
Appendix – Natural continual learning
A Derivation of the NCL learning rule

In this section, we provide further details of how the NCL learning rule in Section 2.2 is derived and
also provide an alternative derivation of the algorithm.

NCL learning rule As discussed in Section 2.2, we derive NCL as the solution of a trust region
optimization problem. That is, we maximize the posterior loss Lk(θ) within a region of radius r
centered around θ with a distance metric of the form d(θ,θ + δ) =

√
δ>Λk−1δ/2. This distance

metric was chosen to take into account the curvature of the prior via its precision matrix Λk−1 and
encourage parameter updates that do not affect performance on previous tasks. Formally, we solve
the optimization problem

δ = arg min
δ

Lk(θ) +∇θLk(θ)>δ subject to
1

2
δ>Λk−1δ ≤ r2, (12)

where Lk(θ + δ) ≈ Lk(θ) + ∇θLk(θ)>δ is a first-order approximation to the updated Laplace
objective. Here we recall from Equation 4 that

Lk(θ) = `k(θ)− 1

2
(θ − µk−1)TΛk−1(θ − µk−1) (13)

from which we get

∇θLk(θ)>δ = ∇θ`k(θ)>δ − (θ − µk−1)>Λk−1δ (14)
The optimization in Equation 12 is carried out by introducing a Lagrange multiplier η to construct a
Lagrangian L̃:

L̃(δ, η) = Lk(θ) +∇θ`k(θ)>δ − (θ − µk−1)>Λk−1δ + η(r2 − 1

2
δ>Λk−1δ). (15)

We then take the derivative of L̃ w.r.t. δ and set it to zero:
∇δL̃(δ, η) = ∇θ`k(θ)−Λk−1(θ − µk−1)− ηΛk−1δ

′ = 0. (16)
Rearranging this equation gives

δ =
1

η

[
Λ−1k−1∇θ`k(θ)− (θ − µk−1),

]
. (17)

where η itself depends on r2 implicitly. Finally we define a learning rate parameter γ = 1/η and
arrive at the NCL learning rule:

θ ← θ + γ
[
Λ−1k−1∇θ`k(θ)− (θ − µk−1)

]
. (18)

Alternative derivation Here, we present an alternative derivation of the NCL learning rule. In this
formulation, we seek to update the parameters of our model on task k by maximizing Lk(θ) subject
to a constraint on the allowed change in the prior term. To find our parameter updates δ, we again
solve a constrained optimization problem:

δ = arg min
δ

Lk(θ) +∇θLk(θ)>δ such that C(δ) ≤ r2. (19)

Here we define C(δ) as the approximate change in log probability under the prior

C(δ) = (θ + δ − µk−1)>Λk−1(θ + δ − µk−1)− (θ − µk−1)>Λk−1(θ − µk−1). (20)

Following a similar derivation to above, we find the solution to this optimization problem as

ηδ = Λ−1k−1∇θLk(θ)− η(θ − µk−1) = Λ−1k−1∇θ`k(θ)− (1 + η)(θ − µk−1) (21)
for some Lagrange multiplier η. This gives rise to the update rule

θ ← θ + γ
[
Λ−1k−1∇θ`k(θ)− λ(θ − µk−1)

]
(22)

for a learning rate parameter γ and some choice of the parameter λ that depends on both η and γ. We
recover the learning rule derived in Section 2.2 with the choice of λ = 1. In practice, λ can also be
treated as a hyperparameter to be optimized (Appendix I.1).
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B Task details

Split MNIST The split MNIST benchmark involves 5 tasks, each corresponding to the pairwise
classification of two digits. The 10 digits of the MNIST dataset are randomly divided over the 5 tasks
(i.e., for each random seed, this division can be different). During the incremental training protocol,
these tasks are visited one after the other, followed by testing on all tasks. The original 28× 28 pixel
grey-scale images and the standard train/test-split are used, giving 60,000 training (∼6,000 per digit)
and 10,000 test images (∼1,000 per digit).

Split CIFAR-100 The split CIFAR-100 benchmark consists of 10 tasks, with each task correspond-
ing to a ten-way classification problem. The 100 classes of the CIFAR-100 dataset are randomly
divided over the 10 tasks. Each network is trained on these tasks one after the other followed
by testing on all tasks. The 32 × 32 pixel RGB-colour images are normalised by z-scoring each
channel (using means and standard deviations calculated over the training set). We use the standard
train/test-split, giving 500 training and 100 test images for each class.

Stimulus-response tasks Here, we provide a brief overview of the six stimulus-response (SR)
tasks. Detailed descriptions of the stimulus-response tasks used in this work can be found in the
appendix of Yang et al. [51]. All tasks are characterized by a stimulus period and a response period,
and some tasks include an additional delay period between the two. The duration of the stimulus
and delay periods are variable across trials and drawn uniformly at random within an allowed range.
During the stimulus period, the input to the network takes the form of x = (cos θin, sin θin), where
θin ∈ [0, 2π] is some stimulus drawn uniformly at random for each trial. An additional tonic input is
provided to the network which indicates the identity of the task using a one-hot encoding. A constant
input to a ‘fixation channel’ during the stimulus and delay periods signifies that the network output
should be 0 in the response channels and 1 in a ‘fixation channel’. During the response period, the
fixation input is removed and the output should be 0 in the fixation channel. The target output in the
response channels takes the form y = (cos θout, sin θout) where θout is some target output direction
described for each task below:

• task 1 (fdgo) During this task θout = θin and there is no delay period.

• task 2 (fdanti) During this task θout = 2π − θin and there is no delay period.

• task 3 (delaygo) During this task θout = θin and there is a delay period separating the
stimulus and response periods.

• task 4 (delayanti) During this task θout = 2π − θin and there is a delay period separating
the stimulus and response periods.

• task 5 (dm1) During this task, two stimuli are drawn from [0, 2π] with different input
magnitudes such that x = (m1 cos θ1 +m2 cos θ2,m1 sin θ1 +m2 sin θ2). θout is then the
element in (θ1, θ2) corresponding to the largest m.

• task 6 (dm2) As in ‘dm1’, but where the input is now provided through a separate input
channel.

The loss for each task was computed as a mean squared error from the target output.

SMNIST For this task set, we use the stroke MNIST dataset created by de Jong [4]. This consists
of a series of digits, each of which is represented as a sequence of vectors {xt ∈ R4}. The first two
columns take values in [−1, 0, 1] and indicate the discretized displacement in the x and y direction at
each time step. The last two columns are used for special ‘end-of-line’ inputs when the virtual pen is
lifted from the paper for a new stroke to start, and an ‘end-of-digit’ input when the digit is finished.
See de Jong [4] for further details about how the dataset was generated and formatted. In addition to
the standard digits 0-9, we include two additional sets of digits:

• the digits 0-9 where the x and y directions have been swapped (i.e. the first two elements of
xt are swapped),

• the digits 0-9 where the x and y directions have been inverted (i.e. the first two elements of
xt are negated).
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Furthermore, we omitted the initial entry of each digit corresponding to the ‘start’ location to
increase task difficulty. We turned this dataset into a continual learning task by constructing five
binary classification tasks for each set of digits: {[2, 3], [4, 5], [1, 7], [8, 9], [0, 6]}. Note that we
have swapped the ‘1’ and ‘6’ from a standard split MNIST task to avoid including the 0 vs 1
classification task which we found to be too easy. For each trial, a digit was sampled at random
from the corresponding dataset, and xt was provided as an input to the network at each time step
corrupted by Gaussian noise with σ = 1. After the ‘end-of-digit’ input, a response period with a
duration of 5 time steps followed. During this response period only, a cross-entropy loss was applied
to the output units y to train the network. During testing, digits were sampled from the separate test
dataset and classification performance was quantified as the fraction of digits for which the correct
class was assigned the highest probability in the last timestep of the response period. Task identity
was provided to the network, which was used in the form of a multi-head output layer.

