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Appendix

A Organization of the Appendix

The Appendix is organized as follows.

• Section A provides the organization of the appendix.
• Section B provides the proof of Theorem 1.
• Section C includes notations and proofs for the discussion in section 3.3.
• Section D includes the proofs and derivations for section 4.
• Section E presents additional related works.
• Section F shows additional experimental details and results, including basic information on each dataset

and the computing infrastructure.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. To simplify our discussion, we focus on the unconstrained
best response, i.e. the case in which F = A. The proofs for the other two types of best response (F = M, F = I)
follow the same arguments except that the inverse of (S≠1)I does not equal to S, but equals to ((S≠1)I)≠1.

We first prove two lemmas that allow us to reformulate the best response as an optimization problem. The
first states that the decision subject’s goal is to maximize their utility, but they are unwilling to pay a cost
greater than 2:
Lemma 1 (Decision Subject’s Best-Response Function). Given a classifier h : X æ {≠1, +1}, a cost function
c : X ◊ X æ R, and a set of realizable feature vectors X

†
™ X , the best response of a decision subject with

features x œ X
† is the solution to the following optimization program:

max
x

Õ
œX

†
U(x, xÕ) s.t. c(x, xÕ) Æ 2

Proof. Since the classifier in our game outputs a binary decision (≠1 or +1), decision subjects only have an
incentive to change their features from x to xÕ when c(x, xÕ) Æ 2. To see this, notice that an decision subject
originally classified as ≠1 receives a default utility of U(x, x) = f(x) ≠ 0 = ≠1 by presenting her original
features x. Since costs are always non-negative, she can only hope to increase her utility by flipping the
classifier’s decision. If she changes her features to some xÕ such that f(xÕ) = +1, then the new utility will be
given by

U(x, xÕ) = f(xÕ) ≠ c(x, xÕ) = 1 ≠ c(x, xÕ)

Hence the decision subject will only change her features if 1 ≠ c(x, xÕ) Ø f(x) = ≠1, or c(x, xÕ) Æ 2.

The next lemma turns the above maximization program into a minimization program, in which the decision
subject seeks the minimum-cost change in x that crosses the decision boundary. If the cost exceeds 2, which
is the maximum possible gain from adaptation, they would rather not modify any features.
Lemma 2. Let xı be an optimal solution to the following optimization problem:

xı = arg min
x

Õ
œX

ú
A (x)

c(x, xÕ)

s.t. sign(wTxÕ) = 1

If no solution is returned, we say an xı such that c(x, xı) = Œ is returned. Define �(x) as follows:

�(x) =
I

xı, if c(x, xı) Æ 2
x, otherwise
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Then �(x) is an optimal solution to the optimization problem in Lemma 1.

Proof. Recall that the utility function of the decision subject is U(x, xÕ) = f(xÕ) ≠ c(x, xÕ), and that, by
Lemma 1, they will only modify their features if the utility increases, i.e. if they achieve f(xÕ) = +1 and
while incurring cost c(x, xÕ) Æ 2.

Consider two cases for xÕ
”= x:

1. When c(x, xÕ) > 2, there are no feasible points for the optimization problem of Lemma 1.

2. When c(x, xÕ) Æ 2, we only need to consider those feature vectors xÕ that satisfy f(xÕ) = 1, because if
f(xÕ) = ≠1, the decision subject with features x would prefer not to change anything. Since maximizing
U(x, xÕ) = f(xÕ) ≠ c(x, xÕ) is equivalent to minimizing c(x, xÕ) if f(xÕ) = 1, we conclude that when
c(x, xÕ) Æ 2, the optimum of the program of Lemma 1 is the same as the optimum of the program in
Lemma 2.

Lemma 2 enables us to re-formulate the objective function as follows. Recall that c(x, xÕ) =Ò
(xA ≠ xA

Õ)TS≠1(xA ≠ xA
Õ) where S≠1 is symmetric positive definite. Thus S≠1 has the following di-

agonalized form, in which Q is an orthogonal matrix and �≠1 is a diagonal matrix:

S≠1 = QT�≠1Q = (�≠
1
2 Q)T(�≠

1
2 Q)

With this, we can re-write the cost function as

c(x, xÕ) =
Ò

(xA ≠ xA
Õ)TS≠1(xA ≠ xA

Õ)

=
Ò

(xA ≠ xA
Õ)T(�≠

1
2 Q)T(�≠

1
2 Q)(xA ≠ xA

Õ)

=
Ò

(�≠
1
2 Q(xA ≠ xA

Õ))T(�≠
1
2 Q(xA ≠ xA

Õ))

= Î�≠
1
2 Q(xA ≠ xA

Õ)Î2

Meanwhile, the constraint in Lemma 2 can be written

sign(w · xÕ) = sign(wA · xA
Õ + wIM · xIM)

= sign(wA · xA
Õ
≠ (≠wIM · xIM)) = 1

Hence the optimization problem can be reformulated as

min
xA

Õ
œX

ú
A

Î(�≠
1
2 Q(xA ≠ xA

Õ))Î2 (7)

s.t. sign(wA · xA
Õ
≠ (≠wIM · xIM)) = 1 (8)

The above optimization problem can be further simplified by getting rid of the sign(·):
Lemma 3. If xA

û is an optimal solution to Eq. (7) under constraint Eq. (8), then it must satisfy wA · xA
û

≠

(≠wIM · xIM) = 0.

