
A Other related works

Let us discuss in passing additional prior works on learning equilibrium solutions in MARL, which
have attracted an explosion of interest in recent years. While the Nash equilibrium is arguably
the most compelling solution concept in Markov games, the finite-sample/finite-time studies of NE
learning concentrate primarily on two-player zero-sum MGs (e.g., Bai and Jin [4], Chen et al. [16],
Mao and Başar [44], Wei et al. [70], Tian et al. [64], Cui and Du [17, 18], Zhong et al. [83], Jia et al.
[29], Yang and Ma [76], Yan et al. [74], Dou et al. [24]), mainly because computing NEs becomes,
for the most part, computationally infeasible (i.e., PPAD-complete) when going beyond two-player
zero-sum MGs [20, 21]. Roughly speaking, previous NE-finding algorithms for two-player zero-sum
Markov games can be categorized into model-based algorithms [52, 79, 43], value-based algorithms
[4, 5, 73, 54, 31, 15], and policy-based algorithms [10, 22, 71, 82, 14, 81, 11]. In particular, Bai
et al. [5], Jin et al. [31] developed the first algorithms to beat the curse of multiple agents in two-
player zero-sum MGs, while Jin et al. [31], Daskalakis et al. [23], Mao and Başar [44], Song et al.
[63] further demonstrated how to accomplish the same goal when learning other computationally
tractable solution concepts (e.g., coarse correlated equilibria) in general-sum multi-player Markov
games. The recent works Cui and Du [17, 18], Yan et al. [74] studied how to alleviate the sample size
scaling with the number of agents in the presence of offline data, with Cui and Du [18] providing a
sample-efficient algorithm that also learns NEs in multi-agent Markov games (despite computational
intractability).

We shall also briefly remark on the prior works that concern RL with a generative model. While
there are multiple sampling mechanisms (e.g., online exploratory sampling, offline data) that bear
practical relevance, the generative model (or simulator) serves as an idealistic sampling protocol
that has received much recent attention, covering the design of various model-based, model-free and
policy-based algorithms [35, 69, 1, 3, 38, 32, 60, 67, 68, 39, 34, 61, 51, 36, 13, 26, 7, 71, 65, 77,
72, 46, 75, 78, 25]. In single-agent RL, the model-based approach has been shown to be minimax-
optimal for the entire ε-range [38, 1, 3]. When it comes to multi-agent RL, sample-efficient solutions
with a generative model have been proposed in the recent works [62, 19, 79], although a provably
sample-optimal strategy was previously unavailable.

B Regret bounds for FTRL via variance-type quantities

Before embarking on our analysis for Markov games, we take a detour to study the celebrated
Follow-the-Regularized-Leader algorithm for online weighted linear optimization, which plays a
central role in the analysis of Markov games.

B.1 Setting: online learning for weighted linear optimization

Let `1, . . . , `n ∈ RA represent an arbitrary sequence of non-negative loss vectors. We focus on the
following setting of online learning or adversarial learning [37]: in each round k,

1. the learner makes a randomized prediction by choosing a distribution πk ∈ ∆(A) over the actions
in A = {1, · · · , A};

2. subsequently, the learner observes the loss vector `k, which is permitted to be adversarially chosen.

To evaluate the performance of the learner, we resort to a regret metric w.r.t. a certain weighted linear
objective function. To be precise, consider a non-negative sequence {αk}1≤k≤n with 0 ≤ αk ≤ 1;
for each 1 ≤ k ≤ n, we define recursively the following weighted average of the loss vectors:

L0 = 0 and Lk = (1− αk)Lk−1 + αk`k, k ≥ 1,

which can be easily shown to enjoy the following expression

Lk =

k∑
i=1

αki `k

with αki defined in (5). When the sequential predictions made by the learner are {πk}k≥1, we define
the associated regret w.r.t. the above weighted sum of loss vectors as follows:

Rn := max
a∈A

Rn(a) with Rn(a) :=

n∑
k=1

αnk 〈πk, `k〉 −
n∑
k=1

αnk`k(a), (32)
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which compares the learner’s performance (i.e., the expected loss of the learner over time if it draws
actions based on πk in round k) against that of the best fixed action in hindsight.

B.2 Refined regret bounds for FTRL

Follow-the-Regularized-Leader. The FTRL algorithm [57, 55] tailored to the above online opti-
mization setting adopts the following update rule:

πk+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

ηk+1
F (π)

}
, k = 1, 2, . . . (33)

where ηk+1 > 0 denotes the learning rate, andF (·) is some convex regularization function employed
to stabilize the learning process [56]. Throughout this section, we restrict our attention to negative-
entropy regularization, namely,

F (π) =
∑
a∈A

π(a) log
(
π(a)

)
,

which allows one to express the FTRL update rule as the following exponential weights strategy
(see, e.g., Lattimore and Szepesvári [37, Section 28.1])

πk+1(a) =
exp

(
− ηk+1Lk(a)

)∑
a′∈A exp

(
− ηk+1Lk(a′)

) for all a ∈ A. (34)

This update rule is also intimately connected to online mirror descent [37].

Refined regret bounds via variance-style quantities. As it turns out, the regret of FTRL can be
upper bounded by certain (weighted) variance-type quantities, as asserted by the following theorem.
Theorem 3. Suppose that 0 < α1 ≤ 1 and η1 = η2(1 − α1). Also, assume that 0 < αk < 1 and
0 < ηk+1(1− αk) ≤ ηk for all k ≥ 2. In addition, define

η̂k :=

{
η2, if k = 1,
ηk

1−αk , if k > 1.
. (35)

Then the regret (cf. (32)) of the FTRL algorithm satisfies

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (36)

where for any ` ∈ RA and any π ∈ ∆(A) we define

Varπ(`) :=
∑
a

π(a)
(
`(a)−

∑
a′

π(a′)`(a′)
)2

.

Remark 1. Note that the FTRL algorithm and the data generating process in this section are both
described in a completely deterministic manner; no randomness is involved in the above theorem
even though we introduce the variance-style quantities.

The proof of Theorem 3 is postponed to Appendix D. Let us take a moment to discuss the key
distinction between Theorem 3 and prior theory.

• A key term in the regret bound (36) is a weighted sum of the “variance-style” quantities
{Varπk(`k)}. In comparison, prior regret bounds typically involve the norm-type quantities (e.g.,
the infinity norms {‖`k‖2∞}) as opposed to the “variances”; see, for instance, Lattimore and
Szepesvári [37, Corollary 28.8] for a representative existing regret bound that takes the form of
the sum of {‖`k‖2∞} that takes the form of the sum of {‖`k‖2∞}.2 While Var(`k) ≤ ‖`k‖2∞ is
orderwise tight in the worst-case scenario for a given iteration k, exploiting the problem-specific
variance-type structure across time is crucial in sharpening the horizon dependence in many RL
problems (e.g., Azar et al. [3], Jin et al. [30], Li et al. [41, 40]).

