The proof is identical to the proof of Lemma 8, with the sole distinction that xk+1 should be
replaced everywhere by x̂k.

35



The third result is a technical lemma, which offers a bound on an inner product .

Lemma 11. Let w⋆k be an exact solution to the problem (15). Then the following inequality holds

−2θ⟨K⊤yk −K⊤yk−1, x̂k − x̂k−1⟩ ≤ 16L2
xyθηx∥yk − yk−1∥2 + θ

4ηx
∥x̂k − w⋆k∥2

+
θ

4ηx
∥xk − w⋆k∥2 + θηx

8
∥∇Ψk−1(x̂k−1)∥2.

Proof. Using the Cauchy-Schwarz inequality, the definition of Lxy as the norm of K (see (2)), and
applying Young’s inequality, we can bound the inner product by

−2θ⟨K⊤yk −K⊤yk−1, x̂k − x̂k−1⟩ ≤ 2θ∥K⊤yk −K⊤yk−1∥∥x̂k − x̂k−1∥

≤ LxyθC∥yk − yk−1∥2 + Lxyθ

C
∥x̂k − x̂k−1∥2

≤ LxyθC∥yk − yk−1∥2 + 2Lxyθ

C
∥x̂k − xk∥2

+
2Lxyθ

C
∥xk − x̂k−1∥2

for any C > 0. Taking C = 16Lxyηx, we obtain

−2θ⟨K⊤yk −K⊤yk−1, x̂k − x̂k−1⟩ ≤ LxyθC∥yk − yk−1∥2 + 4Lxyθ

C
∥x̂k − w⋆k∥2

4Lxyθ

C
∥x̂k − w⋆k∥2 + 2Lxyθ

C
∥xk − x̂k−1∥2

= 16L2
xyθηx∥yk − yk−1∥2 + θ

4ηx
∥x̂k − w⋆k∥2

+
θ

4ηx
∥xk − w⋆k∥2 + θηx

8
∥∇Ψk−1(x̂k−1)∥2,

where in the last equation we use (70) for k − 1, which reads ∇Ψk(x̂k−1) = 1
ηx

(
x̂k−1 − xk

)
.

E.2 Detailed theorem

Theorem 8 (Convergence of APDA with Inexact Prox; formal). Let Assumptions 1, 2, 3 and 4 hold
and select the various parameters of the method as follows:

βy = min

{
1

Lx
,

1

2L2
xyηy

}
; (72)

T =
α
√
20A

(
1 +

√
Lx

µx

)2/α

; (73)

ηx =
1

4
√
Lxµx

µxy

Lxy
; (74)

ηy =

√
Lxµx

8Lxyµxy
; (75)

θ = max

{
2

2 + µxηx
, 1− µ2

xyβyηy

}
, (76)

Then for the Lyapunov function defined for k ≥ 0 via

∆k+1 def
=

(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2

+
1

8ηx
∥xk − w⋆k∥2 − 2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩, (77)
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and for k = 0 via

∆0 def
=
(
1 +

µxηx
2

) 1

ηx
∥x0 − x⋆∥2 + 1

ηy
∥y0 − y⋆∥2, (78)

we have
1

2ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 ≤ ∆k ≤ θk∆0, ∀ k ≥ 0. (79)

Proof. We denote Vk+1 as follows:

Vk+1 =
(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2. (80)

Combining Lemmas 9, 10 and (72), we obtain

Vk+1 ≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + (2ηx + µxη

2
x)∥∇Ψk(x̂k)∥2

− 1

2ηx
∥xk − w⋆k∥2 +

(
βy −

1

Lx

)
∥∇G(x̂k)−∇G(x⋆)∥2

−2⟨K⊤ȳk −K⊤y⋆, x̂k − x⋆⟩+ 2⟨K⊤yk+1 −K⊤y⋆, x̂k − x⋆⟩ (81)