C Network architectures

Feedforward network archictecture For split MNIST, all methods are compared using a fully-
connected network with 2 hidden layers containing 400 units with ReLU non-linearities, followed by
a softmax output layer.

For split CIFAR-100, the network consists of 5 pre-trained convolutional layers, 2 fully-connected
layers with 2000 ReLU units each and a softmax output layer. The architecture of the convolutional
layers and their pre-training protocol on the CIFAR-10 dataset are described in [45]. The only
difference is that here we pre-train a new set of convolutional layers for each random seed, while
in [45] the same set of pre-trained convolutional layers was used for all random seeds. For all
compared methods, the pre-trained convolutional layers are frozen during the incremental training
protocol.

The softmax output layer of the feedforward networks is treated differently depending on the continual
learning setting [47]. In the task-incremental learning setting, there is a separate output layer for
each task and only the output layer of the task under consideration is used at any given time (i.e., a
multi-head output layer). In the domain-incremental learning setting, there is a single output layer
that is shared between all tasks. In the class-incremental learning setting, there is one large output
layer that spans all tasks and contains a separate output unit for each class.

Recurrent network architecture The dynamics of the RNN used in Section 3.2 can be described
by the following equations:

ht = Hrt−1 +Gxt + ξt = Wzt + ξt (23)
yt ∼ p(yt|Crt) (24)

where we define rt = φ(ht), zt = (r>t−1,x
>
t )>, W = (H>,G>)>, and time is indexed by t.

Here, r ∈ RNrec×1 are the network activations, x ∈ Rnin×1 are the inputs, y ∈ Rnout×1 are the
network outputs, and we refer to Wzt as the ‘recurrent inputs’ to the network. The noise model
p(yt|Crt) may be a Gaussian distribution for a regression task or a categorical distribution for a
classification task, and φ(h) is a nonlinearity that is applied to h element-wise (in this work the
ReLU function). The parameters of the RNN are given by θ = (W ,C). The process noise {ξt} are
zero-mean Gaussian random variables with covariance matrices Σξt . In this model, the log-likelihood
of observing a sequence of outputs y1, . . . ,yT given inputs x1, . . . ,xT and ξ1, . . . , ξT is given by

`(θ) = log pθ({y}|{x}, {ξ}) = log p({y}|{Cr}), (25)

where p(y|Cr) may be a Gaussian distribution for a regression task or a categorical distribution for
a classification task.

D KFAC approximation to the Fisher matrix

For all experiments in this work, we make a Kronecker-factored approximation to the FIM of each
task k in Equation 6. Concretely, we use the block-wise Kronecker-factored approximation to the
FIM proposed in Section 3 of Martens and Grosse [15] for feedforward neural networks. For recurrent
neural networks, we use the approximation presented in Section 3.4 of Martens et al. [14]. Both
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approximations allow us to write the FIM on task k as the Kronecker product Fk ≈ Âk ⊗ Ĝk. For
completeness, we derive the approximation for RNNs below. We refer the readers to Martens and
Grosse [15] for details on derivations for feedforward networks.

KFAC approximation for RNNs Recall from Appendix C that the log likelihood of observing a
sequence of outputs y1, . . . ,yT given inputs x1, . . . ,xT and ξ1, . . . , ξT is

`(W ,C) =

T∑
t=1

log p(yt|Crt), (26)

where rt is completely determined by the dynamics of the network and the inputs. With a slight
abuse of notation, we use x to denote both ∂`/∂x for vectors x and ∂`/∂vec(X) for matrices X .
In this section, it should be clear given the context whether x is representing the gradient of L with
respect to a vector or a vectorized matrix. Using these notations, we can write the gradient of L with
respect to vec(W ) as :

w =

T∑
t=1

ht
∂ht

∂vec(W )
=

T∑
t=1

htz
>
t =

T∑
t=1

zt ⊗ ht (27)

which can be easily derived fom the backpropagation through time (BPTT) algorithm and the
definition of a Kronecker product. Using this expression for w, we can write the FIM ofW as:

FW = E{(ξ,x,y)}∼M
[
ww>

]
(28)

= E

( T∑
t=1

zt ⊗ ht

)(
T∑
s=1

zs ⊗ hs

)> (29)

=

T∑
t=1

T∑
s=1

E
[(
ztz
>
s

)
⊗
(
hth

>
s

)]
. (30)

Here the expectations are taken with respect to the model distribution. Unfortunately, computing FW
can be prohibitively expensive. First, the number of computations scales quadratically with the length
of the input sequence T . Second, for networks of dimension n, there are n4 entries in the Fisher
matrix which can therefore be too large to store in memory, let alone perform any useful computations
with it. For this reason, we follow Martens et al. [14] and make the following three assumptions in
order to derive a tractable Kronecker-factored approximation to the Fisher. The first assumption we
make is that the input and recurrent activty zt is uncorrelated with the adjoint activations ht:

FW ≈
T∑
t=1

T∑
s=1

E
[
ztz
>
s

]
⊗ E{(ξ,x,y)}∼M

[
hth

>
s

]
. (31)

Note that this approximation is exact when the network dynamics are linear (i.e., φ(x) = x). The
second assumption that we make is that both the forward activity zt and adjoint activity ht are
temporally homogeneous. That is, the statistical relationship between zt and zs only depends on
the difference τ = s− t, and similarly for that between ht and hs. Defining Aτ = E

[
zsz
>
s+τ

]
and

similarly Gτ = E
[
hsh

>
s+τ

]
, we have A−τ = A>τ and G−τ = Gτ . Using these expressions, we can

further approximate the Fisher as:

FW ≈
T∑

τ=−T
(T − |τ |)Aτ ⊗ Gτ . (32)

The third and final approximation we make is that Aτ ≈ 0 and Gτ ≈ 0 for τ 6= 0. In other words, we
assume the forward activity zt and adjoint activity ht are approximately indendent across time. This
gives the final expression:

FW ≈ E [T ] E
[
zz>

]
⊗ E

[
hh
>]

= ÂW ⊗ ĜW , (33)
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where we have also taken an expectation over the sequence length T to account for variable sequence
lengths in the data. Following a similar derivation, we can approximate the Fisher of C as:

FC ≈ E [T ] E
[
rr>

]
⊗ E

[
y y>

]
= ÂC ⊗ ĜC . (34)

The quality of these assumptions and comparisons with the ‘approximate Fisher matrices’ used in
OWM and DOWM are discussed in Appendix F.