2Note that the Bregman divergence generated by the negative entropy function is the (generalized) KL
divergence [6], which is strongly convex w.r.t. ‖ · ‖1 due to Pinsker’s inequality. Additionally, the dual norm of
‖ · ‖1 is the infinity norm.
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• The careful reader would remark that the final term of (36) relies on the infinity norm ‖`k‖∞
as well. Fortunately, when the products of the learning rates η̂kαk are chosen to be dimin-
ishing (which is the case in our analysis for Markov games), the number of iterations obeying
η̂kαk‖`k‖∞ > 1/3 is reasonably small, thus ensuring that this term does not exert too much of an
influence on the regret bound.

C Proof of Theorems 1-2

To begin with, we claim that Theorem 1 is a direct consequence of Theorem 2. Towards this, note
that in a two-player zero-sum Markov game, it is self-evident that π̂−1 = π̂2 and π̂−2 = π̂1 (see line
12 of Algorithm 1). Consequently, Theorem 2 (if it is valid) reveals that

ε ≥ gap(π̂; s) = max
{
V
?,π̂−1

1,1 (s)− V π̂1,1(s), V
?,π̂−2

2,1 (s)− V π̂2,1(s)
}

= max
{
V ?,π̂2

1,1 (s)− V π̂1,1(s), V π̂1,?
2,1 (s)− V π̂2,1(s)

}
, for all s ∈ S. (37)

Moreover, recalling that r1,h = −r2,h for all h ∈ [H], one has V π1,1(s) = −V π2,1(s) for any joint
policy profile π, which taken collectively with (37) results in

V ?,π̂2

1,1 (s)− V π̂1×π̂2
1,1 (s) = V ?,π̂2

1,1 (s) + V π̂1×π̂2
2,1 (s) ≤ V ?,π̂2

1,1 (s) + V π̂1,?
2,1 (s)

= V ?,π̂2

1,1 (s)− V π̂1,1(s) + V π̂1,?
2,1 (s)− V π̂2,1(s) ≤ 2ε.

Analogously, one has V π̂1,?
2,1 (s) − V π̂1×π̂2

2,1 (s) ≤ 2ε. Replacing ε with ε/2 immediately establishes
Theorem 1.

With the above argument in mind, the remainder of this section is devoted to proving Theorem 2.

C.1 Preliminaries and notation

Let us start with some preliminary facts and notation. Given that ε ≤ H , the assumption (27)
requires

K ≥ ckH log4
(KS∑iAi

δ

)
(38)

for some large enough constant ck > 0, which will be a condition assumed throughout the proof.
We also gather below several basic facts about our choices of learning rates {αi} (cf. (22)) and the
corresponding quantities {αki } (cf. (5)).

Lemma 1. For any k ≥ 1, one has

α1 = 1,

k∑
i=1

αki = 1, max
1≤i≤k

αki ≤
2cα logK

k
. (39a)

In addition, if k ≥ cα logK + 1 and cα ≥ 24, then one has

max
1≤i≤k/2

αki ≤ 1/K6. (39b)

Proof. The result (39a) is standard and has been recorded in previous works (e.g., Jin et al. [30,
Appendix B]). Regarding (39b), we note that for any i ≤ k/2 and k ≥ cα logK + 1,

αki ≤
k∏

j=i+1

(1−αj) ≤
k∏

j=k/2+1

(1−αj) ≤ (1−αk)k/2 ≤
(

1−cα logK

2k

)k/2
≤ exp

(
−cα logK

4

)
≤ 1

K6
,

where we have used the fact that αk = cα logK
k−1+cα logK ≥

cα logK
2k and the assumption cα ≥ 24.

Additionally, recognizing the definition in (15) and the upper bound V̂i,h+1(s) ≤ H − h (cf. (20a)),
we make note of the range of the iterates

{
qki,h
}

as follows.
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Lemma 2. For any i ∈ [m] and any (h, k, s, ai) ∈ [H]× [K]× S ×Ai, it holds that

0 ≤ qki,h(s, ai) ≤ H − h+ 1. (40)

Next, we introduce several additional notation that helps simplify our presentation of the proof. For
any policy µ : S × [H]→ ∆(Ai), we adopt the convenient notation

µh(s) := µh(· | s) ∈ ∆(Ai).

We shall also employ the expectation operator Eh,k−1[·] (resp. variance operator Varh,k−1[·]) to
denote the expectation (resp. variance) conditional on what happens before the beginning of the k-th
round of data collection for step h (see Section 3.1 about the data collection process).

C.2 Proof outline

With the above preliminaries in place, we are in a position to present our analysis. Recall that the
joint policy π̂ computed by Algorithm 1 takes the form of a mixture of product policies

K∑
k=1

αKk
(
πk1,h × · · · × πkm,h

)︸ ︷︷ ︸
=:πkh

(41)

at step h. Consequently, the value function under policy π̂ satisfies the following Bellman equation:

V π̂i,H+1(s) := 0 (42a)

V π̂i,h(s) :=

K∑
k=1

∑
a∈A

αKk π
k
h(a | s)

[
ri,h(s,a) +

〈
Ph(· | s,a), V π̂i,h+1

〉]
(42b)

for all (i, s, h) ∈ [m]×S × [H]. To establish Theorem 2, we seek to prove the following inequality:

V
?,π̂−i
i,1 (s)− V π̂i,1(s) ≤ ε, 1 ≤ i ≤ m, (43)

where we remind the reader of the definition of V ?,π̂−ii,1 in (9).

Towards this, let us introduce the following best-response policy of the i-th player:

π̃?i =
[
π̃?i,h

]
h∈[H]

:= arg max
π′i:S×[H]→∆(Ai)

V
π′i×π̂−i
i,1 .

We make note of the following key decomposition:

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V
?,π̂−i
i,h − V π̂i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
, (44)

where we define the following auxiliary value functions:

V
π̃?i×π̂−i
i,h (s) :=

K∑
k=1

αKk E
ai∼π̃?i,h(s)

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

π̃?i×π̂−i
i,h+1

〉]
, with V

π̃?i×π̂−i
i,H+1 = 0,

(45a)

V
?,π̂−i
i,h (s) := max

ai∈Ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

?,π̂−i
i,h+1

〉]
, with V

?,π̂−i
i,H+1 = 0,

(45b)

V
π̂

i,h(s) :=

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

π̂

i,h+1

〉]
, with V

π̂

i,H+1 = 0.