Proof. We prove by contradiction. Let xû

A is an optimal solution to Eq. (7) and suppose towards contraction
that wAxû

A > ≠wIM · xIM. Since the original feature vector x was classified as ≠1, we have

wA · xû

A > ≠wIM · xIM, wA · xA < ≠wIM · xIM
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By the continuity properties of linear vector space, there exists µ œ (0, 1) such that:

wA
1

µ · xA
û + (1 ≠ µ)xA

2
= ≠wIM · xIM

Let xA
ÕÕ = µ · xA

û + (1 ≠ µ)xA. Then sign(wAxA
ÕÕ

≠ (≠wIM · xIM)) = 1, i.e., xÕÕ

A also satisfies the constraint.
Since xA

û is an optimum of Eq. (7), we have

Î�≠
1
2 Q(xA

û
≠ xA)Î Æ Î�≠

1
2 Q(xA

ÕÕ
≠ xA)Î

However, we also have:

Î�≠
1
2 Q(xA

ÕÕ
≠ xA)Î = Î�≠

1
2 Q(µ · xA

û + (1 ≠ µ)xA ≠ xA)Î

= Î�≠
1
2 Q(µ · (xA

û
≠ xA))Î

= µÎ�≠
1
2 Q(xA

û
≠ xA)Î

< Î�≠
1
2 Q(xA

û
≠ xA)Î

contradicting our assumption that xû

A is optimal. Therefore xû

A must satisfy wAxû

A = ≠wIM · xIM.

As a result of Lemma 3, we can replace the constraint in Eq. (7) with its corresponding equality constraint
without changing the optimal solution.2 The decision subject’s best-response program from Lemma 1 is
therefore equivalent to

min
xA

Õ
œX

ú
A

Î(�≠
1
2 Q(xA ≠ xA

Õ))Î2 (9)

s.t. wA · xA
Õ
≠ (≠wIM · xIM) = 0 (10)

The following lemma gives us a closed-form solution for the above optimization problem:
Lemma 4. The optimal solution to the optimization problem defined in Eq. (9) and Eq. (10)

has the following closed form:

xA
û = xA ≠

wTx

wA
TSwA

SwA.

Proof. Notice that the above program has the form

min
xA

Õ
œxA

ú
ÎAxA

Õ
≠ bÎ2

s.t. CxA
Õ = d

where A = �≠
1
2 Q, b = �≠

1
2 QxA, C = wA

T, and d = ≠wIM
TxIM. Note the following useful equalities:

ATA = (�≠
1
2 Q)T�≠

1
2 Q = S≠1

(ATA)≠1 = S

ATb = (�≠
1
2 Q)T�≠

1
2 QxA = S≠1xA

2
A similar argument was made by Haghtalab et al. (2020) but here we provide a proof for a more general case, where the

objective function is to minimize a weighted norm instead of simply ÎxA ≠ xA
ÕÎ2.
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The above is a norm minimization problem with equality constraints, whose optimum xA
û has the following

closed form Boyd & Vandenberghe (2004):

xA
û = (ATA)≠1

1
ATb ≠ CT(C(ATA)≠1CT)≠1(C(ATA)≠1ATb ≠ d)

2

= S
1

S≠1xA ≠ wA(wA
TSwA)≠1(wA

TS(S≠1xA) ≠ (≠wIM
TxIM))

2

= xA ≠ S
1

wA(wA
TSwA)≠1(wA

TxA + wIM
TxIM)

2

= xA ≠
wTx

wA
TSwA

SwA

We can now compute the cost incurred by an individual with features x who plays their best response xû:

c(x, xû) =
Ò

(xA ≠ xA
û)TS≠1(xA ≠ xA

û)

=
ı̂ıÙ

A
wTx

wA
TSwA

SwA

BT

S≠1
A

wTx

wA
TSwA

SwA

B

= |wTx|Ò
wA

TSwA

Hence an decision subject who was classified as ≠1 with feature vector x has the unconstrained best response

�(x) =

Y
]

[
x, if |w

T
x|

Ô
wA

T
SwA

Ø 2
Ë
xA ≠

w
T

x

wA
T

SwA
SwA | xIM

È
, otherwise

which completes the proof of Theorem 1.

C Proofs of Propositions in Section 3.3

Notation. We make use of the following additional notation:

• v(i) denotes the i-th element of a vector v

• For any F œ {A, I, M}, �F
œ RdF denotes the vector containing only features of type F within the best

response �(x).