E Implementation

Algorithm 1: NCL with momentum

1 input: f (network), {Dk}Kk=1, α, pw (prior), B (batch size), γ (learning rate), θ0, ρ
2 initialize: Aθ ← pwI ,Gθ ← pwI ,
3 initialize: θ1 ← θ0, initialize: Mθ ← zeros_like(θ0), // Gradient momentum
4 for k = 1 . . .K do
5 Ã, G̃← nearest_kf_sum(Aθ ⊗Gθ, αI ⊗ αI) // Appendix G
6 PL ← G̃−1

7 PR ← Ã−1

8 while not converged do
9 {x(i),y(i)}Bi=1 ∼ Dk // Input and target output

10 for i = 1, . . . , B do
11 ŷ(i) = f(x(i),θk) // Empirical output

12 ` =
∑B
i log p(y(i)|ŷ(i))/B // Loss

13
14 % Build up momentum
15 Mθ ← ρMθ +∇θ`+Gθ(θk − θk−1)Aθ

16
17 % Update model parameters
18 θk ← θk − γp2w PL MθPR

19 % Update Fisher matrix components
20 Compute Âk and Ĝk // Appendix D
21 Aθ,Gθ ← nearest_kf_sum(Aθ ⊗Gθ, Âk ⊗ Ĝk) // Appendix G

In this section we discuss various implementation details for NCL. Algorithm 1 provides an overview
of the algorithm in the form of pseudocode. For numerical stability, we add α2I to the precision
matrix Λk−1 before computing the projection matrices PL and PR. In general, we set the prior over
the parameters θ when learning the first task as p(θ) = N (0; p−2w I).

Feedforward networks By default, we set p−2w to be approximately the number of samples that
the learner sees in each task, corresponding to a unit Gaussian prior before normalizing our precision
matrices by the amount of data seen in each task (here, p−2w = 12000 for split MNIST and p−2w = 5000
for split CIFAR-100). We also consider hyperparameter optimizations over p−2w by trying different
values on a log scale from 102 to 1011 with a random seed not included during the evaluation (see
Appendix I.2). We use α = 10−10 and λ = 1 for all experiments.

For all experiments with feedforward networks, we use a batch size of 256 and we train for either
2000 iterations per task (split MNIST) or 5000 iterations per task (split CIFAR-100). For NCL and
OWM, we train with momentum (ρ = 0.9) and a learning rate of γ = 0.05. For SI, EWC and KFAC,
we train using the Adam optimizer (β1 = 0.9, β2 = 0.999) with learning rate of γ = 0.001 (split
MNIST) or γ = 0.0001 (split CIFAR-100). All models were trained on single GPUs with training
times of 10-100 minutes.

RNNs We again set p−2w approximately equal to the number of samples that the learner sees in
each task, corresponding to a unit Gaussian prior before normalizing our precision matrices by the
amount of data seen in each task (here, p−2w = 106 for the stimulus-response task and p−2w = 6000
for SMNIST).
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Figure 5: Comparison of projection matrices. In a Bayesian framework, we can formalize what
is meant by directions ‘important for previous tasks’ as those that are strongly constrained by the
prior p(θ|D1:k−1). To see how this compares with OWM and DOWM, we considered the Kronecker-
structured precision matrices Fapprox implied by the projection matrices PR and PL for each method
and related them to the exact Fisher matrixFexact in a linear recurrent network. (A; top)Fexact (left) for
W as well as the approximations to Fexact provided by our Kronecker-factored approximation (KFAC;
Fkf), DOWM (FDOWM), and OWM (FOWM). (B; top) Scale-invariant KL-divergence (Equation 62)
between N (µ,F−1exact) and N (µ,F−1approx) for each approximation. Red horizontal line indicates the
mean value obtained from Fapprox = RFexactR

> whereR is a random rotation matrix (averaged over
500 random samples). (Bottom) Same as (A–B) but for the readout matrix C.

We used momentum (ρ = 0.9) in all our experiments involving NCL, OWM and DOWM, as is also
done in Duncker et al. [7]. We found that the use of momentum greatly speeds up convergence in
practice.

All models were trained on single GPUs with training times of 10-100 minutes depending on the
task set and model size. We used a training batch size of 32 for the stimulus-response tasks and
256 for the SMNIST tasks. In all cases, we used a test batch size of 2048 for evaluation and for
computing projection and Fisher matrices. We used a learning rate of γ = 0.01 for SMNIST and
γ = 0.005 for the stimulus-response tasks across all projection-based methods. We used a learning
rate of γ = 0.001 for KFAC with the Adam optimizer. All models were trained on 106 data samples
per task. A hyperparameter optimization over α for the projection-based methods and λ for KFAC
with Adam is provided in Appendix I.2.

F Relation to projection-based continual learning

In this section, we further elaborate on the intuition that projection-based continual learning methods
such as Orthogonal Weight Modification (OWM; 26) may be viewed as variants of NCL with
particular approximations to the prior Fisher matrix. These approaches are typically motivated as
a way to restrict parameter changes in a neural network that is learning a new task to subspaces
orthogonal to those used in previous tasks.

For example, to solve the continual learning problem in RNNs as described in Appendix C, Duncker
et al. [7] proposed a projected gradient algorithm (DOWM) that restricts modifications to the recur-
rent/input weight matrixW on task k+ 1 to column and row spaces ofW that are not heavily “used”
in the first k tasks. Specifically, they concatenate input and recurrent activity zt across the first k
tasks into a matrixZ1:k. They useZ1:k andWZ1:k as estimates of the row and column spaces ofW
that are important for the first k tasks. They proceed to construct the following projection matrices:

P 1:k
z = Z1:k(Z1:kZ

>
1:k + αI)−1Z1:k

> (35)

≈ kα
(
E
[
zz>

]
+ αI

)−1
(36)

P 1:k
wz = WZ1:k(WZ1:kZ

>
1:kW

> + αI)−1(WZ1:k)> (37)

≈ kα
(
WE

[
zz>

]
W> + αI

)−1
, (38)
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Figure 6: Comparison of Fisher Approximations in a Linear RNN with rotated Gaussian and
categorical likelihoods. (A) Exact and approximations to the Fisher information matrix of the
recurrent and input weight matrixW (left) and the linear readout C (bottom) of a linear recurrent
neural network with Gaussian noise and non-diagonal noise covariance Σ. From the left: exact
Fisher information matrix Fexact, Kronecker-Factored approximation (Fkf; KFAC), Diagonal (Fdiag),
DOWM (FDOWM), and OWM (FOWM). (B) Scale-invariant KL-divergence between N (0,F−1exact)
and N (0,F−1) for F ∈ {Fkf,Fdiag,FDOWM,FOWM}. Red horizontal lines indicate the mean value
obtained from Fapprox = RFexactR

> whereR is a random rotation matrix (averaged over 500 random
samples). (C-D) As in (A-B), now for a categorical noise model p(y|Cr) = Cat (softmax(Cr)).

which are used to derive update rules forW as:

vec(∆W ) ∝
(
P 1:k
z ⊗ P 1:k

wz

)
w (39)

∝
(
E
[
zz>

]
+ αI

)−1 ⊗ (WE
[
zz>

]
W> + αI

)−1
w (40)

wherew = vec(∇W `k+1(W ,C)). These projection matrices restrict changes in the row and column
space ofW to be orthogonal to Z1:k andWZ1:k respectively. Similar update rules can be defined
for C. Zeng et al. [26] propose a similar projection-based learning rule (OWM) in feedforward
networks, which only restricts changes in the row-space of the weight parameters (i.e., Pwz = I).

