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Abstract

Machine learning systems are often used in settings where individuals adapt their features
to obtain a desired outcome. In such settings, strategic behavior leads to a sharp loss in
model performance in deployment. In this work, we aim to address this problem by learning
classifiers that encourage decision subjects to change their features in a way that leads to
improvement in both predicted and true outcome. We frame the dynamics of prediction and
adaptation as a two-stage game, and characterize optimal strategies for the model designer
and its decision subjects. In benchmarks on simulated and real-world datasets, we find
that classifiers trained using our method maintain the accuracy of existing approaches while
inducing higher levels of improvement and less manipulation.

1 Introduction

Individuals subject to a classifier’s predictions may act strategically to influence their predictions. Such
behavior, often referred to as strategic manipulation Hardt et al. (2016a), may lead to sharp deterioration in
classification performance. However, not all strategic behavior is detrimental: in many applications, model
designers stand to benefit from strategic adaptation if they deploy a classifier that incentivizes decision
subjects to perform adaptations that improve their true outcome Haghtalab et al. (2020); Shavit et al. (2020).
For example:

• Lending: In lending, a classifier predicts a loan applicant’s ability to repay their loan. If the classifier is
designed so as to incentivize the applicants to improve their income, it will also improve the likelihood of
repayment.

• Content Moderation: In online shopping, a recommender system suggests products to customers based
on their relevance. Ideally, the algorithm should incentivize the product sellers to publish accurate product
descriptions by aligning this with improved recommendation rankings.

• Course design: an instructor designs schoolwork to incentivize students to invest their e�orts on studying
rather than cheating on an exam Kleinberg & Raghavan (2020).

• Car insurance determination: an auto insurer tries to predict drivers’ expected accident costs, and by
designing a determination criterion, encourages safe driving behavior. Haghtalab et al. (2020); Shavit et al.
(2020)

In this work, we study the following mechanism design problem: a model designer needs to train a classifier
that will make predictions over decision subjects who will alter their features to obtain a specific prediction.
Our goal is to learn a classifier that is accurate and that incentivizes decision subjects to adapt their features
in a way that improves both their predicted and true outcomes. Our main contributions are as follows:

1. We introduce a new approach to handle strategic adaptation in machine learning, based on a new concept
we call the constructive adaptation risk, which trains classifiers that incentivize decision subjects to adapt
their features in ways that improve true outcomes. Under the assumption of a feature taxonomy that
distinguishes improvable features (features that, if changed, lead to changes in the true qualification) from
non-causal features (which do not lead to changes in the true qualification), we provide formal evidence
that this risk captures both the strategic and constructive dimensions of decision subjects’ behavior.
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2. We characterize the dynamics of strategic decision subjects and the model designer in a classification
setting using a two-player sequential game. We begin by generalizing cost functions used in previous
works on strategic classification to the Mahalanobis distance, which provides a way to capture correlations
between changes in di�erent features. Under this generalization, we derive closed-form expressions for the
decision subjects’ optimal strategies (Theorem 1). These expressions (Section 3.3) reveal insights about
decision subjects’ behavior when the model designer uses non-causal features (features that do not a�ect
the true outcome) as predictors.

3. We formulate the problem of training such a desired classifier as a risk minimization problem. We evaluate
our method on simulated and real-world datasets to demonstrate how it can be used to incentivize
improvement or discourage adversarial manipulation. Our empirical results show that our method
outperforms existing approaches, even when some feature types are misspecified. In addition, we provide a
potential way to extend our main result into a non-linear setting using LIME Ribeiro et al. (2016).

1.1 Related work

Our paper builds on the strategic classification literature in machine learning (Hardt et al., 2016a; Cai et al.,
2015; Ben-Porat & Tennenholtz, 2017; Chen et al., 2018; Dong et al., 2018; Dekel et al., 2010; Chen et al.,
2020; Tsirtsis et al., 2019). We study the interactions between a model designer and decision subjects using a
a sequential two-player Stackelberg game (see e.g., Hardt et al., 2016a; Brückner & Sche�er, 2011; Balcan
et al., 2015; Dong et al., 2018, for similar formulations). Departing from previous work, which aims to
suppress all adaptations, we consider a setting in which strategic adaptation can consist of manipulation as
well as improvement. Our broader goal of designing a classifier that encourages improvement is characteristic
of recent work in this area (see e.g., Kleinberg & Raghavan, 2020; Haghtalab et al., 2020; Shavit et al.,
2020; Rosenfeld et al., 2020). Specifically, Haghtalab et al. Haghtalab et al. (2020) study how to design an
evaluation mechanism that incentivizes individuals to improve a desired quality. However, the success of
their method requires explicit assumptions on the linear mapping of features to true qualifications, as well
as a projection matrix P that maps the observed features back to the full features. Their setting also does
not account for correlations between di�erent features. Another recent work by Shavit et al. Shavit et al.
(2020) also focuses on finding a decision rule that maximizes decision subjects’ true qualifications. Their
setting is similar to ours, but they focus on how decision makers can perform causal interventions through
the deployment of di�erent decision rules, rather than designing a classifier relying only on observational
data. Moreover, they assume that decision subjects take actions in some action space that maps linearly to
features in feature space; this also does not capture correlations between features.