• 0 denotes the vector whose elements are all 0

• A º B indicates that matrix A ≠ B is positive definite

• ei denotes the vector containing 1 in its i-th component and 0 elsewhere

C.1 Proof of Proposition 1

Proof. Let w(m)
M ”= 0, and consider an decision subject with original features x who was classified as ≠1. By

Theorem 1, the actionable sub-vector of x’s unconstrained best response is

�A(x) = wTx

wA
TSwA

S · wA = wTx

wA
TSwA

5
SI 0
0 SM

6 5
wI
wM

6
= wTx

wA
TSwA

5
SI · wI

SM · wM

6
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And in particular,

�M(x) = wTx

wA
TSwA

SM · wM

Since x was initially classified as ≠1, we have wTx < 0, which means w
T

x
wASwA

”= 0. For convenience, let

c = w
T

x
wASwA

. We have

�M(x) ≠ xM = cSMwM ≠ xM = SM(cwM ≠ SM
≠1xM)

Now examine the following:

(cwM ≠ SM
≠1xM)(m) = cw(m)

M ≠ (S≠1
M xM)(m)

= cw(m)
M ≠

dMÿ

i=1
(S≠1

M )(im)xM
(m)

Recall that cw(m)
M ”= 0. Hence if

qdM
i=1(S≠1

M )(im) = 0, or if

x(m)
M ”= cw(m)

MqdM
i=1(S≠1

M )(im) ,

then (cwM ≠ SM
≠1xM)(m)

”= 0, and therefore cwM ≠ S≠1
M xM ”= 0. Since SM is positive definite, it has full rank,

which implies
�M(x) ≠ xM = SM(cwM ≠ S≠1

M xM) ”= 0

as required. With this, we have shown that when there exists a manipulated feature x(m) whose corresponding
coe�cient wA

(m)
”= 0, the classifier is vulnerable to changes in the manipulated features by the vast majority

of decision subjects.

C.2 Proof of Proposition 2

Proof. Consider a decision subject with features x such that h(x) = ≠1. Suppose x can flip this classification
result by performing the improving best response �I(x), which implies that the cost of that action is no
greater than 2 for this decision subject. We therefore have:

2 Ø c(x, �I(x)) = |wTx|Ò
wI

TSIwI

>
|wTx|Ò

wI
TSIwI + wM

TSMwM

= |wTx|Ò
wA

TSwA

= c(x, �(x))

where the strict inequality is due to the fact that SM º 0 and wM ”= 0. As we have shown that c(x, �(x)) < 2,
we conclude whenever an decision subject can successfully flip her decision by the improving best response,
she can also achieve it by performing the unconstrained best response.

On the other hand, consider the case when the unconstrained best response of a decision subject with features
xú has cost exactly 2:

2 = c(xú, �(xú)) = |wTxú
|Ò

wA
TSwA

= |wTxú
|Ò

wI
TSIwI + wM

TSMwM

<
|wTxú

|Ò
wI

TSIwI

= c(xú, �I(xú))

where the strict inequality is due to the fact that SM º 0 and wM ”= 0. As we have shown that c(xú, �I(xú)) > 2,
we conclude that while the unconstrained best response is viable for this decision subject, the improving best
response is not.
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C.3 Proof of Proposition 4

Proof. Let the cost covariance matrices for groups � and � be

S≠1
� =

5
S≠1

I 0
0 S≠1

M,�

6
, S≠1

� =
5
S≠1

I 0
0 S≠1

M,�

6

Here, we see that both groups have the same cost of changing improvable features, as represented in the
cost submatrix SI

≠1. However, the cost of manipulation for group � is higher than that of group �, namely
S≠1

M,� º S≠1
M,�.

We are now equipped to compare the costs for the two decision subjects:

c(x„, �(x„)) =
|wTx„|

Ò
wA

TS�wA

= |wTx|Ò
wI

TSIwI + wM
T

· SM,� · wM

c(xÂ, �(xÂ)) =
|wTxÂ|

Ò
wA

TS�wA

= |wTx|Ò
wI

TSIwI + wM
T

· SM,� · wM

Since S≠1
M,� º S≠1

M,�, we have SM,� ª SM,�. And since wM ”= 0, this implies 0 < wM
TSM,�wM < wM

T
·SM,� ·wM.

As a result, c(x„, �(x„)) > c(xÂ, �(xÂ)) as required.

C.4 Additional Analysis

Proposition 7 (Correlations between Features May Reduce Cost). For any cost matrix S≠1 and any
nontrivial classifier h, there exist indices k, ¸ œ [dA] and · œ R such that every feature vector x has lower
best-response cost under the cost matrix S̃≠1 given by

S̃≠1
ij = S̃≠1

ji =
I

S≠1
ij + ·, if i = k, j = ¸

S≠1
ij , otherwise

than under S≠1; that is, c
S̃

≠1(x, �(x)) < c
S

≠1(x, �(x)) for all x.

Proof. Consider any cost matrix S≠1
œ RdA◊dA and any nontrivial classifier h (i.e. h does not assign every x

the same prediction). Since S≠1 is positive definite, so is its inverse S, and all of their diagonal entries are
positive. And since h is nontrivial, it must contain a nonzero coe�cient wi ”= 0. Additionally, let wj be any
other coe�cient.