(45c)

Here, we have used the elementary fact V
π̃?i×π̂−i
i,h ≤ V ?,π̂−ii,h . We shall establish bounds for the above

terms in (44), which consists of three steps as outlined below.
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Step 1: showing that V̂i,h is an entrywise upper bound on V ?,π̂−ii,h . The following lemma ascer-
tains that the value estimate V̂i,h of the i-th player returned by Algorithm 1 is an optimistic estimate

of the auxiliary value V
?,π̂−i
i,h defined in (45b). Evidently, this result cannot happen unless the bonus

terms are suitably chosen.
Lemma 3. With probability at least 1− δ, it holds that

V̂i,h ≥ V
?,π̂−i
i,h , for all (i, h) ∈ [m]× [H]. (46)

The proof of this lemma is postponed to Appendix E.1. Armed with Lemma 3, we can further bound
(44) as follows

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V̂i,h − V

π̂

i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
. (47)

Step 2: establishing a key recursion. Recall the definition of πkh in (41). Let us define the
following auxiliary reward vectors rπ̂i,h, r

π̃?i×π̂−i
i,h , ri,h ∈ RS as well as the auxiliary probability

transition matrices P π̂i,h, P
π̃?i×π̂−i
i,h , P i,h ∈ RS×S such that: for any s, s′ ∈ S,

rπ̂i,h(s) :=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a)

]
, (48a)

P π̂i,h(s, s′) :=

K∑
k=1

αKk E
a∼πkh(s)

[
Ph(s′ | s,a)

]
, (48b)

r
π̃?i×π̂−i
i,h (s) :=

K∑
k=1

αKk E
(ai,a−i)∼π̃?i,h(s)×πk−i,h(s)

[
ri,h(s,a)

]
, (48c)

P
π̃?i×π̂−i
i,h (s, s′) :=

K∑
k=1

αKk E
(ai,a−i)∼π̃?i,h(s)×πk−i,h(s)

[
Ph(s′ | s,a)

]
, (48d)

ri,h(s) :=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)rki,h(s, ai), (48e)

P i,h(s, s′) :=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)P ki,h(s′ | s, ai). (48f)

As it turns out, V
π̂

i,h (resp. V
π̃?i×π̂−i
i,h , V̂i,h) stays reasonably close to the “one-step-look-ahead”

expression rπ̂i,h + P π̂i,hV
π̂

i,h+1 (resp. rπ̃
?
i×π̂−i
i,h + P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1 , ri,h + P i,hV̂i,h+1), as revealed

by the recursive relations stated in the following lemma; the proof of this lemma is deferred to
Appendix E.2.
Lemma 4. There exists some universal constant c3 > 0 such that with probability exceeding 1− δ,

∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV
π̂

i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
,

(49a)∣∣∣V π̃?i×π̂−ii,h −
(
r
π̃?i×π̂−i
i,h + P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P
π̃?i×π̂−i
i,h

(
V
π̃?i×π̂−i
i,h+1 ◦ V π̃

?
i×π̂−i
i,h+1

)
−
(
P
π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)
◦
(
P
π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)]
,

(49b)
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∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P i,h

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,hV̂i,h+1

)
◦
(
P i,hV̂i,h+1

)]
(49c)

hold for all h ∈ [H].
Remark 2. The right-hand side of each of the bounds in (49) contains a variance-style term (e.g.,
those terms taking the form of Pi,h(Vi,h+1 ◦ Vi,h+1)− (Pi,hVi,h+1) ◦ (Pi,hVi,h+1) for some prob-
ability transition matrix Pi,h and value vector Vi,h+1). Such variance-style terms are direct conse-
quences of our Bernstein-style bonus terms, and are crucial in optimizing the horizon dependency.

With the above lemma in place, one can readily show that

∣∣∣V π̂i,h − P π̂i,hV π̂i,h+1

∣∣∣ ≤ rπ̂i,h + c3

√
H log3

(KS∑
i Ai

δ

)
K

1

+
c3
H

√
H log3

(KS∑
i Ai

δ

)
K

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
≤ c4

4
1 +

1

4H

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
=: ζ0

(50)

for some large enough constant c4 > 0, where the last line holds due to Condition (38), the basic fact
P π̂i,h

(
V
π̂

i,h+1 ◦V
π̂

i,h+1

)
≥
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
, and the following fact (for large enough c4)

c3

√
H log3

(KS∑
i Ai

δ

)
K

1 + rπ̂i,h ≤ c3

√
H log3

(KS∑
i Ai

δ

)
K

1 + 1 ≤ c4
4

1.

In addition, recalling that ‖V π̂i,h‖∞, ‖V
π̂

i,h+1‖∞ ≤ H (cf. (20a)) and recognizing that ζ0 ≥ 0 (see
(50)), we can demonstrate that∣∣∣V π̂i,h ◦ V π̂i,h − (P π̂i,hV π̂i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)∣∣∣ =
∣∣∣(V π̂i,h + P π̂i,hV

π̂

i,h+1

)
◦
(
V
π̂

i,h − P π̂i,hV
π̂

i,h+1

)∣∣∣
≤
(
V
π̂

i,h + P π̂i,hV
π̂

i,h+1

)
◦ ζ0 ≤ 2Hζ0

=
c4
2
H1 +

1

2

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
. (51)

This further leads to

P π̂i,h
(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
= P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h + V
π̂

i,h ◦ V
π̂

i,h −
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
≤ P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h +
c4
2
H1 +

1

2

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
,

which can be rearranged to yield

P π̂i,h
(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
≤ 2
[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
+ c4H1.

Substituting it into (49a) and combining terms give

∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV
π̂

i,h+1

)∣∣∣ ≤ c5
√
H log3

(KS∑
i Ai

δ

)
K

1

+ 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
,

(52)
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where we take c5 = c3 + c3c4.

An analogous argument (which is omitted here for brevity) also reveals that∣∣∣V π̃?i×π̂−ii,h −
(
r
π̃?i×π̂−i
i,h + P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)∣∣∣
≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

1 + 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P
π̃?i×π̂−i
i,h

(
V
π̃?i×π̂−i
i,h+1 ◦ V π̃

?
i ,π̂−i
i,h+1

)
− V π̃

?
i×π̂−i
i,h ◦ V π̃

?
i×π̂−i
i,h

]
,

(53)∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣
≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

1 + 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P i,h

(
V̂i,h+1 ◦ V̂i,h+1

)
− V̂i,h ◦ V̂i,h

]
.

(54)

Step 3: invoking the key recursion to establish the desired bound. We find it helpful to intro-
duce the following notation (please note the order of the matrix product)∏

j:j<h

P π̂i,j :=

{
P π̂i,1 · · ·P π̂i,h−1, if h > 1,

I, if h = 1.