This paper also broadly relates to work on recourse (Ustun et al., 2019; Venkatasubramanian & Alfano, 2020;
Karimi et al., 2020a; Gupta et al., 2019; Karimi et al., 2020b; von Kügelgen et al., 2020) in that we aim to fit
models that provide constructive recourse, i.e. actions that allow decision subjects to improve both their
predicted and true outcomes.

Our approach may be useful for mitigating the disparate e�ects of strategic adaptation Hu et al. (2019); Milli
et al. (2019); Liu et al. (2020) that stem from di�erences in the cost of manipulation (see Proposition 4).
Our results may be helpful for developing robust classifiers in dynamic environments, where both decision
subjects’ features and the deployed models may vary across time periods (Kilbertus et al., 2020; Shavit et al.,
2020; Liu & Chen, 2017).

Also relevant is the recent work on performative prediction Perdomo et al. (2020); Miller et al. (2021); Izzo
et al. (2021); Mendler-Dünner et al. (2020), in which the choice of model itself a�ects the distribution over
instances. However, this literature di�ers from ours in that we focus on inducing constructive adaptations
from decision subjects at a single step, rather than finding an optimal policy that incurs the minimum
deployment error.

2 Problem statement

In this section, we describe our approach to training a classifier that incentivizes improving actions.
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2.1 Preliminaries

We consider a standard classification task of training a classifier h : Rd
æ {≠1, +1} from a dataset of

n examples {(xi, yi)}n
i=1, where example i consists of a vector of d features xi œ Rd and a binary label

yi œ {≠1, +1}. Example i corresponds to a person who wishes to receive a positive prediction h(xi) = +1,
and who will alter their features to obtain such a prediction once the model is deployed.

We formalize these dynamics as a sequential game between the following two players:

1. A model designer, who trains a classifier h : X æ {≠1, +1} from a hypothesis class H.

2. Decision subjects, who adapt their features from x to xÕ so as to be assigned h(xÕ) = +1 if possible. We
assume that decision subjects incur a cost for altering their features, which we represent using a cost
function c : X ◊ X æ R+.

We assume that decision subjects know the model designer’s classifier, and the model designer knows the
decision subjects’ cost function. Decision subjects alter their features based on their current features x, the
cost function c, and the classifier h, so that their altered features can be written xú = �(x; h, c) where �(·)
is the best response function. The model designer only observes the altered feature xú but not the original
and private one x the decision subject holds. In other words, we consider the standard setting in strategic
classification where the model designer has no strong verification power to verify truthfulness of xú.

We allow adaptations that alter the true qualification. In practice, the relationship between features and true
qualification is unknown, and in fact it is known that distinguishing causal features (features that a�ect the
true outcome) from non-causal features reduces to solving a non-trivial causal inference problem Miller et al.
(2020). Addressing this aspect is not the aim of the present work; instead, we will assume that changes in
certain features are known to a�ect the qualification.

We consider a setting in which during the training process, the decision maker cannot observe how decision
subjects’ true qualifications change after they alter their features. Thus we adopt the convention that a label
y always denotes the true qualification before adaptation.

2.2 Background

In a standard prediction setting, a model designer trains a classifier that minimizes the empirical risk:

hú

ERM œ arg min
hœH

RERM(h)

where RERM(h) = Ex≥D[ (h(x) ”= y)]. This classifier performs poorly in a setting with strategic adaptation,
since the model is deployed on a population with a di�erent distribution over X (as decision subjects alter
their features) and y (as changes in features may alter true outcomes).

Existing approaches in strategic classification tackle these issues by training a classifier that is robust to
all adaptation. This approach treats all adaptation as undesirable, and seeks to maximize accuracy by
discouraging it entirely. Formally, they train a classifier that minimizes the strategic risk:

hú

SC œ arg min
hœH

RSC(h)

where RSC(h) = Ex≥D[ (h(xú) ”= y)], and xú = �(x, h; c) denotes the features of a decision subject after
adaptation. However, this classifier still has suboptimal accuracy because y changes as a result of the
adaptation in x. Further, this design choice misses the opportunity to encourage a profile x to truly improve
to change their y.