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + (2ηx + µxη

2
x)∥∇Ψk(x̂k)∥2

− 1

2ηx
∥xk − w⋆k∥2 + 2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩

−2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k − x̂k−1⟩,
where in last inequality the line 6 from Algorithm 2 is used. Next, according to Lemma 11, we gain

Vk+1 ≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + (2ηx + µxη

2
x)∥∇Ψk(x̂k)∥2 − 1

2ηx
∥xk − w⋆k∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩

+16θL2
xyηx∥yk − yk−1∥2 + θ

4ηx
∥x̂k − w⋆k∥2 + θ

4ηx
∥xk − w⋆k∥2 + θηx

8
∥∇Ψk−1

ηx
(x̂k−1)∥2

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + 16θL2

xyηxηy
1

ηy
∥yk − yk−1∥2

+(2ηx + µxη
2
x)∥∇Ψk(x̂k)∥2 − 1

4ηx
∥xk − w⋆k∥2 + θ

4ηx
∥x̂k − w⋆k∥2 + θηx

8
∥∇Ψk−1

ηx
(x̂k−1)∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩.

Using definition of function Ψk and its 1
ηx

-strong convexity in the following form

∥∇Ψk(x̂k)∥2 ≥ 1

η2x
∥x̂k − w⋆k∥2,

and assuming that 32L2
xyηxηy ≤ 1 and 0 < θ ≤ 1, we get

Vk+1 ≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + θ

2ηy
∥yk − yk−1∥2

+(2ηx + µxη
2
x)∥∇Ψk(x̂k)∥2 − 1

4ηx
∥xk − w⋆k∥2 + θηx

4
∥∇Ψk(x̂k)∥2 + θηx

8
∥∇Ψk−1

ηx
(x̂k−1)∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩
0<θ≤1

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + θ

2ηy
∥yk − yk−1∥2

+

(
9

4
ηx + µxη

2
x

)
∥∇Ψk(x̂k)∥2 − 1

4ηx
∥xk − w⋆k∥2 + θηx

8
∥∇Ψk−1

ηx
(x̂k−1)∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩.
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To estimate ∥∇Ψk(x̂k)∥2 we apply Lemma 17 for the problem (15) as follows (see (18)):

∥∇Ψk(x̂k)∥2 ≤ A (1 + ηxLx)
2 ∥xk − w⋆k∥2

η2xT
α

.

According to (18), (73) and (74), we obtain

Vk+1
(18)
≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + θ

2ηy
∥yk − yk−1∥2

+

(
9

4
ηx + µxη

2
x

)
A (1 + ηxLx)

2

η2xT
α

∥xk − w⋆k∥2 − 1

4ηx
∥xk − w⋆k∥2

+
θηx
8

A (1 + ηxLx)
2

η2xT
α

∥xk−1 − w⋆k−1∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩
(73)+(74)

≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + θ

2ηy
∥yk − yk−1∥2

+
θ

8ηx
∥xk−1 − w⋆k−1∥2 − 1

8ηx
∥xk − w⋆k∥2

+2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩ − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩.

Showing that ∆k+1 ≤ θ∆k for k ≥ 1. Using the definition of ∆k+1 (see (77)), we have

∆k+1 ≤ 1

ηx
∥xk − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥yk − y⋆∥2 + θ

2ηy
∥yk − yk−1∥2

+
θ

8ηx
∥xk−1 − w⋆k−1∥2 − 2θ⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩

≤ max

{
2

2 + µxηx
, 1− µ2

xyβyηy

}((
1 +

µxηx
2

) 1

ηx
∥xk − x⋆∥2 + 1

ηy
∥yk − y⋆∥2

)
+θ

(
1

2ηy
∥yk − yk−1∥2 + 1

8ηx
∥xk−1 − w⋆k−1∥2 − 2⟨K⊤yk −K⊤yk−1, x̂k−1 − x⋆⟩

)
(76)
≤ θ∆k,

where in the last inequality we take θ = max
{

2
2+µxηx

, 1− µ2
xyβyηy

}
(see (76)).