Let S̃≠1 = S≠1 + ·(eie
T
j + ejeT

i ) for some constant · œ R to be set later. We claim that there exists · such
that the best-response adaptation always costs less under S̃≠1 than S≠1. To do so, we compute the inverse
of S̃≠1 and invoke the closed-form cost expression given by Theorem 1.
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To begin computing the inverse, note that by the Sherman-Morrison-Woodbury formula Golub & Van Loan
(2013),

S̃ =
1

S̃≠1
2≠1

= S ≠ ·S
#
ei ej

$ 3
I + ·

5
eT

j

eT
i

6
S

#
ei ej

$4≠1 5
eT

j

eT
i

6
S (11)

= S ≠ ·S
#
ei ej

$ 3
I + ·

5
Sij Sjj

Sii Sij

64≠1 5
eT

j

eT
i

6
S (12)

= S ≠ ·S
#
ei ej

$ 5
·

3
1
·

I +
5
Sij Sjj

Sii Sij

646≠1 5
eT

j

eT
i

6
S (13)

= S ≠ ·S
#
ei ej

$
·≠1

5 1
· + Sij Sjj

Sii
1
· + Sij

6≠1 5
eT

j

eT
i

6
S (14)

= S ≠ S
#
ei ej

$ 5 1
· + Sij Sjj

Sii
1
· + Sij

6

¸ ˚˙ ˝
T

≠1 5
eT

j

eT
i

6
S (15)

Clearly, we can ensure that T is invertible by setting · so that det(T ) ”= 0. But as the following lemmas show,
we can actually say much more: det(T ) can be made either positive or negative, and moreover, both can be
accomplished with a choice of · > 0 or · < 0. This flexibility in choosing · will become crucial later.

First, we need the following useful fact about positive definite matrices:

Lemma 5 (O�-diagonal entries of a positive definite matrix). If A œ Rn◊n is symmetric positive definite,
then for all i, j œ [n],


AiiAjj > |Aij |.

Proof. By positive definiteness, we have, for any nonzero –, — œ R,

(–ei + —ej)TA(–ei + —ej) = –2Aii + —2Ajj + 2–—Aij > 0

For a choice of – = ≠Aij and — = Aii, we have

A2
ijAii + A2

iiAjj ≠ 2A2
ijAii = Aii(AiiAjj ≠ A2

ij) > 0

Since Aii > 0, we must have AiiAjj ≠ A2
ij > 0, from which the claim follows.

Now we can characterize the possible settings of · and det(T ):

Lemma 6 (Possible settings of ·). There exist ·max, ·min > 0 such that the following hold:

1. det(T ) > 0 for any · œ R such that ·max Ø |· | > 0.

2. det(T ) < 0 for any · œ R such that ·min Æ |· |.

Proof. To prove the first claim, note that having

det(T ) =
3

1
·

+ Sij

42
≠ SiiSjj > 0

is equivalent to
----
1
·

+ Sij

---- >
Ò

SiiSjj
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It su�ces to choose · such that
----
1
·

---- ≠
--Sij

-- >
Ò

SiiSjj

1
|· |

>
Ò

SiiSjj + |Sij |

So any · such that 0 < |· | <
!

SiiSjj + |Sij |
"≠1 results in det(T ) > 0. Analogously, for the second claim, a

su�cient condition for det(T ) < 0 is that
1

|· |
<

Ò
SiiSjj ≠ |Sij |

By Lemma 5, the right-hand side is positive. Hence it su�ces to pick any · such that

|· | >
1Ò

SiiSjj ≠ |Sij |

2≠1
.

With this lemma in place, we can describe the di�erence between the inverses of S≠1 and S̃≠1. Denote this
matrix by E = S ≠ S̃. We show the following:

Lemma 7 (Di�erence between inverse cost matrices). The k, ¸-th entry of E has the following form:

Ek¸ = 1
det(T )

3
EÕ

k¸ + 1
·

EÕÕ

k¸

4

where EÕ

k¸ and EÕÕ

k¸ do not depend on · .

Proof. Assume that · has been chosen so that det(T ) ”= 0, as Lemma 6 showed to be possible. We then have

T ≠1 = 1
det(T )

5 1
· + Sij ≠Sjj

≠Sii
1
· + Sij

6

Thus continuing from equation 15, we have

S̃ = S ≠
1

det(T )S
#
ei ej

$ 5 1
· + Sij ≠Sjj

≠Sii
1
· + Sij

6 5
eT

j

eT
i

6

¸ ˚˙ ˝
V

S

It can be verified that V is a dA ◊ dA matrix whose only nonzero entries are

Vii = ≠Sjj , Vjj = ≠Sii, Vij = Vji = 1
·

+ Sij

Next we evaluate the dA ◊ dA matrix SV S. For any k, ¸ œ [dA], we have

(SV S)k¸ =
dAÿ

i
Õ=1

dAÿ

j
Õ=1

Ski
ÕVi

Õ
j

ÕSj
Õ
¸

= SkiViiSi¸ + SkiVijSj¸ + SkjVjiSi¸ + SkjVjjSj¸ (V has four nonzero entries)
= ViiSkiSi¸ + VjjSkjSj¸ + Vij(SkiSj¸ + SkjSi¸) (Vij = Vji)

= ≠SjjSkiSi¸ ≠ SiiSkjSj¸ +
3

1
·

+ Sij

4
(SkiSj¸ + SkjSi¸)

= ≠SjjSkiSi¸ ≠ SiiSkjSj¸ + Sij(SkiSj¸ + SkjSi¸)¸ ˚˙ ˝
E

Õ
k¸

+ 1
·

(SkiSj¸ + SkjSi¸)¸ ˚˙ ˝
E

ÕÕ
k¸

which proves the claim.
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We now compute the marginal best-response cost incurred due to the di�erence between the inverse cost
matrices, E = S ≠ S̃. We have

wA
TEwA =

dAÿ

k=1

dAÿ

¸=1
wkw¸Ek¸

= 1
det(T )

dAÿ

k=1

dAÿ

¸=1
wkw¸

3
EÕ

k¸ + 1
·

EÕÕ

k¸

4
(by Lemma 7)