Armed with this notation, we can invoke the relation (52) recursively and use V
π̂

i,h+1 = V π̂i,h+1 = 0
to obtain

V
π̂

i,h − V π̂i,h
(i)
= rπ̂i,h + P π̂i,hV

π̂

i,h+1 +
(
V
π̂

i,h −
(
rπ̂i,h + P π̂i,hV

π̂

i,h+1

))
−
(
rπ̂i,h + P π̂i,hV

π̂
i,h+1

)
≤ P π̂i,h

(
V
π̂

i,h+1 − V π̂i,h+1

)
+
∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV

π̂

i,h+1

)∣∣∣ (55)

(ii)

≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

 H∑
h=1

∏
j:j<h

P π̂i,j

 1

+ 2c3

√
log3

(KS∑
i Ai

δ

)
KH

H∑
h=1

∏
j:j<h

P π̂i,j

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
(iii)

≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

 H∑
h=1

∏
j:j<h

P π̂i,j

 1 = c5

√
H3 log3

(KS∑
i Ai

δ

)
K

1 ≤ ε

3
1.

(56)

Here, (i) uses the Bellman equation; (ii) applies the bound (52) recursively; (iii) holds since for any
transition matrices {Pi,h} and any sequence {Vi,h} obeying Vi,h+1 = 0, one can use the telescoping
sum to obtain
H∑
h=1

∏
j:j<h

Pi,j

[
Pi,h

(
Vi,h+1 ◦ Vi,h+1

)
− Vi,h ◦ Vi,h

]
=

H∑
h=1

∏
j:j≤h

Pi,j
(
Vi,h+1 ◦ Vi,h+1

)
−

H∑
h=1

∏
j:j<h

Pi,j
(
Vi,h ◦ Vi,h

)
=
∏
j:j≤H

Pi,j
(
Vi,h+1 ◦ Vi,h+1

)
− Vi,1 ◦ Vi,1

= −Vi,1 ◦ Vi,1 ≤ 0,

whereas the last inequality in (56) arises from the assumption (27) when ck is large enough. Simi-
larly, replacing π̂i with π̃?i in the above argument and recalling (53) directly lead to

V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h = V

π̃?i×π̂−i
i,h − V π̃

?
i×π̂−i
i,h ≤ ε

3
1. (57)

In addition, recalling the definition of V
π̂

i,h (cf. (45c)), ri,h and P i,h (see (48)), we can deduce that

V̂i,h − V
π̂

i,h = ri,h + P i,hV̂i,h+1 +
{
V̂i,h −

(
ri,h + P i,hV̂i,h+1

)}
− ri,h − P i,hV

π̂

i,h+1
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≤ P i,h
(
V̂i,h+1 − V

π̂

i,h+1

)
+
∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣,
which resembles (55). Thus, repeating the above argument for (56) and applying (54) recursively,
we reach

V̂i,h − V
π̂

i,h ≤
ε

3
1. (58)

To finish up, combining (56), (57) and (58) with (47), we arrive at

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V̂i,h − V

π̂

i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
≤ ε1.

This establishes the first inequality in (43), while the second inequality in (43) can be validated via
the same argument. We have thus completed the proof of Theorem 2.

D Proof of Theorem 3

This section is devoted to presenting the proof of Theorem 3. Before embarking on the analysis, let
us introduce a convenient auxiliary iterate

π−k+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

η̂k
F (π)

}
, (59)

or equivalently,

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′∈A exp

(
− η̂kLk(a′)

) for all a ∈ A, (60)

which differs from (34) only in the learning rates being used (namely, πk+1 uses ηk+1 while π−k+1

adopts η̂k).

D.1 Main steps of the proof

The key steps of the proof lie in justifying the following two claims:

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
; (61)

and for all a ∈ A and all k ≥ 1,

π−k+1(a) ≥

{[
1− η̂kαk`k(a)

]
πk(a), if η̂kαk‖`k‖∞ > 1

3 ,{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a), if η̂kαk‖`k‖∞ ≤ 1

3 ,

(62)

where for any vector ` ∈ RA we define

Eπk [`] :=
∑
a∈A

πk(a)`(a).

In words, the first claim (61) allows us to replace the action that appears best in hindsight (cf. (32))
by the time-varying predictions {π−k+1} without incurring much cost, whereas the second claim (62)
controls the proximity of π−k+1 and πk in each round. Let us assume the validity of these two claims
for the moment, and return to prove them shortly.

In view of the upper bound (61), we are in need of controlling
〈
πk − π−k+1, `k

〉
. We divide into two

cases.

• For any k obeying η̂kαk‖`k‖∞ > 1/3, invoke (62) and the non-negativity of `k to reach〈
πk − π−k+1, `k

〉
≤
∑
a∈A

η̂kαkπk(a)
[
`k(a)

]2 ≤∑
a∈A

η̂kαkπk(a)
∥∥`k∥∥2

∞ = η̂kαk
∥∥`k∥∥2

∞. (63)
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• In contrast, if η̂kαk‖`k‖∞ ≤ 1/3, then it follows from (62) that〈
πk − π−k+1, `k

〉
≤
∑
a∈A

{
η̂kαk

(
`k(a)− Eπk [`k]

)
+ 2η̂2

kα
2
kVarπk(`k)

}
πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])
Eπk

[
`k
]

+ η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

≤ η̂kαkVarπk
(
`k
)

+ 2η̂2
kα

2
kVarπk(`k)

∥∥`k∥∥∞, (64)

where we invoke the elementary facts that
∑
a πk(a)

(
`k(a) − Eπk

[
`k
])

= 0 and∑
a πk(a)`k(a) ≤ ‖`k‖∞.

Putting the above two cases together yields
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
≤

n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
+

n∑
k=1

αnk η̂kαkVarπk
(
`k
)
1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

+ 2

n∑
k=1

αnk η̂
2
kα

2
kVarπk

(
`k
)∥∥`k∥∥∞ 1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

≤ 5

3

n∑
k=1

αnk η̂kαkVarπk
(
`k
)

+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (65)

where the last inequality holds true since
n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
≤ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
,

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥∞Varπk(`k)1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)
≤ 1

3

n∑
k=1

αnk η̂kαkVarπk(`k).

Substituting (65) into (61), we can readily arrive at

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
.

It thus remains to establish the claims (61) and (62), which we shall accomplish next.