With a scaled additive approximation to the sum of Kronecker products (see Appendix G), the NCL
update rule on task k + 1 is given by

vec(∆W ) ∝
(
E
[
zz>

]
+ παI

)−1 ⊗ (E [hh>]+
1

π
αI

)−1
w + (vec(Wk)− vec(W )). (41)

We see that this NCL update rule looks similar to the OWM and DOWM update steps, and that they
share the same projection matrix in the row-spacePz when π = 1. The methods proposed by Duncker
et al. [7] and Zeng et al. [26] can thus be seen as approximations to NCL with a Kronecker structured
Fisher matrix. However, we also note that OWM and DOWM do not include the regularization term
(vec(Wk) − vec(W )). This implies that while OWM and DOWM encourage parameter updates
along flat directions of the prior, the performance of these methods may deteriorate in the limit of
infinite training duration if a local minimum of task k is not found in a flat subspace of previous tasks
(c.f. Figure 1).

To further emphasize the relationship between OWM, DOWM and NCL, we compared the approx-
imations to the Fisher matrix Fapprox = P−1R ⊗ P−1L implied by the projection matrices of these

7



methods (Figure 5). Here we found that OWM and DOWM provided reasonable approximations to
the true Fisher matrix with both Gaussian (Figure 5) and categorical (Figure 6) observation models.
This motivates a Bayesian interpretation of these methods as using an approximate prior precision
matrix to project gradients, similar to the derivation of NCL in Appendix A. Here it is also worth
noting that while we use an optimal sum of Kronecker factors to update the prior precision after each
task in NCL (Appendix G), OWM and DOWM simply sum their Kronecker factors. In the case of
OWM, this is in fact an exact approximation to the sum of the Kronecker products since the right
Kronecker factor is in this case a constant matrix I . For DOWM, summing the individual Kronecker
factors does not provide an optimal approximation to the sum of the Kronecker products, but our
results in Appendix G suggest that it is a fairly reasonable approximation up to a scale factor which
can be absorbed into the learning rate.

Another recent projection-based approach to continual learning developed by Saha et al. [40] restricts
parameter updates to occur in a subspace of the full parameter space deemed important for previous
tasks. This method, known as ‘Gradient projection memory’ (GPM), is similar to OWM but with a
hard cut-off separating ‘important’ from ‘unimportant’ directions of parameter space. The important
subspace is in this case determined by thresholding the singular values of the activity matrix Zk.
GPM can thus be seen as a discretized version of OWM with a projection matrix constituting a binary
approximation to the prior Fisher matrix.

G Kronecker-factored approximation to the sums of Kronecker Products

In this section, we consider three different Kronecker-factored approximations to the sum of two
Kronecker products:

X ⊗ Y ≈ Z = A⊗B +C ⊗D. (42)

In particular, we consider the special case where A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×n, and
D ∈ Rm×m are symmetric positive-definite. Z will not in general be a Kronecker product, but
for computational reasons it is desirable to approximate it as one to avoid computing or storing a
full-sized precision matrix.

Scaled additive approximation The first approximation we consider was proposed by Martens
and Grosse [15]. They propose to approximate the sum with

Z ≈ (A+ πC)⊗ (B +
1

π
D), (43)

where π is a scalar parameter. Using the triangle inequality, Martens and Grosse [15] derived an
upper-bound to the norm of the approximation error

‖Z − (A+ πC)⊗ (B +
1

π
D)‖ (44)

= ‖ 1

π
A⊗D + πC ⊗B‖ (45)

≤ 1

π
‖A⊗D‖+ π‖C ⊗B‖ (46)

for any norm ‖ · ‖. They then minimize this upper-bound with respect to π to find the optimal π:

π =

√
‖C ⊗B‖
‖A⊗D‖

. (47)

As in [31], we use a trace norm in bounding the approximation error, and noting that Tr(X ⊗ Y ) =
Tr(X)Tr(Y ), we can compute the optimal π as:

π =

√
Tr(B)Tr(C)

Tr(A)Tr(D)
. (48)

Minimal mean-squared error The second approximation we consider was originally proposed
by Van Loan and Pitsianis [25]. In this case, we approximate the sum of Kronecker products by
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minimizing a mean squared loss:

X,Y = arg min
X,Y

‖Z −X ⊗ Y ‖2F (49)

= arg min
X,Y

‖R(A⊗B) +R(C ⊗D)−R(X ⊗ Y )‖2F (50)

= arg min
X,Y

‖vec(A)vec(B)> + vec(C)vec(D)> − vec(X)vec(Y )>‖2F , (51)

whereR(A⊗B) = vec(A)vec(B)> is the rearrangement operator [25]. The optimization problem
thus involves finding the best rank-one approximation to a rank-2 matrix. This can be solved
efficiently using a singular value decomposition (SVD) without ever constructing an n2 ×m2 matrix
(see Algorithm 2 for details).

Algorithm 2: Mean-squared error approximation of the sum of Kronecker products
1 input: A,B, C,D
2 a← vec(A), b← vec(B), c← vec(C), d← vec(D) // Vectorize A,B,C,D
3 Q, _← QR([a; c]) // Orthogonal basis for a and c in Rn2×2

4 H ← (Q>a)b> + (Q>c)d>

5 U , s,V > ← SVD(H)
6 y ← first column of

√
s1V

7 x← first column of
√
s1QU

8 X ← reshape(x, (n, n)), Y ← reshape(y, (m,m))

Minimal KL-divergence In this paper, we propose an alternative approximation toZ motivated by
the fact thatX ⊗ Y is meant to approximate the precision matrix of the approximate posterior after
learning task k. We thus define two multivariate Gaussian distributions q(w) = N (w;µ,X⊗Y ) and
p(w) = N (w;µ,Z) (note that the mean of these distributions are found in NCL by gradient-based
optimization). We are interested in finding the matricesX and Y that minimize the KL-divergence
between the two distributions

2DKL(q||p) = log |X ⊗ Y | − log |Z|+ Tr(Z(X ⊗ Y )−1)− d (52)

= m log |X|+ n log |Y |+ Tr(AX−1 ⊗BY −1) + Tr(CX−1 ⊗DY −1)− d (53)

= −m log |X−1| − n log |Y −1|+ Tr(AX−1)Tr(BY −1) (54)

+ Tr(CX−1)Tr(DY −1)− d (55)

where d = nm. Differentiating with respect toX−1, and Y −1 and setting the result to zero, we get

0 =
∂DKL(q||p)
∂X−1

=
1

2

[
−mX + Tr(BY −1)A+ Tr(DY −1)C

]
(56)

0 =
∂DKL(q||p)
∂Y −1

=
1

2

[
−nY + Tr(AX−1)B + Tr(CX−1)D

]
. (57)

Rearranging these equations, we find the self-consistency equations:

X =
1

m

[
Tr(BY −1)A+ Tr(DY −1)C

]
(58)

Y =
1

n

[
Tr(AX−1)B + Tr(DX−1)D

]
. (59)

This shows that the optimal X (Y ) is a linear combination of A and C (B and D). It is unclear
whether we can solve forX and Y analytically in Equation 58 and Equation 59. However, we can
findX and Y numerically by iteratively applying the following update rules:

Xk+1 = (1− β)Xk +
β

m

(
Tr(BY −1k )A+ Tr(DY −1k )C

)
(60)

Yk+1 = (1− β)Yk +
β

n

(
Tr(AX−1k )C + Tr(CX−1k )D

)
(61)

for initial guessesX0 and Y0. In practice, we initialize using the scaled additive approximation and
find that the algorithm converges with β = 0.3 after tens of iterations.
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Figure 7: Comparison of different Kronecker approximations to consecutive sums of two
Kronecker products. (A) Comparison of approximations for Fisher matrices computed from random
RNNs with dynamics as described in Section 3.2. All similarity/distance measures are computed
between the true sum

∑k
k′ Fk′ and each iterative approximation. (B) As in (A) for the Fisher matrices

from the stimulus-response tasks, here trained with 50 hidden units to make the computation of the
true sum tractable. (C) As in (A) for the Fisher matrices from the SMNIST tasks. Note that the
KL divergence for the MSE-minimizing approximation is not shown in panel 2 as it is an order of
magnitude larger than the alternatives and thus does not fit on the axis.