2.3 CA risk: minimizing error while encouraging constructive adaptation

In many applications, model designers are better o� when decision subjects adapt their features in a way
that yields a specific true outcome, such as y = +1. Consider a typical lending application where a model is
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used to predict whether a customer will repay a loan. In this case, a model designer benefits from y = +1, as
this means that a borrower will repay their loan.

To help explain our proposed approach, we assume that we can write x = [xI | xM | xIM] where xI, xM and
xIM denote the following categories of features:

• Immutable features (xIM), which cannot be altered (e.g. race, age).
• Improvable features (xI), which can be altered in a way that will either increase or decrease the true

outcome y(x) (e.g. increasing education level might help improve the probability of repayment).
• Manipulable features (xM), which can be altered without changing the true outcome y(x) (e.g. social media

presence, which can be used as a proxy for influence). Notice that it is the change in these features that is
undesirable; the features themselves may still be useful for prediction.

Incomplete taxonomy of features. There may also be features that can be altered but whose e�ect is
unknown. In this work, we treat them as manipulable features. We would like to point out that in practice,
implementing our proposed solution does not require the decision-maker to know exactly how to characterize
every single feature. In fact, our method can be applied to settings where the decision-makers only know
some features are improvable and focus on incentivizing adaptations on them, while treating changes on
the rest of the features as undesirable. In this case, using our training method is still strictly better than
performing no intervention (i.e. simply letting decision subjects perform their unconstrained best response).

Z1 X1

Y

X2Z2

M1

M2

Figure 1: A causal DAG for the toy data. Z1 and Z2 are improvable features that determine the true
qualification Y , X1 = Z1, and X2 is a noisy proxy for Z2. In our context, all we require is the knowledge that
X1, X2 are the factors that causally a�ect Y , rather than complete knowledge of the DAG. We can directly
observe X1 and X2 but not Z1 or Z2. In addition, M1 and M2 are manipulated features that correlate with
Y .

Please see Figure 1 for a demonstration of the di�erences between improvable and manipulable features. We
also use xA = [xI | xM] to denote the actionable features, and dA to denote its dimension. Note that the
question of how to decide which features are of which type is beyond the scope of the present work; however,
this is the topic of intense study in the causal inference literature Miller et al. (2020). Analogously, we define
the following variants of the best response function �:

• xI
ú = �I(x, h; c): the improving best response, which involves an adaptation that only alters improvable

features.
• xM

ú = �M(x, h; c): the manipulating best response, which involves an adaptation that only alters manipulable
features.

Note that in reality, a decision subject can still alter both types of features, which means that they will
perform �(x, h; c), unless the model designer explicitly forbids changing certain features. However, it still
worth distinguishing di�erent types of best responses when the model designer designs the classifier: we
can think of the improving best response �I as the best possible adaptation which only consists of honest
improvement, while the manipulating best response �M is the worst possible adaptation that consists of
pure manipulation. The model designer would like to design a classifier such that for the decision subjects,
�(x, h; c) appears to be close to �I(x, h; c). We therefore propose to train a classifier that minimizes the
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constructive adaptation (CA) risk RCA, which balances robustness to manipulation and incentivization of
improvement:

hú

CA œ arg min
hœH

RCA(h) := RM(h) + ⁄ · RI(h) (1)

The first term, RM(h) = Ex≥D[1(h(xM
ú) ”= y)], is the manipulation risk, which penalizes pure manipulation.

The second term, RI(h) = Ex≥D[1(h(xI
ú) ”= +1)], is the improvement risk, which rewards decision subjects for

playing their improving best response. The parameter ⁄ > 0 trades o� between these competing objectives.
Setting ⁄ æ 0 results in an objective that simply discourages manipulation, whereas increasing ⁄ æ Œ yields
a trivial classifier that always predicts +1.

The two terms in the objective function can also be viewed as proxies for other familiar notions. In Section 4,
we show that under reasonable conditions, the following hold:

• The first term, RM(h), is an upper bound on RSC(h). Thus minimizing the manipulation risk also minimizes
the traditional strategic risk.

• A decrease in the second term, RI(h) reflects an increase in Pr(y(xI
ú) = +1). Thus improvement in the

prediction outcome aligns with improvement in the true qualification.

3 Decision subjects’ best response

We now characterize the decision subjects’ best response.