D.2 Proof of claim (61)

We claim that it suffices to prove that

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}

≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
. (66)

In fact, suppose that this inequality (66) is valid, then one can easily obtain

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}
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≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
≤ min
π∈{ea | a∈A}

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}

= min
π∈{ea | a∈A}

〈
π,

n∑
k=1

αnk`k

〉
= min

a∈A

n∑
k=1

αnk`k(a)

with ea the a-th standard basis vector in RA, where the last line holds true since the negative entropy
obeys F (ea) = 0 for any a ∈ A. In turn, this implies that

Rn =

n∑
k=1

αnk
〈
πk, `k

〉
−min
a∈A

n∑
k=1

αnk`k(a)

≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
−

n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA, (67)

where the last inequality invokes the elementary fact −F (π) ≤ logA for any π ∈ ∆(A). Addi-
tionally, under the assumptions that ηk+1(1 − αk) ≤ ηk (k ≥ 1), we can use the definition (5) to
obtain

αnk
ηk+1αk

=

∏n
j=k+1(1− αj)

ηk+1
≥
∏n
j=k(1− αj)

ηk
=

αnk−1

ηkαk−1
,

for any k ≥ 2, which together with the basic fact 0 ≤ −F (π) ≤ logA yields

−
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA ≤
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
logA+

αn1
η2α1

logA

=
αnn

ηn+1αn
logA =

logA

ηn+1
. (68)

Substitution into (67) leads to

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
(69)

as advertised. As a consequence, everything boils down to establishing (66).

Towards this end, we would like to proceed with an induction argument, with the induction hypoth-
esis w.r.t. n given by (66). Firstly, the base case with n = 1 simplifies to

α1
1〈π−2 , `1〉+

1

η2
F (π2) ≤ min

π∈∆(A)

{
〈π, α1

1`1〉+
1

η2
F (π)

}
given that α1 = α1

1; this inequality clearly holds since, according to (33) and (59),

π−2 = π2 = arg min
π∈∆(A)

{
〈π, L1〉+

1

η2
F (π)

}
= arg min

π∈∆(A)

{
〈π, α1`1〉+

1

η2
F (π)

}
.

Secondly, suppose that (66) holds w.r.t. n, and we intend to justify it w.r.t. n + 1. To do so, we
observe that

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

( αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

)
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

(i)
= (1− αn+1)

{
αn1 〈π−2 , `1〉+

αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

( αnk
ηk+1αk

−
αnk−1

ηkαk−1

)
F (πk+1)

}}
+ αn+1〈π−n+2, `n+1〉

(ii)

≤ (1− αn+1)

{〈
π−n+2,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π−n+2)

}
+ αn+1〈π−n+2, `n+1〉

(iii)
=

〈
π−n+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (π−n+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

η̂n+1
F (π)

}
.

(70)
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Here, (i) and (iii) invoke the fact αn+1
k = (1 − αn+1)αnk and αn+1

n+1 = αn+1 (according to (5)), (ii)
relies on the induction hypothesis (66) w.r.t. n. To finish up, invoke (70) and the definition (5) to
arrive at

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n+1∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}

=

{
αn+1

1 〈π−2 , `1〉+
αn+1

1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

}

+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

≤

{〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (πn+2)

}
+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

=

〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (πn+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (π)

}
,

where the inequality above makes use of (70), and the last identity comes from (33). This justifies
the induction hypothesis w.r.t. n + 1. Applying the induction argument in turn establishes (66) for
all n, thereby concluding the proof.

D.3 Proof of claim (62)

We first make the observation that∑
a

exp
(
− η̂kLk(a)

)
=
∑
a

exp
(
− ηkLk−1(a)

)
exp

(
− η̂kαk`k(a)

)
=
∑
a

{
πk(a)

∑
a′

exp
(
− ηkLk−1(a′)

)}
exp

(
− η̂kαk`k(a)

)
=
∑
a′

exp
(
− ηkLk−1(a′)

)∑
a

{
πk(a) exp

(
− η̂kαk`k(a)

)}
,

where the second equality follows from (34). This in turn allows us to demonstrate that

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′ exp

(
− η̂kLk(a′)

) =
exp

(
− ηkLk−1(a)

)∑
a′ exp

(
− ηkLk−1(a′)

) · exp
(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

)
= πk(a)

exp
(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) ≥ [1− η̂kαk`k(a)
]
πk(a),

where the last inequality holds since exp(−x) ≥ 1 − x and
∑
a πk(a) exp

(
− η̂kαk`k(a)

)
≤∑

a πk(a) = 1.

Next, suppose that η̂kαk‖`k‖∞ ≤ 1/3. In this case, it is self-evident that η̂kαk|`k(a)− Eπk [`k]| ≤
2/3 for all a ∈ A. Recalling that Eπk [`k] =

∑
a πk(a)`k(a), one can derive

π−k+1(a) = πk(a)
exp

(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) =
exp

(
− η̂kαk

(
`k(a)− Eπk [`k]

))∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)
1 + η̂2

kα
2
kVarπk(`k)

πk(a); (71)

here, the first inequality arises since exp(−x) ≥ 1 − x, while the second inequality can be shown
via the elementary inequality exp(−x) ≤ 1− x+ x2 for any x ≥ −1.5 and therefore∑

a

πk(a) exp
(
− η̂kαk

(
`k(a)− Eπk [`k]

))
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≤
∑
a

πk(a)

{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
+ η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
=
∑
a

πk(a)

{
1 + η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
= 1 + η̂2

kα
2
kVarπk(`k).

Applying the elementary inequality 1−a
1+b ≥ (1− a)(1− b) = 1− a− b+ ab ≥ 1− a− 2b for any

a ∈ [−1, 1] and b > 0, we can continue to lower bound (71) as follows

(71) ≥
{

1− η̂kαk
(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a),

thereby completing the proof.

E Proofs of auxiliary lemmas and details

E.1 Proof of Lemma 3

This section aims to prove Lemma 3, which establishes the inequality V̂i,h ≥ V
?,π̂−i
i,h . In what

follows, we shall proceed with an induction argument. The base case with step H + 1 is trivially
true, given that

V̂i,H+1 = V
?,π̂−i
i,H+1 = 0

holds for any joint policy. Next, let us assume that the claim (46) is valid for step h+ 1, namely,

V̂i,h+1 ≥ V
?,π̂−i
i,h+1, (72)

and attempt to justify the validity of this result when h+ 1 is replaced with h.