Comparisons To compare different approximations of the precision matrix to the posterior, we
consider Kronecker structured Fisher matrices from (i) a random RNN model, (ii) the Fishers
learned in the stimulus-response tasks, and (iii) the Fishers learned in the SMNIST tasks. We then
iteratively update Λk ≈ Λk−1 + Fk, approximating this sum using each of the approaches described
above as well as a naive unweighted sum of the pairs of Kronecker factors. We compare these
approximations using three different metrics: the correlation with the true sum of Kronecker products∑k
k′ Fk′ (Figure 7, top row), the KL divergence from the true sum (Figure 7, middle row), and

the scale-optimized KL divergence from the true sum (Figure 7, bottom row). Here we define the
scale-optimized KL divergence as

KLλ[Λ1||Λ2] = minλKL[λΛ1||Λ2] (62)

=
1

2

(
log
|Λ1|
|Λ2|

+ d log
Tr(Λ−11 Λ2)

d

)
, (63)

where d is the dimensionality of the precision matrices Λ1 and Λ2 and we take KL[Λ1,Λ2] =
DKL(N (0,Λ−11 )||N (0,Λ−12 )). This is a useful measure since a scaling of the approximate prior
does not change the subspaces that are projected out in the weight projection methods but merely
scales the learning rate. By contrast in NCL, having an appropriate scaling is useful for a consistent
Bayesian interpretation.

We find that all the methods yield reasonable correlations and scale-optimized KL divergences
between the true sum of Kronecker products and the approximate sum, although the L2-optimized
approximation tends to have a slightly better correlation and slightly worse scaled KL (Figure 7, red).
However, the KL-optimized Kronecker sum greatly outperforms the other methods as quantified by
the regular KL divergence and is the method used in this work since it is relatively cheap to compute
and only needs to be computed once per task (Figure 7, green).
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H Natural gradient descent and the Fisher Information Matrix

When optimizing a model with stochastic gradient descent, the parameters θ are generally changed in
the direction of steepest gradient of the loss function L:

g = ∇θL. (64)

This gives rise to a learning rule
θi+1 = θi − γg (65)

where γ is a learning rate which is usually set to a small constant or updated according to some
learning rate schedule. However, we note that the parameter change itself has units of [θ]−1 which
suggests that such a naïve optimization procedure might be pathological under some circumstances.
Consider instead the more general definition of the normalized gradient ĝ:

ĝ = limε→0
1

Z(ε)
argminδL(θ + δ) d(θ,θ + δ) ≤ ε. (66)

Here, ĝ is the direction in state space which minimizes L given a step of size ε according to some
distance metric d(·, ·). Canonical gradient descent is in this case recovered when d(·, ·) is Euclidean
distance in parameter space

d(θ,θ′) = ||θ − θ′||22. (67)
We now formulate L(θ) as depending on a statistical model p(D|θ) such that L(θ) = L(p(D|θ)).
This allows us to define the direction of steepest gradient in terms of the change in probability
distributions

d(θ,θ′) = KL [p(D|θ′)||p(D|θ)] . (68)
It can be shown that the direction of steepest decent for small step sizes is in this case given by [1, 11]

g ∝ F−1∇L(θ), (69)
where F is the Fisher information matrix

F (θ) = Ep(D|θ)
[
∇ log p(D|θ)∇ log p(D|θ)T

]
. (70)

We thus get an update rule of the form

θi+1 = θi − γF−1∇θL, (71)

which has units of [θ] and corresponds to a step in the direction of parameter space that maximizes
the decrease in L for an infinitesimal change in p(D|θ) as measured using KL divergences. It has
been shown in a large body of previous work that such natural gradient descent leads to improved
performance [1, 2, 18], and the main bottleneck to its implementation is usually the increased cost of
computing F or a suitable approximation to this quantity.

We note that this optimization method is very similar to that derived for NCL in Section 2.2 and
Appendix A except that NCL uses the approximate Fisher for previous tasks instead of the Fisher
information matrix of the current loss. This is important since (i) it mitigates the need for computing
a fairly expensive Fisher matrix at every update step, and (ii) it ensures that parameters are updated in
directions that preserve the performance on previous tasks.

I Further results

I.1 Performance with different prior scalings

Here we consider the performance of KFAC and NCL for different values of λ on the stimulus-
response task set with 256 recurrent units. We start by recalling that λ is a parameter that is used to
define a modified Laplace loss function with a rescaling of the prior term (c.f. Section 2.3):

L(λ)
k (θ) = log p(Dk|θ)− λ(θ − µk−1)>Λk−1(θ − µk−1). (72)

In this context, it is worth noting that KFAC and NCL have the same stationary points when they share
the same value of λ. Despite this, the performance of NCL was robust across different values of λ
(Figure 8A), while learning was unstable and performance generally poor for KFAC with small values
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Figure 8: Continual learning on SR tasks with different λ . (A) Evolution of the loss during train-
ing for each of the six stimulus-response tasks for NCL with different values of λ. The performance
of NCL is generally robust across different choices of λ until it starts overfitting too heavily on early
tasks. (B) As in (A), now for KFAC with Adam which performs poorly for small λ. (C) As in (B),
now with “decoupled Adam” where we fix λm = 1 for the gradient estimate and vary λ = λv for
the preconditioner (see Appendix I.1 for details). Interestingly, this is sufficient to overcome the
catastrophic forgetting observed for KFAC with λm = λv = 1. The transient forgetting observed at
the beginning of a new task is likely due to the time it takes to gradually update the preconditioner
for the new task as more data is observed. (D) As in (C), now fixing λv = 1 for the preconditioner
and varying λ = λm for the gradient estimate. For higher values of λm, this performs worse than
both KFAC and decoupled KFAC.

of λ ∈ [1, 10]. However, as we increased λ for KFAC, learning stabilized and catastrophic forgetting
was mitigated (Figure 8B). A similar pattern was observed for the SMNIST task set (Appendix I.2).

