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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Given the FL algorithm in equation 2, the construction of the ES in equation 3 yields the existence. To
make h an equilibrium point of the ES, we first note that hk ! h implies that {hk}k2N is a Cauchy
sequence and hence d(hk+1, hk) ! 0 as k ! 1. Now, we choose the flows �k in the learning
algorithm equation 2 in the way that ⌧k ! 0 and d(hk+1, hk) ⇠ o(⌧k), e.g., ⌧k =

p
d(hk+1, hk).

Recall that hk = �(tk, h0) with � denoting the flow of the vector field f on F(⌦,M) governing the
dynamics of the ES, we have

|f(h)| =
���f
⇣
�
�
lim
k!1

tk, h0

�⌘��� = lim
k!1

|f(�(tk, h0))|

 lim sup
k!1

d
�
�(tk, h0),�(tk�1, h0)

�

tk � tk�1
= lim sup

k!1

d
�
hk+1, hk

�

⌧k
= 0,

indicating that h is an equilibrium point of the system as desired.

A.2 PROOF OF THEOREM 1

Necessity: Suppose that the system in equation 1 is ensemble controllable on F(⌦,M), then for any
" > 0 and any initial condition x0 2 F(⌦,M), there is a control input u(t) steering the system to
a function x(T, ·) 2 F(⌦,M) in a finite time T such that d(xT � h) < ". Then, we design a FL
algorithm with the initial guess h0 = x0 converging to h since " is arbitrary.

Sufficiency: Given arbitrary h and h0 in F(⌦,M), suppose that there is a FL algorithm as in
equation 2, generated by the ES in equation 1 driven by a control input u(t), converging to h with
the initial guess h0. Then, following the same proof as Proposition 1, we can show the ES stabilizes
to h, i.e., for any " > 0, there is a finite time T such that the control input u(t) steers the ES to xT

satisfying kxT � hk < ". Because " is arbitrary, it concludes ensemble controllability of the system.

A.3 FOURIER SERIES-BASED CONTROL DESIGN METHOD

Note that because the state of the Bloch (ensemble) system in equation 8 is on the unit sphere S2, the
evolution of the system is actually given by a rotation in R3. The main idea of the Fourier series-based
control design method for the Bloch ensemble is to decompose a desired rotation into a sequence
of small angle rotations in the Fourier series manner (Zhang & Li, 2015; Zhang et al., 2019). To be
more specific, applying constant control input u(t) = u0 and v(t) = v0 for a time duration t0 results
in the evolutions exp(�u0t0⌦y) and exp(�v0t0⌦x), which are rotations around y- and x-axes by the
�-dependent angles �u0t0 and �v0t0, respectively. Consequently, the sequences of constant control
inputs (v0, u0,�u0) and (�v0, u0, u0) can be applied to generate

u1k = exp(���k⌦x) exp(�ck⌦y/2) exp(��k⌦x)

and
u2k = exp(��k⌦x) exp(�ck⌦y/2) exp(���k⌦x)

by choosing u0, v0, and t0 in the way that �k = v0t0 and ck = 2u0t0 for k = 1, 2, . . . Then, the
Baker-Campbell-Hausdorff formula implies

U1k = exp{�ck[⌦y cos(�k�)� ⌦z sin(�k�)]/2}

and
U2k = exp{�ck[⌦y cos(�k�) + ⌦z sin(�k�)]/2}.

Provided that �ck is small enough, we obtain

Uk = U2kU1k ⇡ exp
⇥
�ck cos(�k�)⌦y

⇤
,

leading to
U =

Y

k

Uk = exp
⇥
�

X

k

ck cos(�k�)⌦y

⇤
,
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which is a rotation around y-axis by the angle �
P

k
ck cos(�k�)⌦y. In particular, if we choose

�k = k, then the rotation angle is the Fourier series expansion of a function ✓(�). Specifically, in
Section 6, we choose ✓(�) = ⇡/2, the constant function ⇡/2 on [0.6, 1.4].

As mentioned in Section 6 as well, the ensemble Bloch equation in equation 8 describes the dynamics
of a sample of spin-1/2 nuclei immersed in a static magnetic field, in which the control inputs u(t)
and v(t) denote the external radio frequency (rf) fields applied along y- and x-axes, respectively.
The dispersion parameter " is called the rf inhomogeneity, caused by the fact that different spins at
different positions in the sample receive different strengths of the rf fields. It has been shown by
practical nuclear magnetic resonance (NMR) experiments that rf fields at the ends of the coil can
be as low as 60% of the rf fields at the center of the coil, corresponding to the rf inhomogeneity
� 2 [0.6, 1.4].

A.4 BASICS OF RIEMANNIAN GEOMETRY

This appendix devotes to a brief review of Riemannian geometry in the most general setting, which is
also inclusive for the infinite-dimensional case.

Let H be a Hilbert space, a topological space X is said to be a topological manifold modeled on H,
if X is Hausdorff, second countable, and locally homeomorphic to H, that is, every point in X has
an open neighborhood homeomorphic to H. Let {U↵}↵2A be an open cover of X such that there is
a homeomoprhism '↵ : U↵ ! H for each ↵ 2 A, then each pair (U↵,'↵) is called a coordinate
chart on X and the entire collection of charts {(U↵,'↵)}↵2A is called an atlas. If, in addition, the
transition maps '� � '

�1
↵

: '↵(U↵ \ U�) ! '�(U↵ \ U�) is smooth, then X is called a smooth
or differentiable manifold. Conceptually, Hausdorff guarantees that any sequence in X converges
to at most one point, locally Hilbertian implies that differential calculus can be defined locally. To
further warrant that the local calculus can be smoothly extended to the entire manifold by using a
smooth partition of unity following from the second countability (Lang, 1999), we also assume that
the Hilbert space H is separable so that the norm induced by the inner product is differentiable away
from 0 (Fabian et al., 2001).

