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Question
Can AI conduct research? We are planning to participate in a competition to solve this
question. I think AI has both strengths and weaknesses, and there may be specific types
of papers where AI can be particularly useful. What kind of paper would be better and
for what reasons? Also, for the direction of the topic, what would be a good subject in
the field of chemistry, and what topics are currently emerging? Please recommend.

Answer
1. What type of paper is good?
I recommend the review article format.

• Reason 1: Ability to process large amounts of data
AI excels at quickly collecting, classifying, and organizing thousands of papers.
Since review articles involve comparing various research results and extracting pat-
terns, AI’s data processing and analytical abilities are best showcased here.

• Reason 2: Ability to analyze research trends
AI is useful not only for simple summarization but also for highlighting future
research directions or unresolved questions in a field. This fits perfectly with the
purpose of a review article.

• Reason 3: Can also reveal weaknesses
Experimental papers require “creative ideas”or “field experience,”but review
articles focus on systematic organization and meta-analysis, allowing AI to avoid
its weaknesses.

2. Direction of the topic (Chemistry field)

• Computational Chemistry Review: AI-based drug candidate prediction, machine
learning in catalyst design, acceleration and optimization of molecular dynamics
(MD) simulations

• Materials Chemistry: AI-driven battery material discovery, new material design for
solar cells/fuel cells

• Environmental Chemistry: CO2 conversion/reduction catalyst research, develop-
ment of electrochemical catalysts for hydrogen production (HER, OER)

3. Recommended topic keywords

•“The Meeting of AI and Computational Chemistry: A New Paradigm for Catalyst
and Drug Development”
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•“AI-based Computational Chemistry Review: Toward the Future of Materials, En-
ergy, and Environment”

•“Can AI Replace Experiments? Possibilities and Limitations Seen Through a Com-
putational Chemistry Review”

Summary: The review article format can best utilize AI’s strengths, and the topic
direction should focus on the latest research reviews combining AI with computational
chemistry (especially drugs, catalysts, materials). The message is that AI is valuable not
as a “replacement”for research, but as a “tool for acceleration and expansion.”

Would you like me to list candidate topics for each field of chemistry, or would you
prefer a specific paper topic that can be used directly for the competition?

Prompt 2: Selection of Computational Chemistry Re-
view Paper Topic and FF Recommendation
Question
What topics in computational chemistry are worth writing a review article on, i.e., what
topics are currently valuable for review articles?

Answer
Saying a review article is “valuable”means (1) it is up-to-date, (2) there is still a lack
of comprehensive reviews, and (3) it is a field that researchers will need to refer to in the
future. In computational chemistry, topics that meet these criteria include the following.

1. AI and Machine Learning-Based Force Field Development and Applica-
tions

• There are active attempts to correct or newly train existing force fields (CHARMM,
AMBER, OPLS, ReaxFF, DeepMD, AMOEBA, ANT, PCFF, etc.) using AI/
ML.

• There is still a lack of reviews that organize the differences in application
between materials simulation (batteries, catalysts) and biomolecules (proteins,
drugs).

•“AI-driven Force Fields: Applications from Biomolecules to Materials”

2. Computational Chemistry-Based Catalyst Design (Especially Electro-
chemical Reactions)

• CO2 electroreduction (CO2RR), oxygen evolution reaction (OER), hydrogen
evolution reaction (HER), nitrogen reduction reaction (NRR) are hot topics.

• There is great value in reviews because there is an explosion of research on
active site design, reaction pathway prediction using DFT calculations, and
high-speed screening using AI.
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•“Computational Insights into Electrocatalysis: AI-assisted Trends and Per-
spectives”

3. AI-accelerated Molecular Dynamics (MD) and Simulation Acceleration

• Long time-scale protein folding, membrane protein simulations, and complex
interfacial reactions were difficult with conventional MD, but AI/ML-based
acceleration techniques are now being actively researched.

• There is still a lack of comprehensive reviews, so the value of such a paper is
high.

•“Machine Learning in Molecular Dynamics: Accelerating Biomolecular and
Material Simulations”

4. Innovation in Drug Discovery Using Computational Chemistry

• The fusion of AI and computational chemistry for virtual screening, molecular
docking, and drug-target interaction prediction is very active.

• Especially, reviews connecting AlphaFold structure prediction to computa-
tional chemistry-based drug design are still in the early stages.

•“From Structure Prediction to Drug Discovery: AI in Computational Chem-
istry”

2. Direction of the topic (Chemistry field) Currently, the hottest trend in chemistry is
the fusion of computational chemistry and AI. For example: ●Computational Chemistry
Review

○ AI-based drug candidate prediction (drug discovery)
○Machine learning in catalyst design
○ Acceleration and optimization of molecular dynamics (MD) simulations
●Materials Chemistry
○ AI-driven battery material discovery (lithium/sodium battery, hydrogen storage,

etc.)
○ New material design for solar cells/fuel cells
● Environmental Chemistry
○ CO₂ conversion/reduction catalyst research (electrocatalysis)
○ Development of electrochemical catalysts for hydrogen production (HER, OER)
3. Recommended topic keywords ●“The Meeting of AI and Computational Chem-

istry: A New Paradigm for Catalyst and Drug Development”
●“AI-based Computational Chemistry Review: Toward the Future of Materials, En-

ergy, and Environment”
●“Can AI Replace Experiments? Possibilities and Limitations Seen Through a Com-

putational Chemistry Review”
?? Summary: ● Paper format: Review article (maximizing AI’s strengths)
●Topic direction: Centered on computational chemistry (especially drugs, catalysts,

materials) → Latest research reviews combined with AI
● Message: AI is valuable as a“tool for acceleration and expansion”rather than a

“replacement”for research.
Would you likeme to list candidate topics for various fields of chemistry as I amnow, or

would you prefer a specific paper topic that can be immediately used for the competition?
Reason for choosing force field
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Prompt 2: Selection of Computational Chemistry Re-
view Paper Topic and FF Recommendation

Question
What topics in computational chemistry are worth writing a review article on, i.e., what
topics are currently valuable for review articles?

Answer
Saying a review article is“valuable”means (1) it is up-to-date, (2) there is still a lack
of comprehensive reviews, and (3) it is a field that researchers will need to refer to in the
future. In computational chemistry, topics that meet these criteria include the following.

1. AI and Machine Learning-Based Force Field Development and Applica-
tions

• There are active attempts to correct or newly train existing force fields (CHARMM,
AMBER, OPLS, ReaxFF, DeepMD, AMOEBA, ANT, PCFF, etc.) using AI/ML.

• There is still a lack of reviews that organize the differences in application be-
tween materials simulation (batteries, catalysts) and biomolecules (proteins,
drugs).

•“AI-driven Force Fields: Applications from Biomolecules to Materials”

2. Computational Chemistry-Based Catalyst Design (Especially Electro-
chemical Reactions)

• CO2 electroreduction (CO2RR), oxygen evolution reaction (OER), hydrogen
evolution reaction (HER), nitrogen reduction reaction (NRR) are hot topics.

• There is great value in reviews because there is an explosion of research on
active site design, reaction pathway prediction using DFT calculations, and
high-speed screening using AI.

•“Computational Insights intoElectrocatalysis: AI-assistedTrends andPerspec-
tives”

3. AI-accelerated Molecular Dynamics (MD) and Simulation Acceleration

• Long time-scale protein folding, membrane protein simulations, and complex
interfacial reactionswere difficult with conventionalMD, but AI/ML-based ac-
celeration techniques are now being actively researched.

• There is still a lack of comprehensive reviews, so the value of such a paper is
high.

•“Machine Learning in Molecular Dynamics: Accelerating Biomolecular and
Material Simulations”

4. Innovation in Drug Discovery Using Computational Chemistry

• The fusion of AI and computational chemistry for virtual screening, molecular
docking, and drug-target interaction prediction is very active.

4



• Especially, reviews connecting AlphaFold structure prediction to computa-
tional chemistry-based drug design are still in the early stages.

•“From Structure Prediction to Drug Discovery: AI in Computational Chem-
istry”

FF Recommendation: Top 10 Commonly Used
Force Fields

Question

In computational chemistry, MD simulations are frequently used. Can you tell me
the 10 most commonly used force fields for this purpose?

Answer

(a) CHARMM: Organic molecules, biomolecules –widely used across organic/bi-
ological systems.

(b) ANT: Various systems –a relatively new force field, considered for its applica-
bility to various systems.

(c) AMOEBA: Systems with polarity/induced dipoles –considers polarity and po-
larizability. Suitable for precise calculations.

(d) ReaxFF: Reactive systems –can simulate chemical reactions (bond formation/
breaking). Essential for reactive systems.

(e) DeepMD: Materials, inorganic substances –deep learning-based force field.
Aims for DFT-level accuracy.

(f) PCFF (PolymerConsistent FF): Polymers,materials –suitable for polymers and
complex solid systems.

