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1. Outline

We provide code, animations, and this document to comple-
ment our main paper. The following is its outline:

1. In Sec. 2, we delve into the implementation details, cov-
ering aspects such as hyper-parameters, runtime, and
dataset collection. For demonstration purposes, we pro-
vide the code in the code directory.

2. In Sec. 3, we provide an ablation study on camera pose
estimation to verify the efficacy of the proposed canoni-
cal poses and timestep annealing.

3. In Sec. 4, we showcase additional qualitative results
to validate the effectiveness of our method visually.
Dynamic visualizations of example reconstructions are
available in the video directory.

4. In Sec. 5, we present the experimental results obtained
from evaluating our method on the GSO dataset [2] re-
leased by FORGE [4].

5. In Sec. 6, we discuss the limitations of our work and
potential ways to improve them.

2. Implementation Details
2.1. Hyper-parameters

We employ Adam [5] as the optimizer for both pose
estimation and sparse-view fine-tuning. In the case of
pose estimation, we optimize the initial poses for 100
steps with an initial learning rate of 0.1. The learning
rate is dynamically reduced if the L2 loss stops decreas-
ing, handled by the ReduceLROnPlateau scheduler from
PyTorch [11]. Specifically, we set the reduction factor
to 0.6 and the patience to 10. Afterward, in the sparse-
view fine-tuning stage, the model is fine-tuned for 30
steps, with the learning rate annealed from 102 to 10~*
and the rank of the injected LoRA [3] parameter set
to 12. Note that this process is performed individually
for each object, taking approximately 30 seconds on a sin-
gle Nvidia 3090 GPU with a batch size of 16. For 3D
reconstruction, we follow the default hyper-parameters of
each reconstruction method, i.e., One2345 [7], Zerol123-
SDS [8], Magic123 [12], and DreamGaussian [13], when

combining with iFusion. Please refer to their official imple-
mentations for details.

For demonstration purposes, we provide the code, which
includes several example objects for reviewers to test our
method with. Additional details and instructions can be
found in the README . md file located in the code direc-
tory.

2.2. Dataset Collection

We use Pyrender! to render images for evaluation. Follow-
ing Liu et al. [8], the transformation is defined using the
spherical coordinate system with 6, ¢, and r representing
the elevation angle, azimuth angle, and distance towards the
center, respectively. In practice, we sample camera view-
points on the unit sphere with § € [r/4,37 /4], ¢ € [0, 27|
and r is uniformly sampled in the interval of [1.2,2.0].
The field of view of the perspective camera is set to 49.1°.
All images are rendered in the resolution of 512x512 with
transparent background.

3. Ablation on Pose Estimation

We provide additional ablation to validate whether the use
of more poses for initialization, namely 7j in Eq. (7), leads
to more accurate camera pose estimation, and it is con-
firmed in Tab. 1. The reported computation time is mea-
sured on a single Nvidia 3090 GPU, and the recall is as-
sessed based on the rotation error. According to Tab. I,
we employed n = 4 initial poses for a better trade-off be-
tween speed and accuracy for all experiments unless oth-
erwise specified. Additionally, we observed that linearly
annealing the timestep ¢ lead to significantly more accurate
pose estimation, as demonstrated in Tab. 2.

4. Qualitative Results

To further corroborate the effectiveness of our proposed
pose estimation strategy described in Sec. 3.1, we present
additional qualitative visualization in Fig. 1. These results
support our assumption that the acquired understanding of

lhttps://qithub.com/mmatl/pyrender

3DV
#188

039
040
041
042
043
044
045

046

047
048
049
050
051
052
053
054
055
056

057

058
059
060
061
062
063
064
065
066
067
068

069

070
071
072
073


https://github.com/mmatl/pyrender

3DV
#188

074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089

090

091
092
093
094
095
096
097
098
099
100
101
102
103
104

3DV 2025 Submission #188. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Ablation study of the number of initial poses for pose
estimation on GSO [2].

n poses Recall 1 Time (s) |
5° 10° 20°
(a) 1 33.07 36.21 38.36 22.30
(b) 2 60.57 69.14 73.07 38.51
(©) 4 74.79 84.29 88.57 70.59
(d) 8 78.21 88.93 92.43 133.73

Table 2. Ablation study of timestep annealing for pose estimation
on GSO [2].