Showing that ∆k+1 ≤ θ∆k for k = 0. We start with inequality (81) for k = 0:

V1
(81)
≤ 1

ηx
∥x0 − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥y0 − y⋆∥2 + (2ηx + µxη

2
x)∥∇Ψk(x̂0)∥2

− 1

2ηx
∥x0 − w⋆0∥2 +

(
βy −

1

Lx

)
∥∇G(x̂0)−∇G(x⋆)∥2

−2⟨K⊤ȳ0 −K⊤y⋆, x̂0 − x⋆⟩+ 2⟨K⊤y1 −K⊤y⋆, x̂0 − x⋆⟩

≤ 1

ηx
∥x0 − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥y0 − y⋆∥2 − 1

2ηx
∥x0 − w⋆0∥2

+(2ηx + µxη
2
x)∥∇Ψk(x̂0)∥2 + 2⟨K⊤y1 −K⊤y0, x̂0 − x⋆⟩, (82)

where in the last inequality we take βy ≤ 1
Lx

(see (72)). Now, we apply Lemma 1 to the problem
(15) for k = 0 (see (18)):

∥∇Ψk(x̂0)∥2 ≤ A(1 + ηxLx)
2∥x0 − w⋆0∥2

ηxTα
. (83)
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Substituting (83) into (82), we can get

V1 ≤ 1

ηx
∥x0 − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥y0 − y⋆∥2 − 1

2ηx
∥x0 − w⋆0∥2

+(2ηx + µxη
2
x)
A(1 + ηxLx)

2

ηxTα
∥x0 − w⋆0∥2 + 2⟨K⊤y1 −K⊤y0, x̂0 − x⋆⟩

(73)
≤ 1

ηx
∥x0 − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥y0 − y⋆∥2 − 1

8ηx
∥x0 − w⋆0∥2

+2⟨K⊤y1 −K⊤y0, x̂0 − x⋆⟩, (84)

where in the last inequality we take T according to (73). According to (77) and (78), we have

∆1 (77)
= V1 +

1

8ηx
∥x0 − w⋆0∥2 − 2⟨K⊤y1 −K⊤y0, x̂0 − x⋆⟩

(84)
≤ 1

ηx
∥x0 − x⋆∥2 + (1− µ2

xyβyηy)
1

ηy
∥y0 − y⋆∥2

≤ θ

((
1 +

µxηx
2

) 1

ηx
∥x0 − x⋆∥2 + 1

ηy
∥y0 − y⋆∥2

)
= θ∆0,

where in the last inequality we used the inequalities 1 ≤ θ
(
1 + µxηx

2

)
and 1− µ2

xyβyηy ≤ θ, which
follow from (76).

Showing that ∆k+1 ≥ 0 for k ≥ 0. Finally, we need to show that ∆k ≥ 0 for every k. This is
obvious for k = 0 from . Using the Cauchy-Schwarz inequality, the definition of Lxy as the norm of
K (see (2)), and applying Young’s inequality, we get

∆k+1 (77)
=

(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2

+
1

8ηx
∥xk − w⋆k∥2 − 2⟨K⊤yk+1 −K⊤yk, x̂k − x⋆⟩

(2)
≥

(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

2ηy
∥yk+1 − yk∥2

+
1

8ηx
∥xk − w⋆k∥2 − 2Lxy∥yk+1 − yk∥∥x̂k − x⋆∥

≥
(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 +

(
1

2
− LxyBηy

)
1

ηy
∥yk+1 − yk∥2

+
1

8ηx
∥xk − w⋆k∥2 − Lxy

B
∥x̂k − x⋆∥2

≥
(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 +

(
1

2
− LxyBηy

)
1

ηy
∥yk+1 − yk∥2

+
1

8ηx
∥xk − w⋆k∥2 − 2Lxy

B
∥x̂k − xk+1∥2 − 2Lxy

B
∥xk+1 − x⋆∥2.