This step is mainly accomplished by applying our refined theory (cf. Theorem 3) for FTRL (see
(19)). More precisely, we claim that

max
ai

QKi,h(s, ai) ≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉

+ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K

(73)

for any s ∈ S , whose proof is deferred to Appendix E.1.1. Recall the construction (20a) of V̂i,h. If

V̂i,h = H − h+ 1, then the claimed result V̂i,h ≥ V
?,π̂−i
i,h holds trivially. It thus suffices to focus on

the case where

V̂i,h(s) =

K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ βi,h(s). (74)

In this case, recalling the definition of V
?,π̂−i
i,h (s) in (45b) gives

V
?,π̂−i
i,h (s) = max

ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

?,π̂−i
i,h+1

〉]
≤ max

ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V̂i,h+1

〉]
= max

ai
QKi,h(s, ai)

≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
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≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ βi,h(s) = V̂i,h(s)

simultaneously for all (s, h) ∈ S× [H]. Here, the second line follows from the induction hypothesis
(72) and the definition (17) ofQKi,h, the third line invokes the claim (73), whereas the last line comes
from our choice (24) of βi,h (provided cb is large enough) and (74). This concludes the proof, as
long as (73) can be justified.

E.1.1 Proof of claim (73)

Consider any state s ∈ S. By virtue of the identity Qki,h =
∑k
j=1 α

k
j q
j
i,h (see (17)), the policy

update rule (18) (or (19)) for πki,h(s) can essentially be viewed as the FTRL algorithm applied to the
loss vectors

`k = −qki,h(s, ·), k ≥ 1.

Moreover, recalling the definition (23) of ηk+1 and the definition (22) of αk (with cα ≥ 24), we
have(

ηk
ηk+1

)2

=
αk
αk−1

=
k − 2 + cα logK

k − 1 + cα logK
≥ k − 1

k − 1 + cα logK
= 1− αk > (1− αk)2. (75)

This property (75) permits us to invoke Theorem 3 to obtain

max
ai∈Ai

QKi,h(s, ai)−
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
= max
ai∈Ai

{
K∑
k=1

αKk
〈
πki,h(s), `k

〉
−

K∑
k=1

αKk `k(ai)

}

≤ 5

3

K∑
k=2

αKk
ηkαk

1− αk
Varπki,h(s)

(
qki,h(s, ·)

)
+

logAi
ηK+1

+ ξi,h

(i)

≤ 5

3

K/2∑
k=2

(
2cα
)1.5

log2K
√
kH

αKk Varπki,h(s)

(
qki,h(s, ·)

)

+
20

3

K∑
k=K/2+1

αKk

√
cα log2K

KH
Varπki,h(s)

(
qki,h(s, ·)

)
+

logAi
ηK+1

+ ξi,h, (76)

where ξi,h is defined as

ξi,h :=
5

3
αK1 η2

∥∥q1
i,h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qki,h∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qki,h∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
i,h

∥∥3

∞.

(77)

Here, to see why (i) holds, we make use of the facts that

1− αk = 1− cα logK

k − 1 + cα logK
≥

{
1− cα logK

1+cα logK = 1
1+cα logK ≥

1
2cα logK , if k ≥ 2,

1− cα logK
K/2+cα logK = K

K+2cα logK ≥
1
2 , if k ≥ K/2 + 1,

(78a)

ηkαk =

√
logK

αk−1H
· αk ≤

√
logK

αkH
· αk =

√
αk logK

H
≤

√
2cα log2K

kH
, (78b)

where the first line makes use of (38) for large enough ck, and the second line relies on (39a) in
Lemma 1.

To proceed, let us control the terms in (76) separately.

• We start with the first term in (76). The elementary bound
∥∥qki,h∥∥∞ ≤ H in Lemma 2 taken

together with (39b) in Lemma 1 helps us derive
K/2∑
k=2

αKk log2K√
kH

Varπki,h(s)

(
qki,h(s, ·)

)
≤
K/2∑
k=2

log2K

K6
√
kH

Varπki,h(s)

(
qki,h(s, ·)

)
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≤
K/2∑
k=2

log2K

K6
√
kH

∥∥qki,h(s, ·)
∥∥2

∞ ≤
H3/2 log2K

K6

K/2∑
k=2

1√
k

≤ 2H3/2 log2K

K6
·
√
K/2 ≤ 2H3/2 log2K

K5
. (79)

• Turning to the third term in (76), we recall the definition of ηK+1 (cf. (23)) to obtain

logAi
ηK+1

= logAi

√
αKH

logK
≤

√
2cαH log2Ai

K
, (80)

where the inequality comes from Lemma 1.
• Finally, we move on to the last term in (76). For any k ≥ 2, combine Lemma 2 with (78) to obtain

ηkαk
1− αk

∥∥qki,h∥∥∞ ≤
√

2cα log2K
kH

1
2cα logK

·H =

√
8c3αH log4K

k
. (81)

Clearly, the right-hand side of (81) is upper bounded by 1/3 for all k obeying k ≥ c9H log4 K
δ

for some large enough constant c9 > 0 (see also (38)). Consequently, one can derive

ξi,h =
5

3
αK1 η2

∥∥q1
i,h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qki,h∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qki,h∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
i,h

∥∥3

∞

≤ 5

3K6

√
logK

H

∥∥q1
i,h

∥∥2

∞ +

(
2cα logK

)2
K6

3

c9H log4 K
δ∑

k=2

η2
kα

2
k

∥∥qki,h∥∥3

∞

+
3

K6

logK

H

∥∥q1
i,h

∥∥3

∞

≤ 24c3α log4K

K6H

{
K∑
k=1

1

k
H3

}

≤ 24c3αH
2 log5K

K6
≤ 1

K4
, (82)

where the second line comes from (78) and the fact that K/2 > c9H log4 K
δ (as a consequence of

(38)), and the third line holds due to Lemma 2.

Putting the preceding bounds together and substituting them into (76), we arrive at

max
ai

QKi,h(s, ai)−
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉

≤ 5(2cα)1.5

3
· 2H3/2 log2K

K5
+

20

3

√
cα log2K

KH

K∑
k=K/2+1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+

√
2cαH log2Ai

K
+

1

K4

≤ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
, (83)

where the last line is valid under Condition (38). This completes the proof of Claim (73).

E.2 Proof of Lemma 4

In this section, we present the proof of Lemma 4. To begin with, we introduce the auxiliary quantities

q̃ki,h(s, ai) := rki,h(s, ai) + P ki,h(· | s, ai)V
π̂

i,h+1, ∀(s, ai) ∈ S ×Ai.