(g) UFF (Universal FF): Entire periodic table –broad elemental coverage. For ini-
tial optimization and fast screening.

(h) GROMOS:Proteins, lipids –widelyused inGROMACS.Optimized for biomolec-
ular simulations.

These 10 are essential force fields for handling molecular-level interactions, and it
is important to choose appropriately depending on the purpose and system char-
acteristics. If needed, I can also explain the formula structure or parameter features
of each force field in detail.
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Criteria for Writing the Introduction: Points to
Note When Writing a Review Paper Introduction

Question

I’m going to write a review paper with CHARMM, AMBER, OPLS, ANT, AMOEBA,
ReaxFF, DeepMD, and PCFF (Polymer Consistent FF). What should I be careful
about in the intro part?

Answer

The introduction of a review paper is critical, because it sets the stage not just
for summarizing potentials like CHARMM, AMBER, OPLS, ANT, AMOEBA, ReaxFF,
DeepMD, PCFF, but also for convincing the reader why your review matters. Here
are some things you should be careful about when drafting it:

(a) Balance Between Breadth and Depth
• Since you’re coveringboth classical biomolecular force fields (CHARMM,

AMBER, OPLS, ANT), polarizable/multipole force fields (AMOEBA), re-
active force fields (ReaxFF), machine learning potentials (DeepMD), and
polymer-specific force fields (PCFF), the intro should not deep dive too
early.

• Instead, frame them in categories:
– Traditional biomolecular force fields (CHARMM,AMBER,OPLS,ANT)
– Advanced polarizable/quantum-informed force fields (AMOEBA)
– Reactive potentials (ReaxFF)
– ML-driven approaches (DeepMD)
– Polymer-specific models (PCFF)

• This prevents overwhelming the reader right at the beginning.

(b) Historical Context
• Startwith thehistory ofmolecular dynamics simulations: fromearly Lennard-

Jones and hard-sphere models → rise of biomolecular force fields → ex-
pansion to reactive/ML approaches.

• Emphasize how force fields evolved to address specific challenges (e.g.,
fixedcharges→polarizability, non-reactive→reactive, hand-parameterized
→ data-driven).

• This gives the reader a sense of progression andwhy your review is timely.

(c) Define ”Potential / Force Field” Clearly
• Many non-experts confuse ”force field” with just a formula.
• In the intro, explicitly state:

– Functional form (bonded + nonbonded terms)
– Parameters (empirical, ab initio, ML-trained)
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– Domain of applicability (proteins, polymers, chemical reactions, ma-
terials)

• That clarity ensures readers won’t misinterpret your later comparisons.
• Each force field has strengths and weaknesses (e.g., CHARMMvs AMBER

for proteins, ReaxFF vs DeepMD for chemistry, PCFF vs OPLS for poly-
mers).

• Point out that users often face difficulty choosing the right potential, es-
pecially with emerging ML-based ones.

• State explicitly that the goal of your review is to guide the selection of po-
tentials under specific conditions.

(d) Scope & Exclusions
• Which force fields you will discuss in detail (your list).
• Which ones you will not cover (e.g., niche ones like GROMOS, COMPASS,

etc., unless relevant).
• This sets boundaries so reviewers don’t criticize you for missing some-

thing.

This gives the reader a sense of progression and why your review is timely.

3. Define ”Potential / Force Field” Clearly ● Many non-experts confuse ”force
field” with just a formula.

● In the intro, explicitly state:

○ Functional form (bonded + nonbonded terms) ○ Parameters (empirical, ab ini-
tio,ML-trained)○Domain of applicability (proteins, polymers, chemical reactions,
materials) That clarity ensures readers won’t misinterpret your later comparisons.

● Each force field has strengths and weaknesses (e.g., CHARMM vs AMBER for
proteins, ReaxFF vs DeepMD for chemistry, PCFF vs OPLS for polymers). ● Point
out that users often facedifficulty choosing the right potential, especiallywith emerg-
ing ML-based ones. ● State explicitly that the goal of your review is to guide the
selection of potentials under specific conditions.

5. Scope Exclusions

○Which force fields you will discuss in detail (your list).

○ Which ones you will not cover (e.g., niche ones like GROMOS, COMPASS, etc.,
unless relevant).

This sets boundaries so reviewers don’t criticize you for missing something.

6. Applications as Motivation

● Mention real-world importance: drug design, energy materials, catalysis, nan-
otechnology. ● This makes your review relevant across disciplines.

● Be careful to cite landmark papers in the intro:

○ DeepMD’s Zhang et al. papers

○ Original PCFF papers

● Also cite recent reviews/meta-analyses, to show your paper adds new synthesis
rather than repeats existing work.
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● Don’t overload the intro with equations ? keep those for later sections. ●
Don’t claim one force field is“the best”in the intro ? keep neutrality until the
discussion. ● Don’t assume the reader knows acronyms (spell them out the first
time). ● Avoid redundancy: instead of describing each FF in detail in the intro,
motivate why reviewing them together makes sense.

? In summary:

https://getliner.com/ko/search/s/26944841/t/87830100?msg-entry-type=main

Review Planning and Introduction Drafting

Planning Steps

(a) Outlined the history of molecular dynamics and its importance.

(b) Drafted the definition of potentials and planned a historical overview of poten-
tials.

(c) Addressed the Lennard-Jones potential.

(d) Expanded theoutline to include specific sections for eachpotential (CHARMM,
AMBER, etc.), focusing on theoretical foundations, strengths, and applica-
tions.

(e) Planned the comparison section, categorizing potentials, and considering hy-
brid methods.

(f) Refined the paper’s structure based on detailed requirements, solidified the
introduction’s components and overall layout.

(g) Sketched out sections dedicated to each potential, ensuring detailed sum-
maries with appropriate citations.

(h) Finalized the introduction to include history, definitions, and the Lennard-
Jones potential, with equations and sentence-level citations.

(i) Wrote the scope of the paper to align with requirements.

(j) Drafted the structure for eachpotential, aiming for comprehensiveunderstand-
ing and comparative analysis.

(k) Ensured all summaries adhere to the structure: Theoretical Foundation, Pa-
rameterization Strategy, Unique Features, Strengths Weaknesses, and Pri-
mary Scientific Applications.

(l) Developed the historical context, including early simulations and the evolu-
tion of computational resources.

(m) Drafted the definition of potential energy in MD simulations and the Lennard-
Jones potential and related equations.

(n) Integrated discussions on early MD simulations and the importance of poten-
tials in MD simulations.

(o) Organized the paper’s scope, focusing on detailed summaries for each poten-
tial.
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(p) Outlined the review paper’s scope and objectives, and refined the rationale
for reference selection.

(q) Integrated all essential components, including a historical overview, defini-
tions, and equations.

(r) Finalized the scope and objectives whilemaintaining sentence-level citations.

(s) Drafted the introduction, encompassing the history of MD simulations, defin-
ing potentials, and detailing the Lennard-Jones potential and its implications.

(t) Outlined objectives and reference selection rationales.

(u) Detailed parameterization strategies for CHARMM and the development of
CGenFF for drug-like molecules.

(v) Documented unique features within CHARMM, highlighting its extensive pa-
rameter library.

(w) Refined the introduction and equations, ensuring sentence-level citations be-
fore continuing with detailed summaries.

(x) Detailed parameterization strategies for AMBER, including quantum chemical
calculations and fitting to experimental data.

(y) Wrote details for partial atomic charges from quantum mechanical electro-
static potential fitting and bonded parameters.

(z) Focused on parameterization strategies for AMBER, discussing derivation of
partial atomic charges and validation of bonded parameters.

() Summarized CHARMM and AMBER, detailed OPLS frameworks, and refined
summary outlines.

() Began drafting sections for ANT, AMOEBA, ReaxFF, DeepMD, and PCFF, fo-
cusing on theoretical foundations, parameterization strategies, unique fea-
tures, strengths, weaknesses, and applications.

() Outlined the introduction, including history, definitions, and LJ potential sec-
tions, and covered scope and objectives.

() Crafted sections for ANT, AMOEBA, ReaxFF, DeepMD, and PCFF, outlining
core principles andparameterizationmethods, and analyzing strengths, weak-
nesses, and application areas.