for any B > 0. According to the definition of function Ψk (see 15), selecting B = 1
2Lxyηy

, we get

∆k+1 ≥
(
1 +

µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2 + 1

8ηx
∥xk − w⋆k∥2

−4L2
xyηyηx

1

ηx
∥ηx∇Ψk

ηx
(x̂k)∥2 − 4L2

xyηyηx
1

ηx
∥xk+1 − x⋆∥2

=
(
1− 4L2

xyηyηx +
µxηx
2

) 1

ηx
∥xk+1 − x⋆∥2

+
1

ηy
∥yk+1 − y⋆∥2 + 1

8ηx
∥xk − w⋆k∥2 − 4L2

xyηyηx
1

ηx
∥ηx∇Ψk

ηx
(x̂k)∥2. (85)
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Choosing stepsizes ηx, ηy according to (74) and (75), we can derive the following inequality:

32L2
xyηxηy ≤ 1. (86)

Now, plugging (86) and (18) into (85), we obtain

∆k+1
(86)
≥

(
7

8
+
µxηx
2

)
1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2

+
1

8ηx
∥xk − w⋆k∥2 − 1

8ηx
∥ηx∇Ψk

ηx
(x̂k)∥2

(18)
≥

(
7

8
+
µxηx
2

)
1

ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2

+
1

8ηx
∥xk − w⋆k∥2 − 1

8ηx

C (1 + ηxLx)
2

Tα
∥xk − w⋆k∥2

(73)
≥ 1

2ηx
∥xk+1 − x⋆∥2 + 1

ηy
∥yk+1 − y⋆∥2,

where in last inequality we use (73) to evaluate two last terms from below by zero.

E.3 Proof of Theorem 2

To prove the informal result (19), we simply apply the above theorem. Using the definition of θ, the
theorem implies that

k ≥ 1

1− θ
log

1

ε
⇒ ∆k ≤ ε∆0.

It remains to remark that the number of outer iterations to find ε-solution is equal to

O
(

1

1− θ
log

1

ε

)
= O

(
max

{
1 +

2

µxηx
,

1

µ2
xyβyηy

}
log

1

ε

)
= O

(
max

{
1 +

1

µxηx
,
Lx

µ2
xyηy

,
L2
xy

µ2
xy

}
log

1

ε

)

= O

(
max

{
1 +

√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
.

In other words, the number of computations of prox is equal to

♯prox = O

(
max

{
1 +

√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
,

and the number of gradient evaluations is

♯∇G = k · T

= O

(
max

{
1 +

√
Lx

µx

Lxy

µxy
,
L2
xy

µ2
xy

}
log

1

ε

)
· O

((
Lx

µx

)1/α
)

= O

(
max

{(
Lx

µx

)1/α

+

(
Lx

µx

) 2+α
2α Lxy

µxy
,

(
Lx

µx

)1/α L2
xy

µ2
xy

}
log

1

ε

)
.
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Algorithm 5 APDA with Inexact Prox and Accelerated Gossip

1: Input: Initial point (x0,y0) ∈ Rdx × Rdy , ȳ0 = y0; Step sizes ηx, ηy, βy > 0, θ ∈ [0, 1];
Number of inner iterations T ; Number of iterations of Accelerated Gossip N ;

2: for k = 0, 1, 2, . . . do
3: Find x̂k as a final point of T iteration of method M for following problem:

min
x∈Rdx

{
P (x) +

1

2ηx

∥∥x−
(
xk − ηxAG(W, ȳk, N)

)∥∥2} (87)

4: xk+1 = xk − ηx
(
∇P (x̂k) + AG(W, ȳk, N)

)
5: yk+1 = yk + ηy

(
AG(W, x̂k, N)− βyAG(W,AG(W,yk, N) +∇P (x̂k), N)