3.1 Setup

We restrict our analysis to the setting in which a model designer trains a linear classifier h(x) = sign(wTx),
where w = [w0, w1, . . . , wd] œ Rd+1 denotes a vector of d + 1 weights. We capture the cost of altering x to xÕ

through the Mahalanobis norm of the changes:1

c(x, xÕ) =
Ò

(xA ≠ xA
Õ)TS≠1(xA ≠ xA

Õ)

Here, S≠1
œ RdA ◊ RdA is a symmetric cost covariance matrix in which S≠1

j,k represents the cost of altering
features j and k simultaneously. To ensure that c(·) is a valid norm, we require S≠1 to be positive definite,
meaning xA

TS≠1xA > 0 for all xA ”= 0 œ RdA . Additionally, we assume S≠1 is a block matrix of the form

S≠1 =
5

(S≠1)I (S≠1)IM
(S≠1)MI (S≠1)M

6
, or S =

5
SI SIM

SMI SM

6
(2)

Notice that the I-th block of matrix S≠1 (i.e. (S≠1)I) does not necessarily equal to its inverse’s I-th block
component (i.e. SI

≠1).

We allow the cost matrix to contain non-zero elements on non-diagonal entries. This means that our results
hold even when there are interaction e�ects when altering multiple features. This generalizes prior work on
strategic classification in which the cost is based on the ¸2 norm of the changes, which is tantamount to
setting S≠1 = I, and therefore assumes the change in each feature contributes independently to the overall
cost (see e.g., Hardt et al., 2016a; Haghtalab et al., 2020).

3.2 Decision subject’s best response model

Given the assumptions of Section 3.1, we can define and analyze the decision subjects’ best response. We
start by defining the decision subject’s payo� function. Given a classifier h, a decision subject who alters
their features from x to xÕ derives total utility

U(x, xÕ) = h(xÕ) ≠ c(x, xÕ)

Naturally, a decision subject tries to maximize their utility; that is, they play their best response:
1
Since immutable features xIM cannot be altered, the cost function involves only the actionable features xA.
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Definition 3.1 (F-Best Response Function). Let F œ {I, M, A}, and let X
ú

F (x) denote the set of vectors that
di�er from x only in features of type F. Let �F : X æ X denote the F-best response of a decision subject
with features x to h, defined as:

�F(x) = arg max
x

Õ
œX

ú
F (x)

U(x, xÕ)

Setting F = I gives the improving best response �I(x), in which the adaptation changes only the improvable
features; setting F = M yields the manipulating best response �M(x), in which only manipulable features
are changed. Setting F = A, we get the standard unconstrained best response �A(x) in which any actionable
features can be changed. As we mentioned earlier, we will also use xF

ú := �F(x) as shorthand for the F-best
response, and we denote �(x) := �A(x).

Intuitively, the cost of manipulation should be smaller than the cost of actual improvement. For example,
improving one’s coding skills should take more e�ort, and thus be more costly, than simply memorizing
answers to coding problems. As a result, one would expect the gaming best response �M(x) and the
unconstrained best response �(x) to flip a negative decision more easily than the improving best response
�I(x). In Section 3.3, we formalize this notion (Proposition 2).

For ease of notation, let ‚SF := ((S≠1)F)≠1.We prove the following theorem characterizing the decision subject’s
di�erent best responses:
Theorem 1 (F-Best Response in Closed-Form). Given a linear threshold function h(x) = sign(wTx) and a
decision subject with features x such that h(x) = ≠1, reorder the features so that x = [xF | xA\F | xIM], and
let �F = wF

T ‚SFwF. Then x has F-best response

�F(x) =

Y
]

[

Ë
xF ≠

w
T

x
�F

‚SFwF
È

| xA\F | xIM, if |w
T

x|
Ô

�F
Æ 2

x, otherwise
(3)

with corresponding cost

c(x, �F(x)) =

Y
]

[

|w
T

x|
Ô

�F
, if |w

T
x|

Ô
�F

Æ 2

0 otherwise
.

All proofs in this section are included in Appendix B.

Example: When F = M, xF = xM and xA\F = [xI]. After reordering features, we get the following closed-form
expression for the manipulating best response:

�M(x) =

Y
]

[

Ë
xI | xM ≠

w
T

x
�M

‚SMwM | xIM
È

if |w
T

x|
Ô

�M
Æ 2

x, otherwise

with corresponding cost

c(x, �M(x)) =

Y
]

[

|w
T

x|
Ô

�M
, if |w

T
x|

Ô
�M

Æ 2

0 otherwise
.