. Recallf
n poses  t annealing
5° 10° 20°
(a) 4 - 48.61 56.67 61.39
(b) 4 v 74.79 84.29 88.57

diverse objects in Zerol123 [8] can be leveraged for other
tasks, such as pose estimation.

In Fig. 2, we visualize the generated images obtained
through the proposed multi-view fine-tuning and condition-
ing described in Sec. 3.2. The results demonstrate that
iFusion is capable of leveraging additional views, ensuring
high-fidelity generation. Finally, we showcase a more com-
prehensive comparison of reconstructed objects in Fig. 3.
These results complement Fig. 7 of our main manuscript.

In addition, animations of the reconstructed objects
are provided in the video directory, showing the out-
comes with and without the application of iFusion to
Magic123 [12]. The input views, i.e., the reference view
and the query view, are also provided for comparison. Con-
sistently, incorporating an additional view using our method
yields the best results.

5. Evaluation on FORGE'’s dataset

In this section, we offer quantitative results obtained us-
ing the GSO dataset [2] sourced from FORGE [4], com-
plementing the pose estimation experiment outlined in Sec.
4.2. The OO3D dataset [14] used by the authors remains
unavailable to the public. It is important to note that GSO
and OO3D are object datasets that do not provide rendered
images, potentially resulting in slight variations in render-
ing style between our dataset and theirs. Additionally, due
to the absence of a common test split within the commu-
nity, the selection of objects for evaluation may differ as
well. In this experiment, we strictly followed the author’s
settings and conducted the experiments using the official
checkpoint. Similar to Fig. 5 of the main paper, we present
the results of iFusion utilizing two views, in contrast to

Table 3. Evaluation results on GSO [2] from FORGE [4]. Even
with only two input views, iFusion achieves accurate pose estima-
tion, surpassing the performance of FORGE with five views.

Dataset Method Rot. error | Trans. error |
FORGE [4] 14.90 0.37
GSO [2
21 iFusion 3.16 0.11

FORGE’s official employment of five views. As depicted
in Tab. 3, this experiment confirms the effectiveness of the
proposed method.

6. Limitations and Future Works

While our methods deliver highly accurate camera poses,
our pose estimation run time is higher than feed-forward-
based methods, e.g., RelPose++ [6]. This is attributed to
the optimization nature of our approach, which involves
back-propagation for updating the poses. Moreover, when
we fine-tune Zero123 [8] on estimated poses and additional
input views, it is worth noting that Zerol23, originally
adapted from the 2D-based Stable Diffusion (SD), lacks 3D
awareness. This structural limitation prevents it from gen-
erating multi-views with consistency. However, our frame-
work holds potential for integration with other diffusion-
based novel view synthesizers [9, 10] that enforce multi-
view consistency by incorporating 3D-aware modules onto
SD.
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Figure 1. More qualitative results on pose estimation. The predicted poses (thin) and their corresponding ground truth (bold), are plotted
in the same color, while the reference views are plotted in red. Our method achieves accurate pose estimation for diverse objects, benefiting
from the extensive knowledge acquired from Objaverse [1].
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Figure 2. More qualitative results on novel view synthesis. By empﬁoying the proposed multi-view fine-tuning and conditioning, iFusion
can efficiently incorporate additional views into the model, resulting in enhanced generation fidelity.
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Figure 3. More qualitative comparisons on surface reconstruction. We integrate iFusion with Zero123-SDS [8], DreamGaussian [13],
and Magic123 [12] to perform pose-free reconstruction given sparse views. The results indicate that our method operates as an effective
add-on, consistently enhancing existing single-view reconstruction methods.
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