The Evolution of Molecular Dynamics Simulations Molecular dynamics (MD) sim-
ulations have emerged as a cornerstone in computational science, tracing their ori-
gins back to foundational work in the late 1950s. The pioneering efforts of Alder and
Wainwright in 1957 marked a critical milestone, as they employed a hard-sphere
model to investigate particle collisions, laying the groundwork for the field. This ini-
tial research demonstrated the nascent capability of MD methods to simulate real
atomic interactions, moving beyond purely theoretical models. ?Subsequently, in
the mid-1960s, Rahman significantly advanced the field by extending MD to more
realistic continuous potentials, notably simulating liquid argonBerne, 2002 . ?This
progression allowed for the study of increasingly complexmolecular systems, mov-
ing from simple monoatomic liquids to diatomic and triatomic molecules through-
out the 1960s and 1970sBerne, 2002
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. ?A landmark achievement was the first protein simulation in 1976, which utilized
an empirical energy function based on physical principles, thereby enabling the
modeling of biological macromolecules and initiating a shift towards vital applica-
tions in biophysics and materials scienceZhu Lopes, 2012

. ?The ongoing evolution of computational methods, including the development of
force fields, advanced integration schemes, and the introduction of multiple time
scale algorithms, has been pivotal in expanding the scope of MD simulations to
larger systems and longer timescalesBerne, 2002

Perez, 2011

. ?The exponential increase in computing power has transformed simulations from
mere picoseconds to microseconds and beyond, encompassing systems with mil-
lions of atomsLoeer Winn, 2012

. ?Recent advancements have also integrated quantummechanical approaches like
ab initio molecular dynamics, providing highly accurate descriptions of electronic
interactionsCollins et al., 2005

. ?Furthermore, techniques such as accelerated MD methods address challenges
related to infrequent-event dynamics, significantly enhancing sampling efficiency
and broadening the scope of scientific inquiryHamelberg et al., 2004

Perez, 2011

. ?The continuous refinement of algorithms and computational infrastructure, in-
cluding parallel computing andGPU acceleration, hasmadeMD simulationswidely
accessible and indispensable across various scientific disciplinesChen et al., 2021

.

Defining the Potential Energy Function in Molecular Dynamics

The concept of ”potential” in molecular dynamics simulations refers to the poten-
tial energy function that describes the energy of a molecular system as a conse-
quence of its atomic coordinates. This function is crucial as it encapsulates all in-
teractions among atoms and molecules, including both bonded interactions?such
as those defining bond lengths, angles, and torsional rotations?and non-bonded in-
teractions, which include van der Waals forces and electrostatic interactions. ?The
potential energy function fundamentally governs the dynamics of the system by de-
termining the forces acting on each atom through its gradient, thereby dictating the
trajectories of the atoms over timeHoover, 1986

. ?Mathematically, potentials inMD simulations are formulatedwithin classicalme-
chanics, typicallyNewtonian frameworks, and can take various functional formsde-
pending on the system being studiedHoover, 1986

Semenov et al., 2023

. ?For instance, a widely used pairwise potential, the Lennard-Jones potential, is
mathematically expressed as

??

(

??

)
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=

4

??

V(r)=4?, where

??

r is the interatomic distance,

??

? represents the depth of the potential well, and

??

σ denotes the finite distance at which the interparticle potential becomes zeroAllen
et al., 2006

Semenov et al., 2023

. ?More intricate potentials, such asmany-body potentials, account for interactions
involvingmultiple atoms simultaneously, offering amore accurate representation of
physical phenomena in covalently bonded or metallic materialsMalerba, 2006

Fan et al., 2015

Wood Thompson, 2017

. ?Thephysical significanceof thepotential is profound, as it directly determines the
molecular interactions and the overall behavior of the systemsimulatedbyMDAllen
et al., 1989

. ?It provides a quantitative measure of system stability and allows for the monitor-
ing of energy fluctuations, which can signal significant molecular events or confor-
mational changesGunsteren, 1990

. ?These potential energy functions are often collectively referred to as force fields,
forming the empirical or semi-empirical basis for accurate and computationally fea-
sible simulations across diverse scientific domainsGonz?lez, 2011

.

Historical Trajectory of Molecular Dynamics Potentials

?The historical evolution of potential functions in molecular dynamics reflects a
continuous drive towards greater accuracy and realism in simulatingmolecular sys-
temsRodger et al., 1992

. ?This journeybeganwith simplepairwise interactionmodels, notably theLennard-
Jones (LJ) potentialSchwerdtfeger Wales, 2024

Berne, 2002

. ?The LJ potential, a pairwise additive model, was instrumental in describing van
der Waals interactions through an analytical formula that combined both attractive
and repulsive termsMonticelli Tieleman, 2012

. ?Its inherent simplicity and effectiveness established it as a cornerstone for early
MDstudies, serving as both a practicalmodeling tool and a fundamental conceptual
framework for understanding intermolecular forcesAllen et al., 2006
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Vanommeslaeghe Jr, 2015

. However, as computational capabilities expanded and theoretical understanding
deepened, the limitations of these simple pairwise potentials became evident, par-
ticularly in capturing the complex many-body interactions prevalent in condensed
phases, intricate biomolecules, and advanced materials. ?This recognition spurred
thedevelopment ofmore sophisticatedmany-bodypotential functions, whichmoved
beyond simple pairwise sums to integrate effects such asmolecular geometry, elec-
tronic polarization, and detailed electronic structure more accuratelyGuenza et al.,
2018

. These advanced potentials significantly enhanced the realismof simulatedmolec-
ular phenomena by providing a better description of system energetics and dynam-
ics.

?In recent years, the field has witnessed a paradigm shift with the advent of ma-
chine learning (ML) techniques for constructing interatomic potentialsMartin?Bar-
rios Navas?Conyedo, 2024

Hou et al., 2024

. ?TheseML-basedpotentials, particularly deepneural networkpotentials, are trained
on extensive databases of quantum mechanical calculationsBalyakin et al., 2020

. ?This data-driven approach allows them to capture the complex potential en-
ergy surfacewithnear first-principles accuracywhilemaintaining amuch-improved
computational efficiency compared todirect quantummechanical calculationsZhang
et al., 2018

Chen et al., 2021

. ?Examples like neural network potentials have emerged to approximate intricate
potential energy landscapes without relying on rigid, predefined functional forms,
thereby improving transferability and enabling simulations of larger andmore com-
plex systems?ugec et al., 2024

. ?This new generation of potentials represents a significant frontier in molecular
dynamics, effectively bridging the long-standing gap between accuracy and scala-
bilityHou et al., 2024

. ?The progression from simple pairwise models to sophisticated many-body and
cutting-edge ML-driven potentials underscores a continuous quest for enhanced
accuracy, transferability, andcomputational efficiency in the representationof atomic
interactions within MD simulationsMartin?Barrios Navas?Conyedo, 2024

Hou et al., 2024

.

The Crucial Role of Potential Functions

Potential functions areundeniably central tomolecular dynamics (MD) simulations,
profoundly influencing the accuracy, transferability, and computational efficiency
of the results [?]. These functions, often referred to as force fields, quantify the in-
teraction energies among atoms or molecules, thereby governing the motion and
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behavior of the simulated system [?, ?]. The reliability of MD simulations hinges
critically on how faithfully these potentials represent real physical interactions, di-
rectly impacting the ability to predict molecular properties and dynamic phenom-
ena with confidence [?].
Potentials vary widely in complexity, from straightforward pairwise additive func-
tions such as the Lennard-Jones (LJ) potential, which precisely models van der
Waals interactions through an analytical expression, to highly complex many-body
and polarizable force fields [?]. The LJ potential holds significant historical impor-
tance as a foundational model in MD, offering both conceptual insights and practi-
cal utility formodeling non-bonded interactions. Its characteristic attractive and re-
pulsive terms enable a succinct representation of fundamental interatomic forces.

A vital consideration in MD is the computational efficiency of evaluating these po-
tential functions, particularly for simulations involving large systems or extended
timescales [?, ?]. While classical force fields offer a computationally tractable ap-
proach, they may present limitations in accuracy for certain complex phenomena.
However, continuous advancements in algorithms and hardware have facilitated
the implementation ofmore intricate potentials, includingmany-body andmachine
learning-based models, which strive to balance enhanced accuracy with practical
speed [?, ?]. Optimized neighbor lists and parallelization strategies further boost
theperformanceofMDsimulations,making complex calculationsmore feasible [?].
Transferability, defined as the capacity of a potential function to accurately describe
different systems or chemical environments without requiring extensive reparam-
eterization, remains a significant challenge [?]. Force fields are developed with
varying degrees of specificity and generality, which directly affects their applica-
bility across a diverse range of molecular systems. While greater transferability
can broaden the utility of a potential, it might sometimes compromise detailed ac-
curacy if the model becomes overly generalized. The integration of fundamental
physical principles, explicit polarizability, and sophisticated data-driven training
strategies has led to the development of potentials that achieve a superior balance
between transferability and accuracy. Ultimately, potential functions serve as the
foundational backbone of molecular dynamics simulations, directly dictating the
critical trade-offs among computational efficiency, accuracy, and broad applicabil-
ity across chemical and material systems.