= 1
det(T )

S

WWWWU

dAÿ

k=1

dAÿ

¸=1
wkw¸E

Õ

k¸

¸ ˚˙ ˝
E

Õ

+ 1
·

dAÿ

k=1

dAÿ

¸=1
wkw¸E

ÕÕ

k¸

¸ ˚˙ ˝
E

ÕÕ

T

XXXXV

By Lemma 6, there exists · ”= 0 such that

sign(det(T )) = ≠sign(EÕ) and sign(·) = ≠sign(det(T )) · sign(EÕÕ)

Such a choice of · results in wA
TEwA < 0. Finally by Theorem 1, we have for all x that

c
S̃

≠1(x, �
S̃

≠1(x)) = |wTx|Ò
wA

TS̃wA

= |wTx|Ò
wA

TSwA ≠ wA
TEwA

<
|wTx|Ò
wA

TSwA

= c
S

≠1(x, �
S

≠1(x))

which completes the proof.

D Proofs and Derivations in Section 4

D.1 Proof of Proposition 5

Proof. We want to show that the standard strategic risk conditioned on an unchanged true label is upper-
bounded by the first term in our model designer’s objective, RM(h):

E
x≥D

[1[h(xú) ”= y] | �(y) = y] Æ E
x≥D

[1(h(xM
ú) ”= y)]

We assume that the manipulating best response is more likely to result in a positive prediction than the
unconstrained best response, given that the true labels do not change:

E
x≥D

[1[h(xú) ”= y] | �(y) = y] Æ E
D

[1[h(xM
ú) ”= y] | �M(y) = y] (16)

We therefore have:

E
x≥D

[1(h(xM
ú) ”= y)]

= E
x≥D

[1(h(xM
ú) ”= y) | �M(y) ”= y] · Pr[�M(y) ”= y]

+ E
x≥D

[1(h(xM
ú) ”= y) | �M(y) = y] · Pr[�M(y) = y]

= E
x≥D

[1(h(xM
ú) ”= y) | �M(y) = y] (Pr[�M(y) = y] = 1)

Ø E
x≥D

[1(h(xú) ”= y) | �(y) = y] (by equation 16)
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D.2 Proof of Proposition 6

Proof. Let D
ú be the distribution induced by deploying classifier h. By the covariate shift assumption,

Pr
D

ú(Y = y|X = x) = PrD(Y = y|X = x). Therefore

Pr
x≥D

ú
[y(x) = +1] = E

D
ú
[1[y(x) = +1]]

=
⁄
1[y(x) = +1] Pr

D
ú
(X = x)dx

=
⁄
1[y(x) = +1]Pr

D
ú(X = x)

PrD(X = x) Pr
D

(X = x)dx

=
⁄
1[y(x) = +1]Êh(x) Pr

D

(X = x)dx

=E
D

[Êh(x)1[y(x) = +1]]

This implies

Pr
x≥D

ú
[y(x) = +1] Ø Pr

x≥D

[y(x) = +1] ≈∆ E
D

[(Êh(x) ≠ 1)1[y(x) = +1]] Ø 0 (17)

By similar reasoning, we have

Pr
x≥D

ú
[h(x) = +1] = E

D
ú
[1[h(x) = +1]] = E

D

[Êh(x)1[h(x) = +1]]

which implies

Pr
x≥D

ú
[h(x) = +1] Ø Pr

x≥D

[h(x) = +1] ≈∆ E
D

[(Êh(x) ≠ 1)1[h(x) = +1]] Ø 0 (18)

It is easy to verify that Ex≥D[Êh(x)] = 1, and this gives us

E
D

[(Êh(x) ≠ 1)1[y(x) = +1]] = CovD(Êh(x),1[y(x) = +1]) (19)

E
D

[(Êh(x) ≠ 1)1[h(x) = +1]] = CovD(Êh(x),1[h(x) = +1]) (20)

By equation 17, equation 18, and equation 19, the condition

Pr
x≥D

ú
[h(x) = +1] Ø Pr

x≥D

[h(x) = +1] ≈∆ Pr
x≥D

ú
[y(x) = +1] Ø Pr

x≥D

[y(x) = +1]

is equivalent to the condition

CovD(Êh(x),1[y(x) = +1]) Ø 0 ≈∆ CovD(Êh(x),1[h(x) = +1]) Ø 0

D.3 Derivations for the model designer’s objective function

Now that we have obtained a closed-form expression for both the unconstrained and improving best response
from the decision subjects, we can analyze the objective function for the model designer, and the model that
would be deployed at equilibrium. Recall that the objective function for the model designer is

min
wœRd+1

E
x≥D

[1(h(�M(x)) ”= y)] + ⁄ E
x≥D

[1(h(�I(x)) ”= +1)]
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By Theorem 1, h(�M(x)) has the closed form

h(�M(x)) =
I

+1 if w · x Ø ≠2
Ò

wM
TSMwM

≠1 otherwise

= 2 · 1

5
w · x Ø ≠2

Ò
wM

TSMwM

6
≠ 1

and similarly,

h(�I(x)) = 2 · 1

5
w · x Ø ≠2

Ò
wI

TSIwI

6
≠ 1

The model designer’s objective can then be re-written as follows:

Ex≥D [1[h(�M(x)) ”= y] + ⁄ [h(�I(x)) ”= +1]]

=Ex≥D

5
1 ≠

1
2(1 + h(�M(x)) · y) + ⁄(1 ≠

1
2(1 + h(�I(x)) · 1))

6

=Ex≥D

5
1
2(1 + ⁄) ≠

1
2h(�M(x)) · y ≠

⁄

2 h(�I(x))
6

Removing the constants, the objective function becomes:

min
w

Ex≥D [⁄ ≠ h(�M(x)) · y ≠ ⁄h(�I(x))]

= min
w

Ex≥D

C
≠

3
2 · 1

5
w · x Ø ≠2

Ò
wM

TSMwM

6
≠ 1

4
· y(x) ≠ 2⁄ · 1

5
w · x Ø ≠2

Ò
wI

TSIwI

6 D

Re-organizing the above equations, we can turn the model designer’s constrained optimization problem in
equation 6 into the following unconstrained problem:

min
wœRd

E
x≥D

Ë
≠

1
2 · 1

Ë
wTx Ø ≠2


�M

È
≠ 1

2
· y ≠ 2⁄ · 1

Ë
wTx Ø ≠2


�I

È È
(21)

The optimization problem in equation 21 is intractable since both the objective and the constraints are
non-convex. To overcome this di�culty, we train our classifier by replacing the 0-1 loss function with a convex
surrogate loss ‡(x) = log

1
1

1+e
≠x

2
. This results in the following ERM problem:

min
wœRd

1
n

nÿ

i=1

Ë
≠ ‡

1
yi · (wTxi + 2


�M)

2
≠ ⁄ · ‡(wTxi + 2


�I)

È
(22)

Conditionally Actionable Features. In practice, individuals can often only change some features in either
a positive or negative direction, but not both. However, modeling this restriction on the decision subject’s
side precludes a closed-form solution. Instead, we strongly disincentivize such moves in the model designer’s
objective function. The idea is that if the model designer is punished for encouraging an illegal action, the
announced classifier will not incentivize such moves from decision subjects. The result is that decision subjects
encounter an implicit direction constraint on the relevant variables. To that end, we construct a vector
dir œ {≠1, 0, +1}

d where diri represents the prohibited direction of change for the corresponding feature xi;
that is, diri = +1 if xi should not be allowed to increase, ≠1 if it should not decrease, and 0 if there are no
direction constraints. We then append the following penalty term to the model designer’s objective in Eq. (6):

≠÷ ·

dÿ

i=1
max(diri · (�(x) ≠ x)i, 0) (23)

where ÷ > 0 is a hyperparameter representing the weight given to this penalty term. Eq. (23) penalizes the
weights of partially actionable features so that decision subjects would prefer to move towards a certain
direction.
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E Additional Related Work

Strategic Classification. There has been extensive research on strategic behavior in classification Hardt
et al. (2016a); Cai et al. (2015); Chen et al. (2018); Dong et al. (2018); Dekel et al. (2010); Chen et al.
(2020). Hardt et al. (2016a) was the first to formalize strategic behavior in classification based on a sequential
two-player game (i.e. a Stackelberg game) between decision subjects and classifiers. Since then, other similar
Stackelberg formulations have been studied Balcan et al. (2015). Dong et al. (2018) considers the setting in
which decision subjects arrive in an online fashion and the learner lacks full knowledge of decision subjects’
utility functions. More recently, Chen et al. (2020) proposes a learning algorithm with non-smooth utility
and loss functions that adaptively partitions the learner’s action space according to the decision subject’s
best responses.

Recourse. The concept of recourse in machine learning was first introduced in Ustun et al. (2019). There,
an integer programming solution was developed to o�er actionable recourse from a linear classifier. Our work
builds on theirs by considering strategic actions from decision subjects, as well as by aiming to incentivize
honest improvement. Venkatasubramanian & Alfano (2020) discusses a more adequate conceptualization and
operationalization of recourse. Karimi et al. (2020a) provides a thorough survey of algorithmic recourse in
terms of its definitions, formulations, solutions, and prospects. Inspired by the concept of recourse, Dean et al.
(2020) develops a reachability problem to capture the ability of models to accommodate arbitrary changes
in the interests of individuals in recommender systems. Bellamy et al. (2018) builds toolkits for actionable
recourse analysis. Furthermore, Gupta et al. (2019) studies how to mitigate disparities in recourse across
populations.

Causal Modeling of Features. A flurry of recent papers have demonstrated the importance of under-
standing causal factors for achieving fairness in machine learning Wang et al. (2019); Bhatt et al. (2020);
Bechavod et al. (2020); Miller et al. (2020); Shavit et al. (2020). Miller et al. (2020) studies distinctions
between gaming and improvement from a causal perspective. Shavit et al. (2020) provides e�cient algorithms
for simultaneously minimizing predictive risk and incentivizing decision subjects to improve their outcomes in
a linear setting. In addition, Karimi et al. (2020b) develops methods for discovering recourse-achieving actions
with high probability given limited causal knowledge. In contrast to these works, we explicitly separate
improvable features from manipulated features when maximizing decision subjects’ payo�s.