3.3 Discussion

We now discuss the implications of di�erent decision subject’s responses derived in Theorem 1. In this
section, we consider a slightly more structured cost matrix that is diagonal blocked matrix (in which case,
S≠1

IM = S≠1
MI = 0), which corresponds to a setting where there are no correlations between the cost of changing

manipulated feature versus the cost of changing improvable features. We include the proofs in Appendix C.

Firstly, we demonstrate a basic limitation for the model designer: if the classifier uses any manipulable
features as predictors, then decision subjects will find a way to exploit them. Hence the only way to avoid
any possibility of manipulation is to train a classifier without such features.
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Proposition 1 (Preventing Manipulation is Hard). Suppose there exists a manipulated feature x(m) whose
weight in the classifier w(m)

A is nonzero. Then for almost every x œ X , �(m)(x) ”= x(m).

Next, we show that the unconstrained best response �(x) dominates the improving best response �I(x), thus
highlighting the di�culty of inducing decision subjects to change only their improvable features when they
are also allowed to change manipulable features.
Proposition 2 (Unconstrained Best Response Dominates Improving Best Response). Suppose there exists
a manipulable feature x(m) whose weight in the classifier w(m)

A is nonzero. Then, if a decision subject can
flip her decision by playing the improving best response, she can also do so by playing the unconstrained best
response. The converse is not true: there exist decision subjects who can flip their predictions through their
unconstrained best response but not their improving best response.

Next, we show how correlations between features a�ect the cost of adaptation. This can be demonstrated by
looking at any cost matrix and adding a small nonzero quantity · to some i, j-th and j, i-th entries. Such a
perturbation can reduce every decision subject’s best-response cost:
Proposition 3 (Correlations between Features May Reduce Cost). For any cost matrix S≠1 and any
nontrivial classifier h, there exist indices k, ¸ œ [dA] and · œ R such that every feature vector x has lower
best-response cost under the cost matrix S̃≠1 given by

S̃≠1
ij = S̃≠1

ji =
I

S≠1
ij + ·, if i = k, j = ¸

S≠1
ij , otherwise

than under S≠1; that is, c
S̃

≠1(x, �(x)) < c
S

≠1(x, �(x)) for all x.

In many applications, decision subjects may incur di�erent costs for modifying their features, resulting in
disparities in prediction outcomes (see Hu et al., 2019, for a discussion). To formalize this phenomenon,
suppose � and � are two groups whose costs of changing improvable features are identical, but members of �
incur higher costs for changing manipulable features. Let „ œ � and Â œ � be two people from these groups
who share the same profile, i.e. x„ = xÂ. We show the following:

Proposition 4 (Cost Disparities between Subgroups). Suppose there exists a manipulated feature x(m) whose
corresponding weight in the classifier w(m)

A is nonzero. Then if decision subjects are allowed to modify any
features, „ must pay a higher cost than Â to flip their classification decision.

Proposition 4 highlights the importance for a model designer to account for these di�erences when serving
a population with heterogeneous subgroups. Indeed, when one group achieves more favorable prediction
outcomes due to a lower cost of manipulation, our method mitigates the cost disparities between di�erent
subgroups by encouraging changes in improvable features and penalizing manipulation.

4 Constructive adaptation risk minimization

In this section we analyze the training objective for the model designer, formulating it as an empirical risk
minimization (ERM) problem. Any omitted details can be found in Appendix D.

The model designer’s goal is to publish a classifier h that maximizes the classification accuracy while
incentivizing individuals to change their improvable features. By Theorem 1, we have

xM
ú =

Y
]

[

Ë
xI | xM ≠

w
T

x
�M

ÂSMwM | xIM
È

if |w
T

x|
Ô

�M
Æ 2

x, otherwise
(4)

xI
ú =

Y
]

[

Ë
xI ≠

w
T

x
�I

ÂSIwI | xM | xIM
È

, if |w
T

x|
Ô

�I
Æ 2

x, otherwise
(5)
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Recall from Section 2.3 that the model designer’s optimization program is as follows:

min
hœH

E
x≥D

[1(h(xM
ú) ”= y)] + ⁄ E

x≥D

[1(h(xI
ú) ”= +1)]

s.t. xM
ú in Eq. (4), xI

ú in Eq. (5) (6)

Interpreting the objective. The two terms in the objective function can be viewed as proxies for two
other familiar objectives. The first term, Ex≥D [1(h(xM

ú) ”= y)], directly penalizes pure manipulation. But as
the following proposition suggests, minimizing this term also minimizes the traditional strategic risk when
the true qualification does not change:
Proposition 5. Assume that the manipulating best response is more likely to result in a positive prediction
than the unconstrained best response, given that the true labels do not change. Then

E
x≥D

[1[h(xú) ”= y] | �(y) = y] Æ E
x≥D

[1(h(xM
ú) ”= y)] .