Given a point x in the smooth manifold X and let (U,') and (V, ) be two coordinate charts centered
at x, i.e., x 2 U \ V and '(x) =  (x) = 0. Pick v 2 '(U) ✓ H and w 2  (V ) ✓ H, then we say
(U,', v) and (V,', w) are equivalent if d( � '

�1) · v = w, This defines an equivalence relation,
whose equivalence class is called a tangent vector of X at x, and the space of all tangent vectors is
called the tangent space of X at x, denoted by TxX , which is definitely a Hilbert space isomorphic
to H (Lang, 1999). The disjoint union of all tangent spaces, TX =

F
x2X

TxX , is called the tangent
bundle of X , which is also a smooth manifold so that the projection map ⇡ : TX ! X , given by
vx 7! x with vx 2 TxM , is smooth. Conversely, a map f : X ! TX is called a vector field on X ,
or more generally a section of TX over X , provided that ⇡ � f : X ! X is the identity map on X . A
curve on X , i.e., a map � : [a, b] ! X , is an integral curve of the vector field f if f(�(t)) is tangent
to �(t) for each t. If f is regular enough, e.g., Lipschitz continuous, then the integral curve can be
obtained by the solution of ordinary differential equation d

dt
x(t) = f(x(t)). This then gives rise to

the concept of the flow of f as the map � : I ⇥X ! X such that �(t, x0) is the point x(t) 2 X on
the integral curve of f passing though x0 = x(0) at t = 0.

Dually, we can construct the cotangent space T
⇤
x
X as the dual space of TxX , which then gives rise

to the cotangent bundle T
⇤
M =

F
x2X

T
⇤
x
X of X . A section of T ⇤

M is also called a 1-form on
X . From the Riemannina perspective, the primary interest is in the two-fold tensor product of the
cotangent bundle: T

⇤
X ⌦ T

⇤
X =

F
x2X

TxX ⌦ TxX , which is essentilly given by the disjoint
union of the two-fold tensor product of the tangent space at every point on X . A positive definite
smooth section g of T ⇤

X ⌦ T
⇤
X is called a Riemannian metric on X , that is, gx(v, w) = gx(v, w)

and gx(v, v) � chv, vi for any x 2 X , v, w 2 TxX , and some constant c > 0 independent of x,
where gx denotes the restriction of g to TxX ⌦ TxX and h·, ·i is the inner product on H. Note
that gx essentially defines an inner product on TxX for every x 2 X , and hence there should be
no confusion to denote gx as h·, ·ix or simply h·, ·i as well. In particular, given a smooth function
h : X ! R, we know that the differential dh defines a 1-form on X , and hence evaluated at every
point x 2 X , dfx 2 T

⇤
x
X is a continuous functional on TxX . Then, applying the Riesz representation

theorem to the Hilbert space TxX with the inner product given by the Riemannian metric, we obtain
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grad f(x) 2 TxX such that dfx · v = hgrad f(x), vix for any v 2 TxX . By varying x, it results in a
smooth vector field grad f , which is called the natural gradient of f .

A smooth manifold equipped with a Riemannian metric is then called a RM. A major advantage of a
RM is the metric space structure. Following the same notation as above, given a curve � : [a, b] ! X

on the RM X , its length can be defined as L(�) =
R
b

a
|�̇(t)|dt, where |�̇(t)| = h�̇(t), �̇(t)i1/2 with ‘·’

denoting the time derivative. For any x, y 2 X , their distance is then given by d(x, y) = inf{L(�) :
� connects x and y}. If d(x, y) = L(�⇤), then �⇤ is called a geodesic connecting x and y.

In this work, we are particularly interested in space of functions F(⌦,M) between two smooth
manifolds ⌦ and M , where we assume ⌦ is compact and M is a Riemannian. To construct a
Riemannian structure on F(⌦,M), we start with C

1(⌦,M), the space of smooth functions from
⌦ to M . It can be shown that C1(⌦,M) is a smooth manifold modeled on C

1(⌦, TM) and for
each h 2 C

1(⌦,M), the tangent space is given by ThC
1(⌦,M) = h

⇤
TM , the space of smooth

vector fields along h, or equivalently, the pullback bundle of TM by h (Kriegl & Michor, 1997).
Then, for any v, w 2 ThC

1(⌦,M), gM (v, w) gives a smooth real-valued function on ⌦, where
gM denotes the Riemannian metric on M . Then, we can define an inner product on ThC

1(⌦,M),
e.g., by hv, wi =

R
⌦ gM (v, w)dvol, in which dvol is a volume form on ⌦, e.g., it can be chosen as

the pullback of the Riemannian volume form on M . This inner product can then be extended to
a Riemannian metric on C

1(⌦,M). Next, if we are interested in a function F(⌦,M) lager than
C

1(⌦,M), say L
2(⌦,M), the space of square integrable functions, then we can form the tangent

space ThL
2(⌦,M) by taking the closure of ThC

1(⌦,M) with respect to the topology generated by
the inner product introduced above.
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