Incentive Design. Like our work, Kleinberg & Raghavan (2020) discusses how to incentivize decision
subjects to improve a certain subset of features. Next, Haghtalab et al. (2020) shows that an appropriate
projection is an optimal linear mechanism for strategic classification, as well as an approximate linear threshold
mechanism. Our work complements theirs by providing appropriate linear classifiers that balance accuracy
and improvement. Liu et al. (2020) considers the equilibria of a dynamic decision-making process in which
individuals from di�erent demographic groups invest rationally, and compares the impact of two interventions:
decoupling the decision rule by group and subsidizing the cost of investment.

Algorithmic Fairness in Machine Learning. Our work contributes to the broad study of algorithmic
fairness in machine learning. Most common notions of group fairness include disparate impact Feldman
et al. (2015), demographic parity Agarwal et al. (2018), disparate mistreatment Zafar et al. (2019), equality
of opportunity Hardt et al. (2016b) and calibration Chouldechova (2017). Among them, disparities in the
recourse fraction can be viewed as equality of false positive rate (FPR) in the strategic classification setting.
Disparities in costs and flipsets are also relevant to counterfactual fairness Kusner et al. (2017) and individual
fairness Dwork et al. (2012). Similar to our work, von Kügelgen et al. (2020) also consider the intervention
cost of recourse in flipping the prediction across subgroups, investigating the fairness of recourse from a causal
perspective.
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E.1 Agent’s Best Response with Partially Actionable Features

Let feature i represents those features that should only be non-increasing, and feature j represents those
features that should only be non-decreasing. Then the constraint can be represented as:

yi Æ 0 … eT
i y Æ 0

yj Ø 0 … eT
j y Ø 0

Assume that there are n≠ features that can only be changed negatively, and there are n+ features that can
only be changed increasingly. We can further combine those new constraints into a matrix form like Ey Æ 0.
The other constraint can be re-written as:

wTy ≠ bÕ
Ø 0 … ≠wTy Æ ≠bÕ,

therefore the optimization problem can be rewritten as:

min 1
2yTQy

s.t.

5
E

≠wT

6

¸ ˚˙ ˝
A

y Æ

5
0

≠bÕ

6

¸ ˚˙ ˝
b

where A is of the form:

A =

S

U
In≠◊n≠

0 0
0 ≠In+◊n+

0
˘˘ ≠wT ˘˘

T

V

(n++n≠+1)◊n

F Additional Experimental Details and Results

In this section, we provide additional experimental results. In particular, we provide the full results with
mean and standard deviation in Table 4.

F.1 Basic information of each dataset

Table 3: Basic information of each dataset.

Dataset Size Dimension Prediction Task
credit 20, 000 16 To predict if a person can repay their credit card loan.
adult 48, 842 14 To predict whether income exceeds 50K/yr based on

census data.
german 1, 000 26 To predict whether a person is good or bad credit risk.
spam 4601 57 To predict if an email is a spam or not.

F.2 Specific Cost Matrix

We specify the cost matrix as follows:

S≠1
ij =

Y
_________]

_________[

1, if i = j and i œ I
0.2, if i = j and j œ M
1, if the cost of changing features i

and j are negatively correlated
≠1, if the cost of changing features i

and j are positively correlated
0, otherwise

28



Under review as submission to TMLR

Table 4: Performance metrics for all methods over 4 real data sets with non-diagonal cost matrix. We report
the mean and standard deviation for 5-fold cross validation. The constructive adaptation (CA) consistently
achieves a high accuracy at deployment while providing the highest improvement rates across all four datasets.

Methods
Dataset Metrics ST DF MP CA

CREDIT

test error
deploy error
improvement rate

29.52 ± 0.37
31.25 ± 0.56
46.35 ± 3.81

29.66 ± 0.40
29.66 ± 0.40
44.71 ± 4.75

29.65 ± 0.41
29.41 ± 0.32
36.76 ± 0.53

29.60 ± 0.44
29.49 ± 0.38
48.27 ± 5.50

ADULT

test error
deploy error
improvement rate

23.05 ± 0.47
38.64 ± 4.46
30.92 ± 3.31

33.55 ± 0.73
33.55 ± 0.73
60.63 ± 29.40

24.94 ± 0.52
26.85 ± 0.59
36.70 ± 1.62

27.22 ± 0.65
29.34 ± 0.45
63.79 ± 7.80

GERMAN

test error
deploy error
improvement rate

30.85 ± 0.82
33.40 ± 1.78
41.20 ± 5.77

36.10 ± 1.97
36.10 ± 1.97
42.10 ± 9.07

33.25 ± 1.44
34.60 ± 1.94
33.50 ± 2.53

34.70 ± 2.15
34.25 ± 1.78
56.10 ± 6.40

SPAMBASE

test error
deploy error
improvement rate

7.11 ± 0.52
22.40 ± 3.14

40.04 ± 13.06

10.18 ± 0.45
10.18 ± 0.45
32.46 ± 14.63

11.52 ± 0.12
12.92 ± 0.58
26.42 ± 4.80

14.37 ± 0.24
14.70 ± 0.36
43.98 ± 6.18

We use the credit dataset as a demonstration of how we specify the non-diagonal element in the cost
matrix. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance and
SavingsAccountBalance, we assign ≠1 to the corresponding elements in the cost matrix S. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix.