Current Landscape of Potential Applications

Molecular dynamics potentials are currently employed across an extensive array
of scientific fields, enabling detailed insights into diverse molecular phenomena.
CHARMM (Chemistry at HARvard Macromolecular Mechanics) is predominantly
utilized in biomolecular simulations, excelling in the accuratemodeling of proteins,
nucleic acids, lipids, and carbohydrates [?, ?]. Its robust empirical parameteriza-
tion and ability to simulate complex macromolecular systems make it invaluable
in drug design and studies elucidating structure-function relationships in biologi-
cal contexts [?, ?, ?, ?]. Both additive and polarizable variants of CHARMM extend
its utility to accurately capture molecular polarization effects crucial for biological
processes [?, ?, ?].
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Similarly, AMBER (Assisted Model Building with Energy Refinement) is a leading
potential for biomolecular simulations, particularly for proteins and nucleic acids,
benefiting from continuous force field refinements [?]. AMBER supports a wide
range of protocols for simulating molecular interactions pertinent to biochemical
and pharmaceutical research, including drug discovery efforts [?, ?, ?, ?].
OPLS (Optimized Potentials for Liquid Simulations) is specifically optimized for or-
ganic molecules and biomolecules within condensed phases, finding widespread
application in liquid-phase simulations and polymer modeling [?, ?, ?]. It accu-
rately reproduces thermodynamic and structural properties, making it suitable for
materials science, small molecule simulations, and the prediction of thermophysi-
cal properties [?, ?, ?].
. ?The ANT concept, while not a conventional force field, encompasses ant colony-
inspired algorithmic approaches that are beneficial for exploring potential energy
surfaces and molecular configurationsSalmaso Moro, 2018

. ?It finds application in molecular system optimization and molecular communi-
cation modeling, and can be relevant in biomolecular and material simulations re-
quiring configurational optimizationSalmaso Moro, 2018

.

?AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications)
stands out as a polarizable force field highly specialized for biomolecular systems,
offering superior accuracy in electrostatics through its use of atomicmultipoles and
inducible dipolesAlbaugh et al., 2016

Liu et al., 2019

Chung et al., 2023

. ?It is widely applied in studying protein, nucleic acid, small molecule interactions,
and ionic liquids, with recent applications extending to enhanced sampling meth-
ods, hybrid quantum mechanics/molecular mechanics approaches, and complex
solvent effectsChung et al., 2023

Nottoli et al., 2020

Chung et al., 2023

. ?ReaxFF serves the critical domain of reactive molecular dynamics, enabling the
modelingof chemical reactions, includingbond-breaking and formationprocessesSen-
ftle et al., 2016

Li et al., 2021

Dasgupta et al., 2022

. ?This capability makes it exceptionally powerful in materials science, combustion
chemistry, catalysis, polymer decomposition, and catalytic surface reactionsLi et
al., 2021

Wu et al., 2024

.

?DeepMD (Deep Potential Molecular Dynamics) represents a new generation of
machine learning-driven potentials, delivering near ab initio accuracy at a signif-
icantly reduced computational costWang et al., 2018
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Zhang et al., 2018

Kounis-Melas Vella, 2025

. ?Its applicability spans various areas of materials science, including solid-state
electrolytes, molten salts, and plasma-surface interactions, and it is particularly
valuable for large-scale simulations where conventional potentials face limitations
in scalability or accuracyWang et al., 2018

Liu et al., 2024

Kounis-Melas Vella, 2025

Balyakin et al., 2020

. ?Finally, PCFF (Polymer Consistent Force Field) is precisely tailored for polymers
andmacromolecular materials, accurately capturing their conformational, thermo-
dynamic, and mechanical propertiesTafrishi et al., 2022

Alzate-Vargas et al., 2018

. ?It is validated for condensed-phase polymer simulations, studies of thermal de-
composition, and the prediction of mechanical propertiesFatemi Foroutan, 2017

Rukmani et al., 2019

Li Strachan, 2015

Schatschneider Chronister, 2008

.

The Foundational Lennard-Jones Potential

?The Lennard-Jones (LJ) potential is a cornerstone of classical interatomic poten-
tials in molecular dynamics (MD) simulationsLenhard et al., 2024

. It was first introduced by J.E. ?Lennard-Jones in 1924, providing a concise math-
ematical model for interactions between pairs of neutral atoms or moleculesSchw-
erdtfeger Wales, 2024

. This groundbreaking model significantly advanced the understanding of inter-
molecular forces by integrating both repulsive and attractive components of atomic
interactions based on fundamental physical principles. The LJ potential’s impor-
tance stems from its ability to effectively capture the essential characteristics of van
derWaals forces and the short-range repulsion that arises fromelectron cloud over-
laps. It serves as a foundational model for understanding and simulating molecular
behavior across various states of matter.

Mathematically, the LJ potential energy function

??

(

??

)

V(r) for two particles separated by a distance

??

r is given by the equation:
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?Here,

??

? (epsilon) denotes the well depth, which quantifies the strength of the attractive
interactionZhang, 2011

. ?The parameter

??

σ (sigma) represents the finite distance at which the inter-particle potential is zero,
conceptually approximating theeffectivediameter of the interactingparticlesZhang,
2011

. The term

(
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/

??

)

12

(σ/r)

12

phenomenologically models the strong repulsive force that dominates when par-
ticles are in close proximity, reflecting the effects of Pauli exclusion. Conversely,
the

(

??

/
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)

6

(σ/r)

6
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term captures the long-range attractive van der Waals interaction, which is physi-
cally interpreted as dispersion forces resulting from instantaneous induced dipoles.

The derivation of the LJ potential involves an empirical representation for the re-
pulsive term, chosen as the inverse 12th power for its computational convenience
and steepness. The attractive term, however, is theoretically grounded in quantum
mechanical London dispersion theory and classical electrostatic approximations. ?
Despite its relatively simple functional form, the LJ potential shows good agreement
with physical observations and experimental data for noble gases and numerous
molecular systemsRowlinson, 1960

.

The LJ potential has been indispensable in the advancement of MD, serving as a
fundamental model upon which more intricate and tailored potentials have been
constructed. ?It enables both qualitative and quantitative studies of phenomena
such as molecular clustering, phase transitions, and various thermodynamic prop-
ertiesTrejos et al., 2020

Kotelyanskii Hentschke, 1995

Liang Chen, 2000

. ?Its enduring importance also extends to the calibration and validation ofmore ad-
vanced force fields and potentials, finding broad application in biomolecular simu-
lations,materials science, and condensedmatter physicsVanommeslaeghe Jr, 2015

Lim, 2010

.

The LJ potential and its derivatives are extensively incorporated into more com-
plex force fields, forming the basis for non-bonded interactions. ?In the CHARMM
force field, the LJ potential is a key component of the non-bonded interaction terms,
with its parametersmeticulously optimized to reproduce experimental data such as
densities, heats of vaporization, and conformational properties, particularly for hy-
drocarbon and lipid chainsMacKerell et al., 1998

Beu Farcas, 2017

. ?Both additive and polarizable versions of CHARMM, like the Drude polarizable
force field, utilize these LJ parameters, adjusting the well depths and radii to fit
quantummechanical data andexperimental results, ensuring consistencywithbonded
parameters in simulations of lipids and proteinsQiao et al., 2018

. ?The AMBER force field also prominently features the LJ potential within its non-
bonded terms, especially for biomolecules suchasproteins, nucleic acids, and lipidsWang
et al., 2004

Salomon?Ferrer Case, 2013

Ogata Nakamura, 2015

. ?Parameter refinement efforts in AMBER include scaling LJ well-depth values in
alkyl chains to better describe lipid phase transitions and developing specialized
parameter sets like the General AMBER Force Field (GAFF) for a broader range of
moleculesOgata Nakamura, 2015

Sprenger Jaeger, 2015
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Kantakevi?ius et al., 2022

. ?These LJ parameters are derived through a combination of quantummechanical
calculations and fitting to experimental data, focusing on properties like hydration
energies, structural characteristics, and thermodynamicsKantakevi?ius et al., 2022

. ?Similarly, the OPLS force field integrates the LJ 12-6 potential for non-bonded
van derWaals interactions, with parameters optimized to accurately reproduce liq-
uid properties, including densities and heats of vaporization, for organicmolecules,
hydrocarbons, and carbohydratesSiu Pluhackova, 2012

Adluri et al., 2015

. ?OPLS parameterization strategies carefully balance bonded and non-bonded pa-
rameters to achieve realistic thermodynamic and structural properties in condensed
phases, with modifications to LJ parameters demonstrating improved accuracy for
various systemsSiu Pluhackova, 2012

Adluri et al., 2015

.