Intuitively, the assumption within Proposition 5 may be fulfilled in settings where a population of agents each
have the same fixed budget on the cost or e�ort they are willing to expend, and manipulative or cheating-type
actions (for instance, (controlling recent purchase behaviors and borrowing money from family members
right before applying for a credit card) confer greater immediate advantages than honest improvement (e.g.
spending frugally and accruing savings from personal income over several years).

The second term, Ex≥D [1(h(xI
ú) ”= +1)], explicitly rewards decision subjects for playing their improving best

response (closely related to the notion of recourse). Of course, without positing a causal graph, we cannot
know whether preforming the improving best response leads to a positive change in the true qualification,
namely whether �I(Y ) = +1; however, in the setting of covariate shift, in which the distribution of X may
change but not the conditional label distribution Pr(Y |X), we can show that an increase in Pr(h(X) = +1)
reflects an increase in Pr(Y = +1). This gives formal evidence that our prediction outcome aligns with
improvement in the true qualification:
Proposition 6. Let D

ú be the new distribution after decision subject’s best response. Denote Êh(x) =
PrDú (X=x)
PrD(X=x) denote the amount of adaptation induced at feature vector x. Suppose y(X) and h(X) are both

positively correlated with Êh(X), and that Pr(Y |X) is the same before and after adaptation (the covariate
shift assumption). Then the following are equivalent:

Pr[h(xI
ú) = +1] > Pr[h(x) = +1] ≈∆ Pr[y(xI

ú) = +1] > Pr[y(x) = +1].

Proofs of Propositions 5 and 6 can be found in Appendix D.1 and D.2. We also provide further derivation for
model designer’s objective function in Appendix D.3.

Here we provide some motivation for the premise of Proposition 6. An unchanged Pr(Y |X) means that the
mapping from feature vector X to its corresponding true qualification Y (X) remains the same despite a
population-level distribution shift. This is commonly referred to as the covariate shift setup in the domain
adaptation literature, which is a useful and natural simplification in numerous settings Ben-David et al.
(2010). An example is in credit card applications: suppose X is an applicant’s credit score and Y is whether
they are truly qualified. For people with the same credit score, we assume they have equal chances of being
truly qualified.

Algorithm 1 Best Response for Non-Linear Model
Input: Non-Linear classifier h, an individual data point x
Result: xM

ú and xI
ú

Step 1. Call LIME to get the approximated weights w̃ of a local linear classifier for non-linear model h
around the individual point x

Step 2. Substitute w̃ into Eq. (4) and Eq. (5) to get xM
ú and xI

ú, respectively
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Extension to non-linear models. The above approach in Eq. (6) presumes a linear classifier such that we
can derive a close-form solution of the agent’s best response. However, the recourse scheme will be typically
infeasible with non-linear classifiers. To extend our approach to nonlinear models, we propose to substitute
xM

ú and xI
ú in Eq. (6) with an approximated best response acquired from a local linear classifier. We note that

a prior work LIME Ribeiro et al. (2016) can provide an approximate linear decision boundary for arbitrary
individual points to any non-linear models. The idea is to sample the spherical neighborhood of the data
point and fit a local linear model with the target model’s certified predictions. As shown in Algorithm 1,
we integrate LIME into the oracle that can return us any decision subjects’ best response in terms of the
approximated local linear classifier. Once we get the best response xM

ú and xI
ú, we iteratively plug them back

to Eq. (6) as the learning objective of the non-linear classifier. We will demonstrate the e�ectiveness of
this oracle procedure when optimizing a non-linear neural network with gradient descent in Appendix F.5.
Nonetheless, even with the above extension, all of our theoretical guarantees is not straightforwardly clear to
analysis with an oracle of non-linear models’ best response, so we let the current paper focus on linear models.

5 Experiments

In this section, we present empirical results to benchmark our proposed method on synthetic and real-world
datasets. We test the e�ectiveness of our approach in terms of its ability to incentivize improvement as well
as to disincentivize manipulation (see Evaluation Criteria for details). We also compare its performance
with other standard approaches (see Methods). Our submission includes all datasets, scripts, and source
code used to reproduce the results in this section.