It is also helpful to introduce an auxiliary random action ak,s ∈ Ai generated in a way that

ak,s ∼ πki,h(s),

29



which is independent from q̃ki,h conditional on πki,h. This allows us to define another set of random
variables

q̂ki,h(s) := q̃ki,h
(
s, ak,s), ∀s ∈ S, (84)

which plays a central role in our analysis. It is readily seen from the facts V i,h+1(s) ≤ H − h
(cf. (20a)) and rki,h(s, ai) ∈ [0, 1] that

0 ≤ q̂ki,h(s), q̃ki,h(s, ai) ≤ H − h+ 1, ∀(s, ai, h, k) ∈ S ×Ai × [H]× [K]. (85)

Letting e(i) ∈ RAi denote the i-th standard basis vector, we learn from the law of total variance that

Varh,k−1

(
q̂ki,h(s)

)
= Varh,k−1

(〈
e(ak,s), q̃

k
i,h(s, ·)

〉)
≥ Varh,k−1

(
Eh,k−1

[〈
e(ak,s), q̃

k
i,h(s, ·)

〉
| q̃ki,h

])
= Varh,k−1

(〈
πki,h(s), q̃ki,h(s, ·)

〉)
. (86)

With these preparations in place, we are ready to embark on the proof.

E.2.1 Proof of inequalities (49a) and (49b)

Recall the definition of V
π̂

i,h(s) in (45c) that

V
π̂

i,h(s) =

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) + P ki,h(· | s, ai)V

π̂

i,h+1

]
=

K∑
k=1

αKk

〈
πki,h(s), q̃ki,h(s, ·)

〉
.

(87)
It is first observed that
K∑
k=1

Eh,k−1

[
αKk
〈
πki,h(s), q̃ki,h(s, ·)

〉]
=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a) +

〈
Pi,h(· | s,a), V

π̂

i,h+1

〉
| V π̂i,h+1, π

k
i,h

]
= rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉
, (88)

where the second identity arises from the definitions (48) of rπ̂i,h and P π̂i,h. It is also seen that

R1 := max
k

∣∣∣αKk 〈πki,h(s), q̃ki,h(s, ·)
〉∣∣∣ ≤ {max

k
αKk

}{
max
k

∥∥πki,h(s)
∥∥

1

∥∥q̃ki,h∥∥∞} ≤ 2cαH logK

K
,

where the first line invokes Lemma 1, (85) and the fact ‖πki,h(s)‖1 = 1. Another observation is that

W1 =

K∑
k=1

(
αKk
)2
Varh,k−1

(〈
πki,h(s), q̃ki,h(s, ·)

〉)
≤
{

max
k

αKk

}{ K∑
k=1

αKk Varh,k−1

(〈
πki,h(s), q̃ki,h(s, ·)

〉)}

≤ 2cα logK

K

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
, (89)

where the second line makes use of Lemma 1 and the inequality (86). With the definitions (87) and

(88) in mind, invoking Freedman’s inequality (i.e., Theorem 5) with κ1 =

√
K log K

δ

H then leads to∣∣∣∣V π̂i,h(s)−
(
rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉)∣∣∣∣
=

∣∣∣∣ K∑
k=1

αKk

〈
πki,h(s), q̃ki,h(s, ·)

〉
−

K∑
k=1

Eh,k−1

[
αKk

〈
πki,h(s), q̃ki,h(s, ·)

〉]∣∣∣∣
≤ κ1W1 +

(
2

κ1
+ 5R1

)
log

3K

δ
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≤ 2cα

√
log3 K

δ

KH

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
+

(
2

√
H

K log K
δ

+
10cαH logK

K

)
log

3K

δ

≤ 2cα

√
log3 K

δ

KH

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
+ 4

√
H log 3K

δ

K
(90)

with probability at least 1− δ, where the last relation holds true under Condition (38).

To continue, we note the first term in (90) can be bounded by Cauchy-Schwarz as follows:

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
=

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− K∑
k=1

αKk

(
Eh,k−1

[
q̂ki,h(s)

] )2

≤
K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− ( K∑
k=1

αKk Eh,k−1

[
q̂ki,h(s)

])2

. (91)

Further, we make note of two additional facts:

• The weighted mean of q̂ki,h(s) obeys

K∑
k=1

αKk Eh,k−1

[
q̂ki,h(s)

]
=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a)

]
+

K∑
k=1

αKk E
a∼πkh(s)

[〈
Pi,h(· | s,a), V

π̂

i,h+1

〉]
= rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉
≥
〈
P π̂i,h(s, ·), V π̂i,h+1

〉
. (92)

• Regarding the square of q̂ki,h(s), one has (see (84))(
q̂ki,h(s)

)2
=
(
rki,h(s, ak,s) +

〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉)2

=
(〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉)2

+
(
rki,h(s, ak,s)

)2

+ 2rki,h(s, ak,s)
〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉
≤
(〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉)2

+ 3H

≤
〈
P ki,h(· | s, ak,s), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉
+ 3H,

where we have used the fact that ‖V π̂i,h+1‖∞ ≤ H and ‖rki,h‖∞ ≤ 1; consequently,

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2] ≤ K∑
k=1

αKk Eh,k−1

[〈
P ki,h(· | s, ak,s), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉]
+ 3H

=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)Eh,k−1

[〈
P ki,h(· | s, ai), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉]
+ 3H

=
〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
+ 3H. (93)

Taking (92) and (93) together with (91) yields

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
≤

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− ( K∑
k=1

αKk Eh,k−1

[
q̂ki,h(s)

])2

≤
〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
−
(〈
P π̂i,h(s, ·), V π̂i,h+1

〉)2

+ 3H.

To finish up, substituting these into (90) and making use of the assumption (38) give∣∣∣∣V π̂i,h(s)−
(
rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉)∣∣∣∣
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≤ 2cα

√
log3 K

δ

KH

[〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
−
(〈
P π̂i,h(s, ·), V π̂i,h+1

〉)2
]

+ (6cα + 4)

√
H log3 K

δ

K

for any s ∈ S, thus concluding the proof of the first claim (49a) of Lemma 4.

The second claim (49b) of Lemma 4 can be established using exactly the same argument, and hence
we omit the proof here for the sake of brevity.

E.2.2 Proof of inequality (49c)

We then turn to the last advertised inequality (49c). Given that ri,h(s) +P i,h(s, ·)V̂i,h+1 ∈ [0, H −
h+ 1] for all s ∈ S, we can recall the definition (20a) of V̂i,h to obtain∣∣∣V̂i,h(s)−

(
ri,h(s)+P i,h(s, ·)V̂i,h+1

)∣∣∣ ≤ ∣∣∣∣ K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+βi,h(s)−

(
ri,h(s)+P i,h(s, ·)V̂i,h+1

)∣∣∣∣
(94)

for all s ∈ S. The remaining analysis is dedicated to bounding the right-hand side of (94).