)
6: ȳk+1 = yk+1 + θ

(
yk+1 − yk

)
7: end for
8: procedure AG(W,x, N ) = Accelerated Gossip
9: Set a0 = 1, a1 = c2, x0 = x, x1 = c2 (I − c3W )x

10: for i = 1, . . . , N − 1 do
11: ai+1 = 2c2ai − ai−1, xi+1 = 2c2 (I − c2W )xi − xi−1

12: end for
13: return x− xN

aN

14: end procedure

F Analysis of the Accelerated Primal-Dual Algorithm with Inexact Prox and
Accelerated Gossip (Algorithm 5)

F.1 Gossip matrices

In Algorithm 5 we work with a more general notion of a gossip matrix (beyond graph Laplacians),
defined next.

Assumption 6 (see [Scaman et al., 2017]). Let G = (V, E) be a connected communication network.
The communication process is represented via multiplication by a matrix Ŵ ∈ Rn×n which satisfies
the following conditions:

• Ŵ is symmetric,

• Ŵ is positive semi-definite,

• the kernel of Ŵ satisfies Ker Ŵ = span{(1, . . . , 1)⊤ ∈ Rn}, and

• Ŵi,j ̸= 0 if and only if i = j or (i, j) ∈ E .

It is easy to see that σ(Ŵ ) ⊂ σ(W ), where σ(·) denotes the spectrum, and W = Ŵ ⊗ Idn.

F.2 Theorem 3 follows from Theorem 2

Our main result for Algorithm 5, i.e., Theorem 3, follows from Theorem 2. Below we state it more
formally.

Theorem 9 (Formal version of Theorem 3; convergence for Algorithm 5). Let us invoke the same
assumptions as those made in Theorem 2. Additionally, let Assumption 6 hold. Assume that the
auxiliary problem (87) is solved by one of the methods from Lemma 1. Set the parameters N , c1, c2,
c3 to

N = ⌊√χ⌋ , c1 =

√
χ− 1

√
χ+ 1

, c2 =

√
χ+ 1

√
χ− 1

, c3 =
2χ

(1 + χ)λmax (W )

and let

λ1 = 1 +
2cN1

1 + c2N1
, λ2 = 1− 2cN1

1 + c2N1
,
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βy = min

{
1

Lx
,

1

2λ21ηy

}
, ηx =

1

2
√
Lxµx

λ2
λ1
, ηy =

√
Lxµx√
2λ1λ2

,

θ = max

{
2

2 + µxηx
, 1− λ22βyηy

}
,

T =
α
√
20A

(
1 +

√
Lx

µx

)2/α

.

Then for the Lyapunov function ∆k from Theorem 8, we have

0 ≤ ∆k ≤ θk∆0 ∀k ≥ 0,

Moreover, for every ε > 0, Algorithm 5 finds (xk,yk) for which ∆k ≤ ε∆0 in at most

O
(
κ

2+α
2α log (1/ε)

)
gradient computations and at most O

(√
κχ log (1/ε)

)
communication rounds.

Proof. The main idea of the proof is this methods is to show two following things: i) Theorem 2
holds true with some replacements, i.e. Lxy → λ1, µxy → λ2, where λ1, λ2 is upper bound and
lower bound of the spectrum of a matrix, which is defined below; ii) Estimate λ1 and λ2.

The proof of Theorem 9 is similar to the proof of Corollary 1 from [Kovalev et al., 2020]. According
to the proof from [Kovalev et al., 2020], we need to replace

Lxy = λmax(
√
W ) → λ1 = 1 +

2cN1
1 + c2N1

, µxy = λ+min(
√
W ) → λ2 = 1− 2cN1

1 + c2N1
.
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G Proof of Lemma 1

Proof. We consider the three options separately. We will use f instead of Ψ and x instead of w in
the proof. Let T = 2K.

(i) K iterations of GD followed by K iterations GD. We consider the GD method with
stepsize γ = 1

L , which performs the iterations

xk+1 = xk − γ∇f(xk) = xk − 1

L
∇f(xk),

where L is the smoothness constant of f . We assume that f is convex.