Overview of This Review Paper

?This review paper provides a critical and comprehensive analysis of several promi-
nent molecular dynamics potentials: CHARMM, AMBER, OPLS, ANT, AMOEBA,
ReaxFF, DeepMD, and PCFF.? The primary objective is to evaluate the strengths
and weaknesses of each potential based on established criteria for force field as-
sessment, including accuracy, transferability, computational efficiency, and suit-
ability for specific scientific applications. ?By achieving this, thepaper aims to equip
researcherswith the necessary insights to select themost appropriate force field for
their particular molecular simulation needsSenftle et al., 2016

. ?The review will progress through a detailed comparative evaluation, highlight-
ing the unique features and optimal application domains for each potential, such
as biomolecular systems for CHARMM and AMBER, polarizable force fields like
AMOEBA for precise electrostatic modeling, reactive potentials such as ReaxFF for
chemical reactions, and machine learning-based approaches like DeepMD for ad-
vanced material simulationsAdcock McCammon, 2006

. ?The paper will conclude with clear recommendations, synthesizing the findings
to guide practitioners inmaking informeddecisions about potential selection in var-
ious research contextsAdcock McCammon, 2006

.

Rigorous Standards for Reference Selection

The reliability and scientific integrity of this review paper are underpinned by ad-
herence to rigorous standards for reference selection. ?All references included are
from peer-reviewed journals or other authoritative scientific publications, ensuring
that the research has undergone stringent scrutiny and validation by experts in the
fieldPortal, 2016

Hassan et al., 2022

Jett, 2012
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. ?Peer review is considered a fundamental hallmark of academic credibilityAn-
drews et al., 2022

. Furthermore, the citation count of a publication serves as an indicator of its impact
and recognition within the scientific community; highly cited works often represent
seminal contributions or widely accepted findings. However, this review also in-
corporates recent publications even with lower citation counts, particularly if they
present innovative advancements or critical updates in the rapidly evolving field
of molecular dynamics potentials. The relevance of each work to molecular dy-
namics potentials is meticulously assessed, ensuring that papers provide substan-
tial information on the development, implementation, comparison, or application
of these potentials. This includes studies that review existing force fields, bench-
mark their performance, address their limitations, or demonstrate their success-
ful application in specific scientific contexts. ?Finally, a strong emphasis is placed
on references that demonstrate transparency and reproducibility, ideally including
sufficient methodological detail to allow for replication, such as precise reporting
of parameters, algorithms, and validation practicesRobustelli et al., 2018

. These criteria collectively ensure that the selected references are authoritative,
impactful, current, and directly applicable, thereby providing a robust foundation
for the discussions on molecular dynamics potentials and their comparative utility.

Comparative Analysis and Guidelines for Force
Fields

4.1. Transferability

Transferability is the ability of a force field (FF) parameterized for a specific sys-
tem or chemical environment to performwell in other systems or environments not
included in the training data. It is a key indicator of the robustness and general
applicability of an FF across diverse chemical situations and molecular types.

Definition and Evaluation Criteria

• Parameter space coverage: Diversity of atom types, bond types, functional
groups, and chemical environments covered by FF parameters.

• OOD (Out-of-Distribution) prediction reliability: Ability to make sta-
ble and reliable predictions in new chemical environments not present in the
training data.

• Agreement with experiment and QM:Degree to which predicted physi-
cal properties (e.g.,∆G, density,MAE)matchexperimental or high-level quan-
tum mechanical (QM) results under various conditions.

Comparison by FF Type
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• Classical Force Fields: High transferability within trained chemical space,
but limited outside parameterization range. For example, CHARMM22, AM-
BER FF03, AMBER FF99SB, and OPLS-AA/L show different trends in back-
bone and sidechain structure prediction for amino acid residues, reflecting
the influence of charge models during parameterization.

• Polarizable Force Fields: Improve transferability via explicit polarization,
but increase parameterization complexity. AMOEBA FF, using induced dipole
and multipole models, accurately reproduces DNA and RNA solution/crystal
structures within 2.0 Å RMSD of NMR structures.

• Reactive Force Fields: Limited transferability, often restricted to specific
reaction types. In benchmarks for 20 amino acids and 11 dipeptides, ReaxFF
showed deviations over 100◦ in amino acid torsion angles and predicted non-
physical reaction mechanisms.

• Machine Learning-based Force Fields: High accuracy with large training
data, but vulnerable to OOD data. UQ (uncertainty quantification) is essential.
Models like MACE-OFF achieve RMSD 0.5 kcal/mol and torsion barrier MAE
0.8 kcal/mol for organic molecule torsion potential energy surfaces, outper-
forming traditional FFs, but may be unstable for OOD predictions.

4.2. Long-Range Interactions

Long-range interactions refer to electrostatic, polarization, dispersion, and other
effects that persist even at large atomic separations, critically impacting structure,
dynamics, and thermodynamic properties.

Definition and Evaluation Criteria

• Interaction treatment: How electrostatic, polarization, and dispersion in-
teractions are modeled.

• PME/Ewald/Thole models: Use of periodic boundary condition methods
and damping models for long-range interactions.

• Macroscopic property accuracy: Accuracy in predicting properties such
as water dielectric constant (ϵr), liquid density, and interfacial energy.

Comparison by FF Type

• Classical Force Fields: Use fixed charge models and treat long-range elec-
trostatics with PME or Ewald summation. Lack of explicit polarization leads
to underestimation of water dielectric constant by 5–10%. Use of LJ-PME im-
proves accuracy for density and surface tension in alkanes.

• Polarizable Force Fields: Employ induced dipole or multipole models and
Thole damping to implement environment-dependent polarization. AMOEBA
FFachieves 2–3%error inwater dielectric constant andhighprecision inprop-
erty prediction.
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• Reactive Force Fields: Use QEq (charge equilibration) for dynamic charge
distribution, but traditionally approximate or cut off long-range Coulomb in-
teractions. RecentEwald summation improvements yield 12%better graphene-
water interfacial capacitance.

• ML-based Force Fields: Rely on short-range cutoff learning, making long-
range interaction capture difficult. Hybrid approaches combine PME/Ewald
with ML-FF or use ML-predicted partial charges. Interfacial energy errors
range from 2.9 to 21.2 kcal/mol.

4.3. Numerical Stability

Numerical stability is a key factor in determining the reliability and efficiency ofMD
simulations with a given FF. It is assessed by energy conservation, structural in-
tegrity, and convergence behavior during long simulations.

Definition and Evaluation Criteria

• Energy drift: Degree of total energy conservation in NVE ensemble over
time.

• Trajectory integrity: Ability to maintain structural integrity during longMD
runs, assessed by RMSD and structural deformation.

• Convergence and nonphysical phenomena: Speed and stability of itera-
tive calculations (e.g., induced dipole, charge equilibration), and occurrence
of nonphysical breakdowns (e.g., charge runaway).

Comparison by FF Type

• Classical Force Fields: High stability, can maintain microsecond-scale tra-
jectories. Fixed functional forms and parameters yield low energy drift and re-
liable long-term simulations. Some variants (e.g., CHARMM22*, CHARMM27,
Amber ff99SB-ILDN) show better stability than others.

• Polarizable Force Fields: Induced dipole convergence can be problem-
atic, but improved SCF algorithms and predictor-corrector methods enable
microsecondMD. Drude-based FFs achieve stable trajectories for>5µs ubiq-
uitin simulations; increasing predictor-corrector history reduces energy drift
and speeds up calculations.

• Reactive Force Fields: Historically unstable due to charge runaway, but
new algorithms and potentials have greatly improved stability. NN-based re-
active FFs show much better energy conservation than ReaxFF.

• ML-based Force Fields: Extrapolation outside training data can cause in-
stability (holes, non-conservative forces). For example, 100%ofMACEFF tra-
jectories for MAPbI3 at 500 K were unstable. High accuracy is possible, but
instability arises outside training domain.
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4.4. Interpretability and Uncertainty Quantification

Interpretability refers to how directly FF parameters relate to physical/chemical
meaning and how transparently the model operates, enabling failure tracing. Un-
certainty quantification (UQ) refers to methods for quantitatively assessing the re-
liability of FF predictions, such as Bayesian inference and ensemble modeling.

Definition and Evaluation Criteria

• Physical meaning of parameters: How directly FF components map to
real physical/chemical concepts.

• Model transparency and failure tracing: Transparency of model opera-
tion and ease of identifying prediction errors.

• UQ method applicability and validity: Applicability and reliability of UQ
methods (Bayesian, ensemble) for quantifying prediction confidence.

Comparison by FF Type

• Classical Force Fields: Parametershave clear physicalmeaning (bond lengths,
angles, torsions), making interpretation and failure tracing easy. Bayesian in-
ference is used for UQ of FF parameters.

• Polarizable Force Fields: Added complexity from polarizability/induced
dipoleparameters, but still interpretable. UQstudiesquantify howuncertainty
in physical-chemical data affects FF performance.

• Reactive Force Fields: Bond order models are intuitive, but large param-
eter sets and correlations make interpretation difficult. UQ is in early stages;
Bayesian active learning and LTAU methods are being explored.

• ML-based Force Fields: Black-box models are hard to interpret; UQ (en-
semble, Bayesian) is essential for OOD detection and reliability assessment.

4.5. Summary Table of Comparative Analysis

5. Application Case Studies and Guidelines

Evaluating FF performance in real-world problems is essential for understanding
the strengths and limitations of each type. This section compares how each FF
type is used and performs in actual systems, using quantitative benchmarks.