We hypothesize that the improved performance of KFAC for high values of λ is due in part to the
gradient preconditioner of KFAC becoming increasingly similar to NCL’s preconditioner Λ−1k−1 as λ
increases (Section 2.3). To test this hypothesis, we modified the Adam optimizer [10] to use different
values of λ when computing the Adam momentum and preconditioner. Specifically, we computed the
momentum and preconditioner of some scalar parameter θ as:

m(i) ← β1m
(i−1) + (1− β1)∇θL(λm) (73)

v(i) ← β2v
(i−1) + (1− β2)

(
∇θL(λv)

)2
(74)

where L(λ) is defined in Equation 72 and importantly λm may not be equal to λv. As in vanilla
Adam, we used m and v to update the parameter θ according to the following update equations at the
ith iteration:

m̂(i) ← m(i)/(1− βi1) (75)

v̂(i) ← v(i)/(1− βi2) (76)

θ(i) ← θ(i−1) + γm̂(i)/(
√
v̂(i) + ε), (77)
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where γ is a learning rate, and β1, β2, and ε are standard parameters of the Adam optimizer (see
10 for further details). Using this modified version of Adam, which we call “decoupled Adam”,
we considered two variants of KFAC: (i) “decoupled KFAC”, where we fix λm = 1 and vary
λv (Figure 8C), and (ii) “reverse decoupled”, where we fix λv = 1 and vary λm (Figure 8D). We
found that “decoupled KFAC” performed well for large λv , suggesting that it is sufficient to overcount
the prior in the Adam preconditioner without changing the gradient estimate (Figure 8C). “Reverse
decoupled” also partly overcame the catastrophic forgetting for high λm, but performance was worse
than for either NCL, vanilla Adam, or decoupled Adam (Figure 8D). These results support our
hypothesis that the increased performance of KFAC for high λ is due in part to the changes in the
gradient preconditioner. To further highlight how the preconditioning in Adam relates to the trust
region optimization employed by NCL, we computed the scaled KL divergence between the Adam
preconditioner and the diagonal of the Kronecker-factored prior precision matrix Λk−1 at the end
of training on task k. We found that the Adam preconditioner increasingly resembled Λk−1, the
preconditioner used by NCL, as λ increased (Figure 9).

In summary, our results suggest that preconditioning with Λk−1 in NCL may mitigate the need to
overcount the prior when using weight regularization for continual learning. Additionally, such
preconditioning to encourage parameter updates that retain good performance on previous tasks also
appears to be a major contributing factor to the success of weight regularization with a high value of
λ when using Adam for optimization.

I.2 Hyperparameter optimizations

Feedforward networks For the experiments with feedforward networks, we performed hyperpa-
rameter optimizations by searching over the following parameter ranges (all on a log-scale): c in
SI from 10−5 to 108, λ in EWC and KFAC from 10−4 to 1014, α in OWM from 10−12 to 106, and
p−2w in NCL from 102 to 1011. The hyperparameter grid searches were performed using a random
seed not included during the evaluation. The selected hyperparameter values for each experiment are
reported in Table 1.

Split MNIST Split CIFAR-100
Task Domain Class Task Domain Class

SI (c) 100 105 107 102 103 106

EWC (λ) 108 109 1013 107 105 10−3

KFAC (λ) 1010 105 104 105 103 1010

OWM (α) 10−2 10−5 10−4 10−2 10−2 10−4

NCL (p−2
w ) 103 107 109 103 107 108

Table 1: Selected
hyperparameter val-
ues for all compared
methods on the ex-
periments with feed-
forward networks.
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RNNs For the experiments with RNNs, we optimized over the parameter α used to invert the
approximate Fisher matrices in the projection-based methods (NCL, OWM and DOWM) or over the
parameter λ used to scale the importance of the prior for weight regularization (KFAC).

For KFAC, we found that the performance was very sensitive to the value of λ across all tasks sets, and
in particular that λ = 1 performed poorly. In the projection-based methods, α can be seen as evening
out the learnings rates between directions that are otherwise constrained by the projection matrices,
and indeed standard gradient descent is recovered as α→∞ (on the Laplace objective for NCL and
on `k for OWM/DOWM). We found that NCL in general outperformed the other projection-based
methods with less sensitivity to the regularization parameter α. DOWM was particularly sensitive
to α and required a relatively high value of this parameter to balance its otherwise conservative
projection matrices (Appendix F). Here it is also worth noting that there is an extensive literature on
how a parameter equivalent to α can be dynamically adjusted when doing standard natural gradient
descent using the Fisher matrix for the current loss (see 13 for an overview). While this has not been
explored in the context of projection-based continual learning, it could be interesting to combine
these projection based methods with Tikhonov dampening [21] in future work to automatically adjust
α.

We generally report results in the main text and appendix using the optimal hyperparameter settings
for each method unless otherwise noted. However, α = 10−5 was used for both NCL and Laplace-
DOWM in Figure 3C to compare the qualitative behavior of the two different Fisher approximations
without the confound of a large learning rate in directions otherwise deemed “important” by the
approximation.

I.3 Numerical results of experiments with feedforward networks

To facilitate comparison to our results, here we provide a table with the numerical results (Table 2) of
the experiments with feedforward networks reported in Figure 2 of the main text.

I.4 SMNIST dynamics with DOWM and replay

In this section, we investigate the latent dynamics of a network trained by DOWM with α = 0.001
(c.f. the analysis in Section 3.3 for NCL). Here we found that the task-associated recurrent dynamics
for a given task were more stable after learning the corresponding task than in networks trained with
NCL. Indeed, the DOWM networks exhibited near-zero drift for early tasks even after learning all 15
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Table 2: Numerical results for the experiments with feedforward networks, corresponding to Figure 2
in the main text. Reported is the test accuracy (as %, averaged over all tasks) after training on all
tasks. Each experiment was performed either 20 (split MNIST) or 10 (split CIFAR-100) times with
different random seeds, and we report the mean (± standard error) across seeds.

Split MNIST Split CIFAR-100
Method Task Domain Class Task Domain Class

None 81.58 ±1.64 59.47 ±1.71 19.88 ±0.02 61.43 ±0.36 18.42 ±0.33 7.71 ±0.18
Joint 99.69 ±0.02 98.69 ±0.04 98.32 ±0.05 78.78 ±0.25 46.85 ±0.51 49.78 ±0.21

SI 97.24 ±0.55 65.20 ±1.48 21.40 ±1.30 74.84 ±0.39 22.58 ±0.37 7.02 ±1.04
EWC 98.67 ±0.22 63.44 ±1.70 20.08 ±0.16 75.38 ±0.24 19.97 ±0.44 7.74 ±0.18
KFAC 99.04 ±0.10 67.86 ±1.33 19.99 ±0.04 76.61 ±0.23 26.57 ±0.66 7.59 ±0.17
OWM 99.36 ±0.05 87.46 ±0.74 80.73 ±1.11 77.07 ±0.27 28.51 ±0.30 29.23 ±0.51
NCL (no opt) 99.53 ±0.03 84.9 ±1.06 47.49 ±0.84 77.88 ±0.26 32.81 ±0.38 16.63 ±0.34
NCL 99.55 ±0.03 91.48 ±0.64 69.31 ±1.65 78.38 ±0.27 38.79 ±0.24 26.36 ±1.09

tasks (Figure 11). However, DOWM also learned representations that were less well-separated after
the first 1-2 classification tasks (Figure 11, bottom) than those learned by NCL. This is consistent
with our results in Section 3.2 where DOWM exhibited high performance on the first task even
after learning all 15 tasks, but performed less well on later tasks (Figure 11). These results may be
explained by the observation that DOWM tends to overestimate the number of dimensions that are
important for learned tasks (Section 3.2) and thus projects out too many dimensions in the parameter
updates when learning new tasks.