• Gradient decreases monotonically. According to the chain of inequalities

∥∇f(xk+1)∥2 = ∥∇f(xk+1)−∇f(xk)∥2 + 2⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩+ ∥∇f(xk)∥2

= ∥∇f(xk+1)−∇f(xk)∥2 − 2

γ
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩+ ∥∇f(xk)∥2

≤
(
1− 2

γL

)
∥∇f(xk+1)−∇f(xk)∥2 + ∥∇f(xk)∥2

≤ ∥∇f(xk)∥2, (88)

where the first inequality follows from convexity and L-smoothness, the gradient norm
decreases monotonically.

• Bound on best gradient norm. Further, using L-smoothness of f , we obtain

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

= f(xk)− γ∥∇f(xk)∥2 + γ2L

2
∥∇f(xk)∥2

= f(xk)− 1

2L
∥∇f(xk)∥2.

Summing up from k = K to k = 2K, we get
2K∑
k=K

∥∇f(xk)∥2 ≤ 2L
(
f(xK)− f(x2K)

)
≤ 2L

(
f(xK)− f⋆

)
,

which implies

min
k∈[K,2K]

∥∇f(xk)∥2 ≤
2L
(
f(xK)− f⋆

)
K + 1

. (89)

• Bound on function suboptimality. It is known that for convex L-smooth functions,
Gradient Descent (GD) with constant stepsize γ = 1

L , i.e., the method

xk+1 = xk − γ∇f(xk) = xk − 1

L
∇f(xk),

satisfies [Nesterov, 2004]

f(xK)− f⋆ ≤ L∥x0 − x⋆∥2

2K
. (90)

• Bound on last gradient norm. By combining (88), (90) and (89), we get

∥∇f(x2K)∥2 (88)
= min

k∈[K,2K]
∥∇f(xk)∥2

(89)
≤ 2L(f(xK)− f⋆)

K + 1

≤ 2L(f(xK)− f⋆)

K
(90)
≤ L2∥x0 − x⋆∥2

K2
.
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(ii) K iterations of FGD followed by K iterations GD. A better rate can be obtained if we
replace the first half of the iterative process with the Fast Gradient Descent (FGD) method
[Nesterov, 2004].

• Bound on function suboptimality. If we employ the Fast Gradient Descent (FGD)
method during the first K iterations, we get (see, for example, [Nesterov, 2004]):

f(xK)− f⋆ ≤ 4L∥x0 − x⋆∥2

K2
. (91)

• Bound on last gradient norm. Since in the last K iterations we use GD, inequalities (88)
and (89) still apply. It remains to combine (88), (89) and (91):

∥∇f(x2K)∥2 (88)
= min

k∈[K,2K]
∥∇f(xk)∥2

(89)
≤ 2L(f(xK)− f⋆)

K + 1

≤ 2L(f(xK)− f⋆)

K
(91)
≤ 8L2∥x0 − x⋆∥2

K3
.

(iii) K iterations of FGD followed by K iterations FSFOM. A better rate can be obtained if
we further replace the second half of the iterative process with the FSFOM method of Kim
and Fessler [2021].

• Bound on the gradient norm of FSFOM. The FSFOM method satisfies the following
inequality (see Theorem 6.1 from [Kim and Fessler, 2021]):

∥∇f(x2K)∥2 ≤ 4L(f(xK)− f⋆)

K2
. (92)

• Bound on last gradient norm. By combining (92) and (91), we obtain

∥∇f(x2K)∥2
(92)
≤ 4L(f(xK)− f⋆)

K2

(91)
≤ 16L2∥x0 − x⋆∥2

K4
.

Results from parts (i), (ii) and (iii) proved above can be written in a unified form as

∥∇f(xT )∥2 ≤ AL2∥x0 − x⋆∥2

Tα
,

where T = 2K, and A is a constant which depends on the combination of the methods used during
the first K iterations and the last K iterations.
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