5.1. Case Selection Criteria
• Representativeness and diversity: Includes systems or phenomena that

clearly illustrate the characteristics of each FF type.

• Availability of quantitative data: Prioritizes cases with sufficient bench-
mark data and reproducible simulation results in the literature.
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5.2. Quantitative Comparison Metrics

• Binding free energy (∆Gbinding): Thermodynamic stability of molecular in-
teractions (e.g., protein-ligand binding).

• Reaction activation energy: Kinetic barrier for chemical reactions.
• Experiment/QM error (MAE, RMSE): Mean absolute or root mean

square error between simulation predictions and experiment/high-level QM.

• Structural stability (RMSD):Structural integrity of the systemduring sim-
ulation.

• Thermodynamic properties (density, dielectric constant): Macroscopic
physical properties of liquids/solids.

Protein-ligandbinding is a crucial process indrugdevelopment, andaccurately pre-
dicting binding affinity is essential for designing new drug molecules.

- Limitation of classical FFs: Classical FFs use fixed charge models, so they can-
not properly reflect the electronic polarization effects that occur when a ligand en-
ters a protein binding pocket. This leads to errors in binding free energy predic-
tions, and the accuracy tends to decrease especially in polar environments. For ex-
ample, when predicting the binding free energy between Mg²� and H₂PO₄�, the
CHARMM fixed charge FF predicted �41.0 kcal/mol, which is a significant over-
estimation compared to the experimental value of �1.7 kcal/mol. This is because
non-polarizable FFs try to artificially compensate for real polarization effects with
excessively strong permanent electrostatic interactions.

- Improvement with polarizable FFs: Polarizable FFs (e.g., AMOEBA) explicitly in-
clude induceddipoles, realisticallymodeling electronicpolarizationeffects andgreatly
improving the accuracy of binding free energy predictions. Using AMOEBA FF, the
predicted binding free energy for Mg²� and H₂PO₄� was �2.23 kcal/mol, much
closer to the experimental value. In addition, when calculating the relative bind-
ing free energies of Mg²� and Ca²� for various proteins using AMOEBA FF, a high
correlation coefficient of 0.97 with experimentalmeasurements was observed. This
indicates that polarizable FFs capture the delicate balance of ion-protein interac-
tions better than classical FFs.

5.3.2. Lithium Battery Electrode-Electrolyte Interface Reactions: Reactive FF vs.
ML-based FF

Understanding the reactionmechanismsat the lithiumbattery electrode-electrolyte
interface (CEI) is essential for improving battery performance and lifespan. Reac-
tive FFs and ML-based FFs are used to model these complex chemical reactions.

-Capability and limitationsof reactiveFFs (ReaxFF): ReaxFFcandynamicallymodel
the formation andbreaking of chemical bonds,making it useful for qualitatively pre-
dicting reaction pathways such as CEI formation. However, ReaxFF has tradition-
ally handled long-range Coulomb interactions with a short-range cutoff for compu-
tational efficiency, which limits its accuracy in predicting electrical properties such
as interfacial capacitance. For example, short-range Coulomb (SRC) based ReaxFF
predicted the graphene-water interfacial capacitance as 4.4 ± 0.2 μF cm�², which
is 12
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- Accuracy and efficiency ofML-based FFs: ML-based FFs (e.g.,MACE) can predict
energies and forces with DFT-level accuracy by learning from vast quantum me-
chanical data. This achieves high accuracy (MAE 1–5 meV/atom) in reaction path-
way predictions, and computational efficiency is also greatly improved compared
to traditional QM methods. ML-FFs are powerful tools for quantitatively analyz-
ing complex interfacial reaction mechanisms like CEI at the atomic level. However,
ML-FFs can show prediction instability in out-of-distribution (OOD) environments,
and in 500 K simulations of the MAPbI₃ system, 100

5.3.3. Large-Scale Virus Capsid Assembly and Structure: Coarse-Grained FF

Coarse-grained (CG) FFs provide excellent efficiency for simulating the assembly
and structural dynamicsof largebiomolecular systems (e.g., virus capsids, cellmem-
branes).

- Efficiency of CG FFs (MARTINI): CG FFs like MARTINI 3 simplify multiple atoms
into a single“bead,”greatly reducing the system’s degrees of freedom and dra-
matically extending simulation time and length scales. This can improve sampling
efficiency by 3–4 orders of magnitude compared to atomistic FFs, enabling simu-
lations of giant molecular systems with hundreds of thousands of molecules over
millisecond timescales. For example, they are used to efficiently study complex
biological phenomena such as virus capsid assembly or liposome fusion.

- Structural artifacts and limitations: CG FFs sacrifice finemolecular interaction de-
tails, so they may not accurately reproduce certain important physical or chemical
properties at the atomic level. For example, they have limitations in finely model-
ing local hydrogen bond networks in proteins or specific solvation effects, and can
produce structural artifacts such as over-aggregation or underestimation of melt-
ing points. These limitations arise from the “coarseness”of the CG model and
the information loss during potential averaging. Therefore, CG FFs are useful for
macroscopic phenomenon analysis, but for cases requiring atomic-level precision,
hybrid (multi-scale) FFs or atomistic FFs are needed.

6. Practical Recommendations and Guidelines

Tomaximize the reliability and efficiency ofMD simulations, it is important to care-
fully select the Force Field (FF) that matches the research purpose and to follow a
systematic parameterization and validation workflow.

6.1. Problem-Based Force Field Selection Guide FF selection should be based on
three key elements: simulation objectives, system characteristics, and available
computational resources.

- Simulation objectives:

- Studying chemical reactions (bond formation/breaking): Consider reactive FFs
(e.g., ReaxFF) orML-based reactive FFs (NNRF). These canmodel dynamic chem-
ical changes via bond order models.

- Studying polarization effects and changes in the electrical environment (e.g., ion
solvation, protein-ligandbinding): PolarizableFFs (e.g., AMOEBA,CHARMMDrude)
are essential. These explicitly handle electronic polarization according to the envi-
ronment, increasing accuracy.

- Studying accurate structure and dynamics (no chemical reactions): Classical FFs
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(e.g., AMBER ff14SB, CHARMM36, OPLS-AA) or high-accuracyML-basedFFs (e.g.,
ANI, MACE) can be used.

- Large-scale systems or long-time simulations (macroscopic properties): Coarse-
grained FFs (e.g., MARTINI) or efficient classical FFs are suitable.

- System characteristics:

- Organicmolecules, biomolecules (proteins, DNA): Classical, polarizable, andML-
based FFs can all be used, selected according to the required accuracy.

5. Metals, ceramics, ionic crystals: Consider EAM,MEAM,COMBclassical FFs orML-
FFs specialized for inorganic materials.

6. Composites, multiphase interfaces: Reactive or ML-based FFs may better handle
complex interactions.

Computational resources
• Limited resources: Classical FFs are most efficient.

• High-performance computing (GPU, parallel): Can support the high computational
cost of polarizable and ML-based FFs.

Recommended Baselines
• Classical FF: AMBER ff14SB, CHARMM36, OPLS-AA/L (optimized for specific re-

search domains)

• Polarizable FF: AMOEBA, CHARMM Drude (accurate electrostatics and property
prediction)

• Reactive FF: Latest ReaxFF (for chemical reaction simulation)

• ML-based FF: ANI, MACE, NequIP (high accuracy, use UQ for OOD reliability)

6.2. FF Parameterization and Validation Workflow
Systematic workflow is essential for reliable FF development and use.

• QM data collection: Use high-quality quantummechanical data (e.g., ANI-1ccx,
DES370K, q-AQUA dimers) or generate with DFT/CCSD(T) for diverse atomic en-
vironments and forces.

• Parameter fitting/regularization: Use tools like ForceBalance/genetic algo-
rithms to fit FF parameters toQM/experimental data. ForML-FFs, use active learn-
ing to expand training data and optimize parameters; apply regularization to avoid
overfitting.

• Validation/benchmarking: Use independent test sets to evaluateFFperformance
(MAE, RMSE, density, dielectric constant, binding free energy, etc.). Use tools like
OpenFF Evaluator for systematic benchmarking. For ML-FFs, apply UQ to assess
prediction confidence.

• Distribution/reproducibility: Share parameter files, code, simulation/analysis
scripts in public repositories (e.g., GitHub) with DOIs for reproducibility.
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6.3. Reproducibility Checklist
To ensure reproducibility, clearly document and share:

• FF parameters and version

• Initial structure files (PDB, XYZ, etc.)

• Thermostat/barostat settings (type, coupling constant, target T/P)

• OOD detection results (for ML-FFs)

• Energy drift test results (NVE ensemble)

• Simulation/analysis scripts

• Software version (LAMMPS, CHARMM, GROMACS, OpenMM, etc.)