Let us begin with the following identity:
K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s) =

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) + P ki,h(· | s, ai)V̂i,h+1

]
+ βi,h(s)

= ri,h(s) +
〈
P i,h(s, ·), V̂i,h+1

〉
+ βi,h(s), (95)

where we recall the definitions of ri,h ∈ RS and P i,h ∈ RS×S in (48). The key step boils down to
bounding the bonus term defined in (24), towards which we first claim that

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
≤ 2 + 2

[
P i,h(s, ·)

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,h(s, ·)V̂i,h+1

)2]
(96)

holds for all s ∈ S. Assuming the validity of this claim, we can then demonstrate that

βi,h(s) = cb

√
log3

(KS∑
i Ai

δ

)
KH

K∑
k=1

αKk

{
Varπki,h(s)

(
qki,h(s, ·)

)
+H

}

≤ 2cb

√
log3

(KS∑
i Ai

δ

)
KH

{
P i,h(s, ·)

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,h(s, ·)V̂i,h+1

)2
+H

}
,

(97)

where we have used the identity
∑K
k=1 α

K
k = 1. Hence, we can readily establish the desired result

(49c) by combining (97) with (95) and (94), provided that c3 > 0 is sufficiently large.

It remains to justify the claim (96). Towards this end, we make the observation that

Varπki,h(s)

(
qki,h(s, ·)

)
≤ 2Varπki,h(s)

(
rki,h(s, ·)

)
+ 2Varπki,h(s)

(∑
s′

P ki,h(s′ | s, ·)V̂i,h+1(s′)
)

≤ 2 + 2

[∑
ai

πki,h(ai | s)P ki,h(· | s, ai)
(
V̂i,h+1 ◦ V̂i,h+1

)
−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2
]
,

which results from ‖rki,h‖∞ ≤ 1 and the following relation:

Varπki,h(s)

(∑
s′

P ki,h(s′ | s, ·)V̂i,h+1(s′)
)

=
∑
ai

πki,h(ai | s)
(
P ki,h(· | s, ai)V̂i,h+1

)2

−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

≤
∑
ai

πki,h(ai | s)P ki,h(· | s, ai)
(
V̂i,h+1 ◦ V̂i,h+1

)
−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

.
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This taken together with the fact
∑K
k=1 α

K
k = 1 and Jensen’s inequality yields

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
≤

K∑
k=1

αKk

{
2 + 2

[∑
ai

πki,h(ai | s)P ki,h(· | s, ai)
(
V̂i,h+1 ◦ V̂i,h+1

)
−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2
]}

≤ 2 + 2P i,h(s, ·)
(
V̂i,h+1 ◦ V̂i,h+1

)
− 2

( K∑
k=1

αKk
∑
ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

= 2 + 2
[
P i,h(s, ·)

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,h(s, ·)V̂i,h+1

)2]
as claimed.

E.3 Minimax lower bound

In this section, we formalize the minimax lower bound claimed in (31).
Theorem 4 (Minimax lower bound). Consider any m ≥ 2 and any 0 < ε ≤ c1H for some small
enough constant c1 > 0. Then one can construct a collection of m-player zero-sum Markov games
{MGθ | θ ∈ Θ} with S states, horizon H , and Ai actions for the i-th player (1 ≤ i ≤ m) such that

inf
π̂

max
θ∈Θ

PMGθ
{
gap
(
π̂
)
> ε
}
≥ 1

4
, (98)

provided that the total sample size obeys

N ≤ c2H
4Smax1≤i≤mAi

ε2
(99)

for some sufficiently small constant c2 > 0. Here, the infimum is over all (joint) policy estimator π̂,
and PMGθ denotes the probability when the Markov game isMGθ.

Proof. Suppose without loss of generality that A1 ≥ max{A2, . . . , Am}. Let us begin by consid-
ering the special scenario with A2 = . . . = Am = 1; in this case, computing either the NE or the
CCE reduces to finding the optimal policy of a single-agent MDP with S states and A1 actions. It is
well-known that for any given accuracy level ε ∈ (0, H], there exists a non-stationary MDP with S
states and A1 actions such that no algorithm can learn an ε-optimal policy with o

(
H4SA1

ε2

)
samples

[3, 41]. More precisely, for any given 0 < ε ≤ c1H for some small enough constant c1 > 0, one
can construct a collection of MDPs {Mθ | θ ∈ Θ} such that

inf
µ̂

max
θ∈Θ

PMθ

{
max
s∈S

(
V ?1 (s)− V µ̂1 (s)

)
> ε

}
≥ 1

4
, (100)

with the proviso that the total sample size obeys

N ≤ c2H
4SA1

ε2
(101)

for some small enough constant c2 > 0. Here, the infimum is over all policy estimate µ̂ in this
single-agent scenario, and PMθ denotes the probability when the MDP isMθ.

Next, let us construct a collection of Markov games by augmenting each of the single-agent MDPs
Mθ with Ai completely identical actions for the i-th player (2 ≤ i ≤ m); that is, to constructMGθ,
we take its reward function and probability transition kernel to be

rMGθi,h (s,a) =


rMθ

h (s, a1) if i = 1

−rMθ

h (s, a1) if i = m

0 else
and PMGθh (· | s,a) = PMθ

h (· | s, a1) (102)

for all (s, h,a = [a1, . . . , am]) ∈ S× [H]×A. Evidently, finding either an NE or a CCE ofMGθ is
equivalent to computing the optimal policy ofMθ, given the non-distinguishability of the actions of
all but the first player inMGθ. This in turn immediately establishes the advertised lower bound.
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E.4 Freedman’s inequality

In this section, we record the Freedman inequality for martingales [27] with slight modification,
which is a crucial concentration bound for our analysis.
Theorem 5. Suppose that Yn =

∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence

obeying
|Xk| ≤ R and E

[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1

for some quantity R > 0. Define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
,

where Ek−1 stands for the expectation conditional on {Xj}j:j<k. Consider any arbitrary quantity
κ > 0. With probability at least 1− δ, one has

|Yn| ≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
≤ κWn +

( 2

κ
+ 5R

)
log

3n

δ
. (103)

Proof. Suppose that Wn ≤ σ2 holds deterministically for some quantity σ2. As has been demon-
strated in Li et al. [39, Theorem 5], with probability at least 1− δ we have

|Yn| ≤

√
8 max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
(104)

for any positive integer K ≥ 1. Recognizing the trivial bound Wn ≤ nR2, one can take σ2 = nR2

and K = log2 n to obtain

|Yn| ≤
√

8 max
{
Wn, R2

}
log

4 log2 n

δ
+

4

3
R log

4 log2 n

δ

≤
√

8Wn log
3n

δ
+

√
8R2 log

3n

δ
+

4

3
R log

3n

δ

≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
,

where we have used 4 log2 n ≤ 3n for any integer n ≥ 1. This establishes the first inequality in
(103). The second inequality in (103) is then a direct consequence of the elementary inequality
2ab ≤ a2 + b2.
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