In the context of biological networks, it is unlikely that the brain remembers previous tasks in a way
that causes it to lose the capacity to learn new tasks. However, it is also not clear how the balance
between capacity and task complexity plays out in the mammalian brain, which on the one hand has
many orders of magnitude more neurons than the networks analyzed here, but on the other hand also
learns more behaviors that are more complex than the problems studied in this work. In networks
where capacity is not a concern, it may in fact be desirable to employ a strategy similar to that of
DOWM — projecting out more dimensions in the parameter updates than is strictly necessary — so
as to avoid forgetting in the face of the inevitable noise and turnover of e.g. synapses and cells in
biological systems.

To compare with NCL and DOWM which ensure continual learning by regularizing the parameters
of the network or the changes in these parameters, we also considered a network that used replay
of past data to avoid forgetting. We trained the network using a simple implementation of replay
where the learner estimates the task specific loss `k(θ) as in Section 2. In addition, the network gets
to ‘replay’ a set of examples {x(k′),y(k′)}k′<k from previous tasks at every iteration to estimate the
expected loss on earlier tasks

`<k(θ) =
1

k − 1

k−1∑
k′=1

E

[∑
t

log p(y
(k′)
t |Cr(k

′)
t )

]
. (78)

The parameters are then updated as

θ ← θ − γ
[

1

k
∇θ`k(θ) +

k − 1

k
∇θ`<k(θ)

]
. (79)

Note that while we explicitly replayed examples drawn from the true data distribution for previous
tasks, these examples could instead be drawn from a generative model that is learned in a continual
fashion together with the discriminative model [23, 24].

In contrast to the stable task representations learned by DOWM and NCL, continual learning with
replay led to task-representations that exhibited a continuous drift after the initial task acquisition
(Figure 12). We can understand this by noting that parameter-based continual learning assigns a
privileged status to the parameter set µk used when the task is first learned, while methods using
replay, generative replay, or other functional regularization methods are invariant to parameter
changes that do not affect the functional mapping fθ(x). This is interesting since a range of
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Figure 11: Latent dynamics during SMNIST. We considered two example tasks, 4 vs 5 (top) and
1 vs 7 (bottom). For each task, we simulated the response of a network trained by DOWM to 100
digits drawn from that task distribution at different times during learning. We then fitted a factor
analysis model for each example task to the response of the network right after the correponding
task had been learned (squares; k = 2 and k = 3 respectively). We used this model to project the
responses at different times during learning into a common latent space for each example task. For
both example tasks, the network initially exhibited variable dynamics with no clear separation of
inputs and subsequently acquired stable dynamics after learning to solve the task. The r2 values
above each plot indicate the similarity of neural population activity with that collected immediately
after learning the corresponding task, quantified across all neurons (not just the 2D projection).
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Figure 12: Latent dynamics during SMNIST with replay. We considered two example tasks, 4 vs
5 (top) and 1 vs 7 (bottom). For each task, we simulated the response of a network trained with replay
(see main text for details) to 100 digits drawn from that task distribution at different times during
learning. We then proceeded to analyze the latent space and representational stability as in Figure 11.

studies in the neuroscience literature have investigated the stability of neural representations with
some indicating stable representations [3, 5, 8, 9] and others drifting representations [6, 12, 19,
20]. It is thus possible that these differences in experimental findings could reflect differences
between animals, tasks and neural circuits in how biological continual learning is implemented. In
particular, stable representations could result from selective stabilitization of individual synapses as
in parameter regularization methods for continual learning, and drifting representations could result
from regularizing a functional mapping using generative replay.

J NCL for variational continual learning

Online variational inference In variational continual learning [16], the posterior p(θ|Dk,φk−1)
is approximated with a Gaussian variational distribution q(θk;φk) = N (θk;µ,Σk), where φk =
(µk,Σk). We then treat µk and Σk as variational parameters and minimize the KL-divergence
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between q(θk;φk) and the approximate posterior p(θ|Dk,φk) ∝ q(θ;µk−1,Σk−1)p(Dk|θ):

KL
(
q(θ;µk,Σk)|| 1

Zk
q(θ;µk−1,Σk−1)p(Dk|θ)

)
(80)

with respect to µk and Σk. This is equivalent to maximizing the evidence lower-bound (ELBO):

L(µk,Σk) = Eq(θ;µk,Σk) [log p(Dk|θ)]− KL (q(θ;µk,Σk)||q(θ;µk−1,Σk−1)) , (81)

to the data log likelihood

log p(Dk|φk−1) = log

∫
p(Dk|θ)q(θ;φk−1)dθ ≥ L (82)

with q(θ;φk−1) as the ‘prior’ for task k.

Maximizing L requires the computation of both the first likelihood term and the second KL term in
Equation 81. While the second term can be computed analytically, the first term is intractable for
general likelihoods p(Dk|θ). To address this, Nguyen et al. [16] estimate this likelihood term using
Monte Carlo sampling:

Eq(θ;φk) [log p(Dk|θ)] ≈ 1

K

∑
i

log p(Dk|θi), (83)

where {θi}Mi=1 ∼ q(θ;φk) are drawn from the variational posterior via the reparameterization trick.
This allows direct optimization of the variational parameters µk and Σk. To make the method scale
to large models with potentially millions of parameters, Nguyen et al. [16] also make a mean-field
approximation to the posterior

q(θ;φk) = N (θ;µk, diag(σk)). (84)

Natural variational continual learning We now propose an alternative approach to maximizing
L with respect to φk = (µk,Λk) within the NCL framework, where Λk = Σ−1k is the precision
matrix of q at step k. We again solve a trust-region subproblem to find the optimal parameter updates
for µk and Λk:

∆µk
,∆Λk

= arg min
∆µk

,∆Λk

L(µk,Λk) +∇µk
L>∆µk

+∇Λk
L>∆Λk

(85)

such that C(∆µk
,∆Λk

) ≤ r2, (86)

where

C(∆µk
,∆Λk

) =
1

2
∆>µk

Λk−1∆µk
+

1

4
vec(∆Λk

)>(Λ−1k ⊗Λ−1k )vec(∆Λk
). (87)

The solution to this optimization problem is given by:

∆µk
= Λ−1k−1∇µk

L (88)

∆Λk
= 2Λk∇Λk

LΛk. (89)

To compute ∇µk
L and∇ΛkL, we make use of the following identities [17]:

∇µ Eθ∼N (θ;µ,Σ) [f(θ)] = Eθ∼N (θ;µ,Σ) [∇θf(θ)] (90)

∇Σ Eθ∼N (θ;µ,Σ) [f(θ)] =
1

2
Eθ∼N (θ;µ,Σ)

[
∇2
θf(θ)

]
. (91)

Applying these identities to compute the gradients of L (Equation 81), we find

∇µk
L = Eθ∼q(θ;φk) [∇θ log p(Dk|θ)−Λk−1(θk − µk−1)] (92)

∇Σk
L =

1

2
Eθ∼q(θ;φk)

[
∇2
θ log p(Dk|θ)−Λk−1 + Λk

]
. (93)

Using the fact that dΛk = −Λ−1k dΣkΛ
−1
k , we have

∇Λk
L = −Λ−1k ∇Σk

LΛ−1k (94)

= −1

2
Λ−1k Eθ∼q(θ;φk)

[
∇2
θ log p(Dk|θ)−Λk−1 + Λk

]
Λ−1k . (95)
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Figure 13: Natural VCL applied to the
stimulus-response task. Evolution of the
loss during training for each of the six
stimulus-response tasks using NVCL.