• Hardware/OS info

6.4. Pitfalls and Recommendations
Each FF type has unique failure modes and application limits.

• Classical FF: Not suitable for systems where polarization or chemical reactions
are critical.

• Polarizable FF: High computational cost for large/long simulations; watch for
induced dipole convergence issues.

• Reactive FF: Risk of charge runaway; reliability drops for reactions outside train-
ing domain.

• ML-based FF: Instability and energy drift possible for OOD extrapolation; always
use UQ for reliability.

• CG FF: Not suitable for systems needing fine molecular detail (e.g., hydrogen
bond networks); beware of artifacts like over-aggregation.

Recommended Baselines

• AMBER ff14SB,CHARMM36,OPLS-AA/L: For stable structure/dynamicsof biomolecules
or organics.

• AMOEBA, CHARMMDrude: For high-accuracy polarization effects.

• Latest ReaxFF: For chemical reaction simulation with improved energy conserva-
tion/stability.

• MACE, ANI (ML-FF): For high-accuracy systems with abundant QM data, always
use with UQ.
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7. Conclusion

7.1. Key Summary
This report provides an in-depth comparative analysis of four major types of molecular
dynamics force fields (FFs): classical, polarizable, reactive, andmachine learning-based.
The analysis focused on core issues: transferability, long-range interactions, numerical
stability, interpretability, and uncertainty quantification.

Classical FFs offer high computational efficiency and long-term numerical stability,
but have limitations in modeling polarization and chemical reactions. Polarizable FFs
explicitly treat polarization via induced dipole models, greatly improving property pre-
diction accuracy, but at the cost of higher computational expense and convergence chal-
lenges. Reactive FFs dynamically handle bond formation and breaking, but require fur-
ther improvement in transferability and stability. Recent ML-based FFs achieve high ac-
curacy by learning from quantum mechanical data, surpassing traditional FFs in some
cases, but remain challenged by OODprediction vulnerability and lack of interpretability.

7.2. Future Research Directions
Future research in molecular dynamics force fields should focus on:

• Hybrid ML-FF approaches: Integrating machine learning potentials with clas-
sical or polarizable FFs to combine accuracy and efficiency, and to improve trans-
ferability across chemical space.

• Multiscale modeling: Developing seamless coupling between atomistic, coarse-
grained, and continuum models to enable simulations of large, complex systems
with both fine detail and computational tractability.

• Uncertainty quantification: Advancing robust UQ methods for ML-FFs to reli-
ably detect OOD predictions and guide active learning.

• Automated parameterization: Creating automated, reproducible workflows for
FFparameterization and validation, leveraginghigh-throughputQMdata andopen-
source tools.

• Open data and reproducibility: Expanding public datasets, benchmarks, and
open-source software to accelerate FF development and ensure reproducibility.

Recent literature highlights rapid progress in ML-based potentials, active learning, and
multiscale simulation frameworks. Continuedcollaborationbetweencomputational chemists,
data scientists, and domain experts will be essential to address current limitations and re-
alize the full potential of next-generation force fields.

7.2. Study Limitations: This report conducted a literature review based on peer-
reviewed articles published in major academic databases from 2010 to 2025. Due to
specific database and time restrictions, some relevant literature may have been omitted,
and there may be quantitative/qualitative biases in the literature. In addition, a com-
prehensive comparison of all possible systems and conditions is a complex task beyond
the scope of this study, and we acknowledge that the performance of each FF may vary
depending on parameterization protocols, training datasets, and simulation settings.
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7.3. Future Prospects: FF development is entering a new phase with advances inML-
based FFs. Future research will focus on improving the OOD prediction reliability of ML-
FFs, effectively integrating long-range interactions, and advancing UQ techniques. Hy-
brid FFs that combine ML-FFs with classical or polarizable FFs are emerging as promis-
ing approaches that combine the strengths of each model to enhance both accuracy and
efficiency. In addition, algorithm development to improve the stability and transferabil-
ity of reactive FFs will continue. The construction of high-quality QM datasets and the
automation of FF parameterization/validation will play a key role in accelerating FF de-
velopment.

7.4. Practical Message: The comprehensive guidelines and quantitative benchmark
data provided in this report will help researchers make informed decisions in complex
FF environments. During FF selection and parameterization, it is important to clearly
understand the strengths and limitations of each FF type and to select the optimal FF
considering the purpose of the simulation and the characteristics of the system. In ad-
dition, transparent sharing of simulation settings and parameter information is important
for reproducible research. Continued efforts in FF development and validation will en-
hance the accuracy and reliability of molecular dynamics simulations, making essential
contributions to scientific and technological innovation in materials science, chemistry,
life sciences, and more.

Tab8https://getliner.com/ko/search/s/26974975/t/87847720?msg-entry-type=main
1. Classical Force Field A classical FF is a model that describes interatomic inter-

actions using fixed functional forms and static partial charge distributions. It is mainly
parameterized based on experimental data and quantummechanics (QM) calculation re-
sults.

Advantages
- Computational efficiency: Classical FFs have simple functional forms and clear pa-

rameterization, resulting in very high computational efficiency. This enables long simu-
lations at the microsecond (?s) scale for large systems with millions of atoms.

- High numerical stability: Thanks to fixed parameters and simple functional forms,
energy drift is relatively small in long MD simulations, and trajectories remain stable.

- Applicability to various systems: AMBER,CHARMM,OPLS, andGROMOSarewidely
used for simulations of various biomolecular and organic molecular systems, including
proteins, nucleic acids, carbohydrates, lipids, and organic molecules.

- High interpretability: Parameters have physical meaning such as bond length, bond
angle, and torsion angle, so the model’s operating principle is transparent and it is rela-
tively easy to trace the cause of prediction failures.

Disadvantages
- No polarization effect: Classical FFs use a fixed charge model and cannot explicitly

account for the dynamic polarization of electrons due to environmental changes. This
limits accuracy, especially in systems where polarization is important, such as polar sol-
vents, ionic liquids, and metal-protein interactions.

- Cannot model chemical reactions: The system topology must be fixed at the start
of the simulation, so chemical reactions such as bond formation or breaking cannot be
modeled.

- Limited transferability: While high transferability is shown within the trained chem-
ical space, accuracy can drop sharply in new chemical environments outside the param-
eterization range (Out-of-Distribution, OOD).

- Low absolute cooperativity reproduction: In studies of protein secondary structure
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formation or self-assembly systems, classical FFs cannot accurately describe absolute
cooperativity due to the lack of polarization effects.

Evaluation Criteria
- Accuracy: Evaluate howwell predictedphysicochemical properties (e.g., liquid den-

sity, solvation free energy, protein structure RMSD)match experimental or high-level QM
calculation results.

- Computational efficiency: Evaluate whether large-scale and long-time simulations
are possible and the number of atoms that can be processed per simulation time.

- Transferability: Evaluate whether the FF provides stable and reliable predictions for
new molecular systems or environments not included in training.

- Interpretability: Evaluate whether FF parameters have clear physical meaning and
whether it is easy to analyze the cause of simulation results and trace errors.

- Scope of application: Evaluate the limitations of the ability to handle specific phe-
nomena such as chemical reaction modeling and polarization effects.

2. Polarizable Force Fields A polarizable FF explicitly includes polarization effects,
i.e., deformation of the electron cloud due to environmental changes. It is implemented
using induced dipole (Drude oscillator model) or multipole (AMOEBA) models.

Advantages
- Improved accuracy: By explicitly modeling polarization effects, polarizable FFs sig-

nificantly improve accuracyover classical FFs inpredictingpolar environments, ion-molecule
interactions, and protein-ligand binding free energies. The AMOEBA FF reproduces the
dielectric constant of water with 2-3

- High agreement with experimental andQMdata: Polarizable FFs reproduce not only
macroscopic properties such as the dielectric constant of water, but also microscopic
structures and dynamic properties of various systems such as ion solutions and organic
liquids, with high agreement with experimental data.

- Realistic interaction modeling: Polarizable FFs are essential for predicting transport
properties of ionic liquids (ILs) and electrolytes, and are also needed to properly describe
protein structures. Polarization effects accurately describe cooperativity, which is limited
in fixed charge FFs.

Disadvantages
- High computational cost: To account for polarization effects, induced dipole calcu-

lations are performed iteratively using a self-consistent field (SCF) method, which signif-
icantly increases computational cost compared to classical FFs. Induced dipole calcula-
tions in AMOEBA FF can account for about 50

-Numerical stability issues: Slow convergence of SCF calculations or unphysical phe-
nomena such as charge runaway can compromise simulation stability. However, improv-
ing the ’always stable predictor-corrector (ASPC)’ method can reduce energy drift and
lower computational cost by 20

-Complexparameterization: Additional parameters suchaspolarizability are required,
and their optimization can be more complex and time-consuming than for classical FFs.