5.1 Setup

Datasets and Cost Matrix. We consider five datasets:

toy, a synthetic dataset based on the causal DAG in Fig. 1; credit, a dataset for predicting whether an
individual will default on an upcoming credit payment Yeh & Lien (2009); adult, a census-based dataset for
predicting adult annual incomes; german, a dataset to assess credit risk in loans; and spambase, a dataset for
email spam detection. The last three are from the UCI ML Repository Dua & Gra� (2017). We provide a
detailed description of each dataset along with a partitioning of features in Table 3 in the Appendix.

We assume the cost of manipulation is lower than that of improvement and refer the specific cost matrix
S to Appendix F.2; in particular, we specify the cost matrix S as follows: use cost matrices SI

≠1 = I and
SM

≠1 = 0.2I. We also provide results for non-diagonal cost matrix in the Appendix F.4.

S≠1
ij =

Y
_________]

_________[

1, if i = j and i œ I
0.2, if i = j and j œ M
1, if the cost of changing features i

and j are negatively correlated
≠1, if the cost of changing features i

and j are positively correlated
0, otherwise

We use the credit dataset as a demonstration of how we specify the non-diagonal element in the cost
matrix. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance and
SavingsAccountBalance, we assign ≠1 to the corresponding elements in the cost matrix S. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix. In practice, the cost matrix S should be determined using
domain expertise. The purpose of the cost matrix used in these experiments is not to accurately specify costs
per se, but to demonstrate the relative di�culty of changing di�erent features.

Methods. We fit linear classifiers for each dataset using the following methods: ST, a static classifier trained
using ¸2-logistic regression without accounting for strategic adaptation; DF, a classifier trained using ¸2-logistic
regression without any manipulated features; MP, a classifier that considers the agent’s unconstrained best

9
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(a) credit (b) adult (c) german (d) Spambase

Figure 2: We plot the trade-o� between test error at deployment and improvement rate in terms of cost
matrix. We observe that the test error increases consistently with the increase of the improvement rate.

response (i.e. with changes in any actionable features xA allowed) during training, as typically done in the
strategic classification literature (Hardt et al., 2016a); CA, a linear logistic regression classifier that results
from solving the optimization program in Eq. (22), which is a smooth di�erentiable surrogate version of
the objective function Eq. (6). Please refer to Appendix D.3 for a detailed derivation. Using the BFGS
algorithm Byrd et al. (1995). CA represents our approach.

Evaluation Criteria. We run each method with 5-fold cross-validation and report the following:

• Test Error : the error of a classifier after training but before decision subjects’ adaptations, i.e.
E(x,y)≥D 1[h(x) ”= y].

• (Worst-Case) Deployment Error : the test error of a classifier after decision subjects play their manipulating
best response, i.e. E(x,y)≥D 1[h(xM

ú) ”= y].
• (Best-Case) Improvement Rate: the percent of improvement, defined as the proportion of the population

who originally would be rejected but are accepted if they perform constructive adaptation (improving best
response), i.e. E(x,y)≥D 1[h(xI

ú) = +1 | y(x) = ≠1].

5.2 Controlled experiments on synthetic dataset

We perform controlled experiments using a synthetic toy dataset to test the e�ectiveness of our model at
incentivizing improvement in various situations. As shown in Fig. 1, we set Z1 and Z2 as improvable features,
X1 and X2 as their corresponding noisy proxies, M1 and M2 as manipulable features, and Y as the true
outcome. Since we have full knowledge of this DAG structure, we can observe the changes in the true outcome
after the decision subject’s best response. As shown in Table 1, Our method achieves the lowest deployment
error (20.61%) and the best improvement rate (23.04%) when the model designer has full knowledge of the
causal graph.

We also run experiments in which some features are misspecified, simulating realistic scenarios in which
the model designer may not be able to observe all the improvable features Haghtalab et al. (2020); Shavit
et al. (2020), or mistakes one type of feature for another. We model these situations by changing M1 into an
improvable feature and X1 into a manipulable feature; the results, shown in Table 1, show that our classifier
maintains a relatively high improvement rate in these cases, without sacrificing much deployment accuracy.

5.3 Results

We summarize the performance of each method in ??. To wrap up, our method produces classifiers that
achieve almost the highest deployment accuracy while providing the highest percentage of improvement across
all four datasets. The static classifier, which does not account for adaptations, is vulnerable to strategic
manipulation and consequently has the highest deployment error on every dataset. Naively cutting o� the
manipulated features may harm the accuracy at test time – DF incurs high test errors on Adult (33.55%)
and German (36.10%). In particular, the strategic classifier MP induces the lowest improvement rates on the
Credit (36.76%) and German (34.50%) datasets.