F.3 Computing Infrastructure

We conducted all experiments on a 3 GHz 6-Core Intel Core i5 CPU. All our methods have relatively modest
computational cost and can be trained within a few minutes.

F.4 Results for non-diagonal cost matrix

In real life, the specification of the cost matrix might require examining the causal correlations among di�erent
features. We consider a non-diagonal cost matrix setup based on common knowledge and describe the
rationale as below. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance
and SavingsAccountBalance, we assign -1 to the corresponding elements in the cost matrix. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix. We also note that the non-diagonal cost matrix must be
invertible under our assumption on the cost of modifying features. We provide more detailed results for each
dataset in Table 4, which shows the means and standard deviations of di�erent metrics. Compared to the
empirical results of using a diagonal matrix, we achieve similar results with respect to the three evaluation
criteria across all four methods.

F.5 Additional Experimental Results for Non-Linear models

We also work with a three-layer neural network to validate the e�ectiveness of the oracle best response in
Algorithm 1. We note that the LIME program needs to learn a local linear model for each instance, which is
very time-consuming. Therefore, we downsample only 10% of data examples from the credit dataset. We
follow the same setting as the linear classifier experiments. We compare our method with the static classifier
in Table 5. We find out for this non-linear model setting, our approach has a higher improvement rate while
preventing manipulations with the deploy error 27.72% vs. 35.64%.
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Table 5: Performance metrics for non-linear models.

Methods
Metrics ST CA
test error
deploy error
improvement rate

30.72%
35.64%
0.99%

30.01%
27.72%
2.97%

F.6 Flipsets

We also construct flipsets for individuals in the german dataset using the closed-form solution Eq. (3) under
our trained classifier. The individual characterized as a “bad consumer” (≠1) is supposed to decrease their
missed payments in order to flip their outcome of the classifier with respect to a non-diagonal cost matrix.
In contrast, even though the individual improves their loan rate or liable individuals, the baseline classifier
will still reject them. We also provide flipsets for conditionally actionable features on the credit dataset in
Table 7. The individual will undesirably reduce their education level when the classifier is unaware of the
partially actionable features. In contrast, the individual decreases their total overdue months instead when
the direction penalty is imposed during training.
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Table 6: Flipset for a person denied credit by ManipulatedProof on the german dataset. The red up arrows ø

represent increasing the values of features, while the red down arrows ¿ represent decreasing.

Feature Type Original LightTouch ManipulatedProof
LoanRateAsPercentOfIncome I 3 3 2 ¿

NumberOfOtherLoansAtBank I 1 1 1
NumberOfLiableIndividuals I 1 0 ¿ 2 ø

CheckingAccountBalance Ø 0 I 0 0 0
CheckingAccountBalance Ø 200 I 0 0 0
SavingsAccountBalance Ø 100 I 0 0 0
SavingsAccountBalance Ø 500 I 0 0 0
MissedPayments I 1 0 ¿ 1
NoCurrentLoan I 0 0 0
CriticalAccountOrLoansElsewhere I 0 0 0
OtherLoansAtBank I 0 0 0
OtherLoansAtStore I 0 0 0
HasCoapplicant I 0 0 0
HasGuarantor I 0 0 0
Unemployed I 0 0 0
LoanDuration M 48 47 ¿ 47 ¿

PurposeOfLoan M 0 0 0
LoanAmount M 4308 4307 ¿ 4307 ¿

HasTelephone M 0 0 0
Gender U 0 0 0
ForeignWorker U 0 0 0
Single U 0 0 0
Age U 24 24 24
YearsAtCurrentHome U 4 4 4
OwnsHouse U 0 0 0
RentsHouse U 1 1 1
YearsAtCurrentJob Æ 1 U 1 1 1
YearsAtCurrentJob Ø 4 U 0 0 0
JobClassIsSkilled U 1 1 1
GoodConsumer - ≠1 +1 ø ≠1
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Table 7: Flipset for an individual on Credit dataset with partially actionable features. The red up arrows ø

represent any increasing values, while the red down arrows ¿ represent any decreasing values.

Feature Type dir Original ÷ = 0 ÷ = 100
EducationLevel I +1 3 2 ¿ 3
TotalOverdueCounts I 0 1 1 1
TotalMonthsOverdue I 0 1 1 0 ¿

MaxBillAmountOverLast6Months M 0 0 0 0
MaxPaymentAmountOverLast6Months M 0 0 0 0
MonthsWithZeroBalanceOverLast6Months M 0 0 0 0
MonthsWithLowSpendingOverLast6Months M 0 6 5 ¿ 6
MonthsWithHighSpendingOverLast6Months M 0 0 0 0
MostRecentBillAmount M 0 0 0 0
MostRecentPaymentAmount M 0 0 0 0
Married U 0 1 1 1
Single U 0 0 0 0
Age Æ 25 U 0 0 0 0
25 Æ Age Æ 40 U 0 0 0 0
40 Æ Age < 60 U 0 0 0 0
Age Ø 60 U 0 1 1 1
HistoryOfOverduePayments U 0 1 1 1
NoDefaultNextMonth - - ≠1 +1 ø +1 ø
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