This suggests that we can compute ∆µk
and ∆Λk

as:

∆µk
= Λ−1k−1Eθ∼q(θ;φk) [∇θ log p(Dk|θk)]− (µk − µk−1) (96)

∆Λk
= Λk−1 −Λk − Eθ∼q(θ;φk)

[
∇2
θ log p(Dk|θ)

]
. (97)

This gives the following update rule at learning iteration i during task k:

µ
(i+1)
k = (1− β)µ

(i)
k + β

[
µk−1 + Λ−1k−1Eθ∼q(θ;φ(i)

k )
[∇θ log p(Dk|θ)]

]
(98)

Λ
(i+1)
k = (1− β)Λ

(i)
k + β

[
Λk−1 − E

θ∼q(θ;φ(i)
k )

[
∇2
θ log p(Dk|θ)

]]
, (99)

Note that this update rule is equivalent to preconditioning the gradients∇µk
L and∇Λk

L with Λ−1k−1
and Λk ⊗Λk respectively.

As for the online Laplace approximation (Section 2.1), one of the main difficulties of implementing
the update rule described in Equation 98 and Equation 99 is that it is impractical to compute and store
the Hessian of the negative log-likelihood for large models. Furthermore, we need Λ−1k to remain
PSD which is not guaranteed as the Hessian is not necessarily PSD. In practice we therefore again
approximate the Hessian with the Fisher-information matrix:

Hk = −E
[
∇2
θ log p(θ)

]
≈ Fk = ED̂k∼p(Dk|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)>

]
. (100)

As in Section 2.2 we use a Kronecker factored approximation to the FIM for computational tractability.
With these approximations, we arrive at the learning rule:

µ
(i+1)
k = (1− β)µ

(i)
k + β

[
µk−1 + Λ−1k−1Eθ∼q(θ;φ(i)

k )
[∇θ log p(Dk|θ)]

]
, (101)

Λ
(i+1)
k = (1− β)Λ

(i)
k + β

[
Λk−1 + E

θ∼q(θ;φ(i)
k )

[Fk(θ)]
]
. (102)

These update rules define the ‘natural variational continual learning’ (NVCL) algorithm which is the
variational equivalent of the Laplace algorithm derived in Section 2.2 and used in Section 3.

Experiments To understand how Equations 101-102 encourage continual learning, we note that
the first two terms of Equation 101 urge the new parameters µk to stay close to µk−1. The third
term of Equation 101 improves the average performance of the learner on task k by moving µk
along Λ−1k−1p(Dk|θ). This is a valid search direction because Λ−1k−1 = Σk is the covariance of
q(θ;φk−1) and is thus positive semi-definite (PSD). Importantly, the preconditioner Λ−1k−1 ensures
that µk changes primarily along “flat” directions of q(θ;φk−1). This in turn encourages q(θ;φk)
to stay close to q(θ;φk−1) in the KL sense. In Equation 102, the first two terms again encourage
Λk to remain close to Λk−1. The third term in Equation 102 updates the precision matrix of the
approximate posterior with the average Fisher matrix for task k. This encourages the curvature of
the approximate posterior to be similar to that of the loss landscape of task k, and thus (at least
locally) parameters that have similar performance on the task will have similar probabilities under
the approximate posterior.

To test the natural VCL algorithm, we applied it to the stimulus-response task set considered in
Section 3.2 using an RNN with 256 units. Similar to the Laplace version of NCL, we found that
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Figure 14: Losses on toy optimization problem. (A) Loss as a function of optimization step on
task 1 (top), task 2 (middle) and the combined loss (bottom) on the convex toy continual learning
problem for different optimization methods. (B) As in (A), now for the non-convex problem.

NVCL was capable of solving all six tasks without forgetting (Figure 13). While this can be seen as
a proof-of-principle that our natural VCL algorithm works, we leave more extensive comparisons
between the variational and Laplace algorithms for future work.

Related work Previous studies have proposed the use of variants of natural gradient descent to
optimize the variational continual learning objective [18, 22]. The key differences between the
method proposed in this section and previous methods are two-fold: (i) we precondition the gradient
updates on task k with Λ−1k−1 as opposed to Λ−1k as is done in prior work, and (ii) we estimate
the Fisher matrix on each task by drawing samples from the model distribution as opposed to the
empirical distribution as is the case in Osawa et al. [18], Tseran et al. [22]. It has previously been
argued that drawing from the model distribution instead of using the ‘empirical’ Fisher matrix is
important to retain the desirable properties of natural gradient descent [11].

K Details of toy example in schematic

In Figure 1A, we consider two regression tasks with losses defined as:

`1(θ) =
1

2
(θ − θ1)TQ1(θ − θ1) (103)

`2(θ) =
1

2
(θ − θ2)TQ2(θ − θ2), (104)

where θ1 = (3,−6)>, θ2 = (3, 6)>,

Q1 = R(φ1)

[
1 0
0 ζ

]
R(φ1)T , (105)

Q2 = R(φ2)

[
2 0
0 ζ

]
R(φ2)T , (106)

R(φ) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
, (107)

and ζ = 5.5. We ‘train’ on task 1 first by setting θ = θ1. We then construct a Laplace approximation
to the posterior after learning task 1 to find the posterior precision Q1 (which is in this case exact
since the loss is quadratic in θ). Now we proceed to train on task 2 by maximizing the posterior (see
Equation 4):

L2(θ) = `2(θ) +
1

2
(θ − θ1)TQ1(θ − θ1) (108)

= `2(θ) + `1(θ) (109)
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The gradient of L2(θ) with respect to θ is given by:

∇θL = Q1(θ − θ1) +Q2(θ − θ2). (110)

We can optimize `(θ) using the following three methods:

Laplace: ∆θ ∝ Q1(θ − θ1) +Q2(θ − θ2) (111)

NCL: ∆θ ∝ (θ − θ1) +Q−11 Q2(θ − θ2) (112)

Projected: ∆θ ∝ Q−11 Q2(θ − θ2), (113)

where γ is the learning rate and Q1 + Q2 is the Hessian of L(w). Note that in ‘projected’, we
optimize on task 2 only rather than on the Laplace posterior.

In Figure 1B, we consider a slight modification to `2 such that the loss is no longer convex:

`2(w) =
1

2
(θ − θ2)TQ2(θ − θ2) + a− a exp

(
−1

2
(θ − v)TQv(θ − v)

)
, (114)

where we have added a Gaussian with covariance Qv to the second loss. The NCL pre-
conditioner from task 1 remains unchanged (Q−11 ) since `1 is unchanged. Denoting G :=
a exp

(
− 1

2 (θ − v)TQv(θ − v)
)
, we thus have the following updates when learning task 2:

Laplace: ∆θ ∝ Q1(θ − θ1) +Q2(θ − θ2) +Qv(θ − v)G (115)

NCL: ∆θ ∝ (θ − θ1) +Q−11 Q2(θ − θ2) +Q−11 Qv(θ − v)G (116)

Projected: ∆θ ∝ Q−11 Q2(θ − θ2) +Q−11 Qv(θ − v)G. (117)

In this non-convex case, the different methods can converge to different local minima (c.f. Figure 1B).

The losses on both tasks as well as the combined loss as a function of optimization step are illustrated
in Figure 14 for the convex and non-convex settings.
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