Evaluation Criteria
- Ability to account for polarization effects: Evaluate how important electronic polar-

ization is in determining the key physicochemical properties of the system.
- Computational cost: Evaluate whether the additional computational resources and

time required for polarization effectmodeling aremanageable within available resources.
- Numerical stability: Evaluate whether energy drift is within acceptable limits in long

MD simulations and whether unphysical phenomena do not occur.
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- Agreement with experiment and QM: Evaluate how accurately predicted properties
such as the dielectric constant of water, solvation free energy, and protein-ligand binding
free energy match experimental or high-level QM results.

3. Reactive Force Fields A reactive FF is a FF that can dynamically handle the forma-
tion and breaking of chemical bonds. It is implemented through potential energy func-
tions that depend on bond order and dynamic charge redistributionmodels (charge equi-
libration, QEq). ReaxFF is the most representative reactive FF.

Advantages
- Ability to model chemical reactions: Can dynamically model the breaking and for-

mation (atom transfer) of chemical bonds during simulation. This enables the study of
complex chemical reaction phenomena such as combustion, catalytic reactions, mate-
rial fracture and deformation, and battery interface reactions.

- Transferability: ReaxFFuses element-specific parameters andhas considerable trans-
ferability across various chemical environments and phases (solid, liquid, gas).

- Computational efficiency: Much more efficient than quantummechanics (QM) cal-
culations, while being able to handle chemical reactions, making it applicable to large
systems or long reaction simulations that are impossible with QM.

Disadvantages
- Limited transferability and accuracy: Transferability is limited to specific reaction

types or trained databases, and accuracy can drop sharply in OOD environments. There
have been reports of amino acid torsion angle errors exceeding 100° in torsion barrier
predictions.

- Numerical stability issues: Early versions of ReaxFF had problems with instability
and poor energy conservation due to instability in charge equilibration (QEq) calculations
(’charge runaway’). However, recent algorithm improvements have enhanced stability.

-Highparameterization complexity: While thebondordermodel is intuitive, the num-
ber of parameters is very large and highly interdependent, making parameterization com-
plex and difficult.

Evaluation Criteria
- Chemical reaction prediction: Evaluate how accurately and physically plausibly ac-

tual reaction pathways, transition states, and activation energies are predicted.
- Transferability: Evaluatewhether stable and reasonable predictions are provided for

other chemical systems or reaction conditions outside the parameterized system.
- Numerical stability: Evaluate whether the total energy of the system is well con-

served during long MD simulations and whether trajectories remain stable without un-
physical phenomena (e.g., charge runaway).

- Computational efficiency: Evaluate the cost savings compared to QM simulations
and whether the speed is suitable for the target system and time scale.

- Parameterization difficulty: Evaluate the complexity of the parameter set, the effort
required for optimization, and the dependence on experts.

4. Machine Learning Force Fields (ML-FF) ML-FFs are FFs that learn quantum me-
chanics (QM) calculation data to construct potential energy as a nonlinear model (e.g.,
neural network). NequIP, MACE, ANI, and SchNet are representative examples.

Advantages
- High QM-level accuracy: ML-FFs learn energy and force data from QM calculations

(e.g., DFT) and achieve much higher accuracy than classical FFs. They record low mean
absolute errors (MAE) of 1-5 meV/atom in energy and force predictions, and the ANI-
1ccx model showed the best performance with an MAE of 0.8 kcal/mol in torsion barrier
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predictions for specific organic molecules.
- Ability to model complex chemical environments: ML-FFs can effectively model

complex chemical environments (e.g., multiple bonds, transition metals, chemical reac-
tions) that are difficult for conventional empirical FFs.

- Data-driven flexibility: By learning from large QM datasets, ML-FFs can be applied
to various atomic combinations and structures, and training datasets can be efficiently
expanded through active learning, etc.

- Potential integration of long-range interactions: There are ongoing attempts to im-
prove the accuracy of long-range interactions by combining traditional PME/Ewald sum-
mation with ML-FFs or by estimating atomic partial charges with ML and integrating with
existing Ewald methods.

Disadvantages
- OOD (Out-of-Distribution) prediction vulnerability: ML-FFs have high prediction

uncertainty or rapidly deteriorating prediction quality for new chemical environments
outside the training data distribution. In a 500 K simulation of the MAPbI3 system, 100

- Limited interpretability (”black box”): ML-FFs are often considered ”black box”
models, making it difficult to intuitively interpret the internal operating principles or the
physicalmeaningof parameters. Thismakes it complex to analyze and improve the causes
of prediction errors.

- High training data and computational resource requirements: Achieving high ac-
curacy requires large, high-quality QM datasets, and model training and inference may
require significant computational resources.

- Numerical stability issues: Related to OOD prediction vulnerability, there is a risk
of incomplete energy conservation or unphysical trajectory collapse (e.g., ”holes” phe-
nomenon) during long MD simulations.

5. Coarse-GrainedForceFields (CG-FF)A coarse-grainedFF is amodel that simplifies
multiple atoms into a single ”bead” to reduce the degrees of freedom of the system and
maximize computational efficiency.

Advantages
- Dramatic sampling efficiency: Compared to atomistic models, the degrees of free-

dom are greatly reduced, resulting in a dramatic increase in simulation speed. This ex-
tends the time scale by several orders of magnitude, enabling simulations of large molec-
ular systems with hundreds of thousands of molecules for timescales of several millisec-
onds or more.

- Applicability to large systems: Very useful for studying macroscopic properties and
long-term dynamics of large-scale systems such as biomacromolecules (proteins, lipid
membranes), ionic liquids, and polymer nanocomposites, which are difficult to approach
with atomistic FFs.

- Reduced computational cost: The number of particles and the amount of interaction
calculations to be processed are significantly reduced, enabling large-scale simulations
even in environments with limited computing resources.

Disadvantages
- Reduced structural accuracy: Due to high dimensionality reduction and simplifica-

tion, it is difficult to fully represent fine structural and electronic interactions. This means
that the reflection of specific atomic interactions (e.g., hydrogen bond networks) or po-
larization effects is limited.

- Information loss and artifact occurrence: Sacrificing atomic-level details smooths
the system’s potential energy surface and reduces molecular friction, but can lead to
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unphysical structural artifacts such as over-aggregation or underestimation of melting
points. Models based on liquid-liquid partitioning have shown freezing and compression
of polymer chains near the surface.

- Limited chemical specificity: Not suitable for studies requiring precise atomic-level
information such as specific chemical reactions, electron potential distributions, or so-
phisticated electrodynamic phenomena.

- Transferability and parameterization complexity: The process of constructing an ef-
fectiveHamiltonian and determining parameters is complex, and theremay be limitations
in transferability in OOD situations.

Force Field Selection Guidelines for Drug Discovery
and Catalysis Research
1. Drug Discovery In drug discovery, force fields that can accurately model the interac-
tions between biomolecules and small molecules are advantageous. CHARMM is useful
for studying drug-membrane protein interactions because it can stably simulate protein-
lipid membrane complexes, and AMBER is the de facto standard for protein-ligand bind-
ing studies because it excellently reproduces the structural stability of protein backbones
and side chains. OPLS is optimized for organic molecules and solvent systems and is
widely used for free energy calculations of drug candidates and evaluation of drug-protein
binding affinity. In addition, ANI, a machine learning-based FF, maintains DFT-level ac-
curacy andcan rapidly explore smallmolecule reactionpathways or binding free energies,
greatly accelerating drug discovery.

2. Catalysis Research In catalysis research, force fields capable of charge redistribu-
tion, metal-ligand interactions, and reaction pathway tracking are important. AMOEBA
implementsmultipoles andexplicit polarization, showinghighaccuracy in studies ofmetal
complex-ligand binding, catalyst surface charge distribution, and intermediate stabiliza-
tion. ANI is limited for transition metal catalysts but is much more precise than classi-
cal FFs for organic catalytic reactions or small molecule activation pathway exploration.
ReaxFF, thanks to its continuous bond order, can spontaneously capture bond formation
and breaking and charge transfer, and is widely used in studies of combustion catalysis,
surface catalytic reactions, and redox mechanisms.

3. Battery Research In battery research, force fields capable of accurately describing
physicochemical processes such as ion conduction, electrolyte stability, and interfacial
reactions are needed. PCFF is suitable for studies of polymer electrolytes and solid elec-
trolytes because it describes the thermodynamic and mechanical behavior of polymers
and amorphous materials well. DeepMD provides QM-level accuracy even for systems
with hundreds of thousands of atoms, making it powerful for studying macroscopic reac-
tions at metal, ionic liquid, and electrode-electrolyte interfaces. ReaxFF, through bond
order anddynamic charge transfer, can handle electrode-electrolyte interfacial reactions,
SEI formation, and electrolyte decomposition, making it a representative tool for electro-
chemical stability research.
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Final Notes and Credits
This supporting information and themainpaperwereorganizedand refinedusingGitHub
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Copilot. Any errors in the document represent the errors AI actually produced.
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