E�ect of trade-o� parameter ⁄. Fig. 2 shows the performance of linear classifiers for di�erent values of
⁄ on four real datasets. Note that, since the objective function is non-convex, the trends for test error at

10
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Table 1: Performance metrics for di�erent specifications (Spec.) in which features may be misspecified. For
each method, we report test error, deployment error, and improvement rate. In Full, the model designer
has full knowledge of the causal DAG. In Mis. I, M1 is mistaken for an improvable feature. In Mis. II, the
improvable feature X1 is miscategorized as manipulable.

Methods
Spec. Metrics ST DF MP CA

Full
test error
deployment error
improvement rate

10.29
35.79
11.54

28.0
35.15
13.13

11.91
24.1
14.63

11.62
20.61
23.49

Mis. I
test error
deployment error
improvement rate

11.39
37.37
37.23

10.52
10.53
39.74

11.26
19.79
0.62

11.04
25.30
23.04

Mis. II
test error
deployment error
improvement rate

10.58
12.37
1.12

35.77
41.51
5.74

29.52
27.68
3.36

10.80
23.58
19.82

Table 2: Performance metrics for all methods over 4 real data sets with non-diagonal cost matrix. We report
the mean and standard deviation for 5-fold cross validation. The constructive adaptation (CA) consistently
achieves a high accuracy at deployment while providing the highest improvement rates across all four datasets.

Methods
Dataset Metrics ST DF MP CA

CREDIT

test error
deploy error
improvement rate

29.52 ± 0.37
31.25 ± 0.56
46.35 ± 3.81

29.66 ± 0.40
29.66 ± 0.40
44.71 ± 4.75

29.65 ± 0.41
29.41 ± 0.32
36.76 ± 0.53

29.60 ± 0.44
29.49 ± 0.38
48.27 ± 5.50

ADULT

test error
deploy error
improvement rate

23.05 ± 0.47
38.64 ± 4.46
30.92 ± 3.31

33.55 ± 0.73
33.55 ± 0.73
60.63 ± 29.40

24.94 ± 0.52
26.85 ± 0.59
36.70 ± 1.62

27.22 ± 0.65
29.34 ± 0.45
63.79 ± 7.80

GERMAN

test error
deploy error
improvement rate

30.85 ± 0.82
33.40 ± 1.78
41.20 ± 5.77

36.10 ± 1.97
36.10 ± 1.97
42.10 ± 9.07

33.25 ± 1.44
34.60 ± 1.94
33.50 ± 2.53

34.70 ± 2.15
34.25 ± 1.78
56.10 ± 6.40

SPAMBASE

test error
deploy error
improvement rate

7.11 ± 0.52
22.40 ± 3.14

40.04 ± 13.06

10.18 ± 0.45
10.18 ± 0.45
32.46 ± 14.63

11.52 ± 0.12
12.92 ± 0.58
26.42 ± 4.80

14.37 ± 0.24
14.70 ± 0.36
43.98 ± 6.18

deployment are not necessarily monotonic. In general, we observe a trade-o� between the improvement rate
and deployment error: both increase as ⁄ increases from 0.01 to 10 in all four datasets.

6 Conclusion

In this work, we study how to train a linear classifier that encourages constructive adaption. We characterize
the equilibrium behavior of both the decision subjects and the model designer, and prove other formal
statements about the possibilities and limits of constructive adaptation. Finally, our empirical evaluations
demonstrate that classifiers trained via our method achieve favorable trade-o�s between predictive accuracy
and inducing constructive behavior. Our work has several limitations:

1. As a first foray into strategic classification with constructive adaptation, our focus on linear threshold
classifiers helps us capture the challenges unique to this setting; indeed, this is ultimately what allows
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for a closed-form best response (Theorem 1) even with a significantly more general cost function than in
preceding literature. However, this is clearly not true of many models actually in deployment.

2. In order to focus on the strategic aspects of constructive adaptation, we assume that the feature taxonomy
is simply given; however, distinguishing improvable features from non-improvable features is an interesting
question in its own right, and has been shown to be reducible to a nontrivial causal inference problem
Miller et al. (2020).

3. Our formulation of the classification setting as a two-step process gives decision subjects only one chance
to adapt their features. We suspect that extending this formalism to more rounds may create more
opportunities for constructive behavior in the long term, especially for agents who cannot improve their
true qualification in one round.

4. Since our method incentivizes people to behave in a certain way, to make sure it works fairly and accurately
in practice, it should be paired with a rigorous study of the causal relationship between features to decide
which are improvable versus manipulable.
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