
SAUC: Sparsity-Aware Uncertainty Calibration for
Spatiotemporal Prediction with Graph Neural

Networks (Supplemental Materials)

Anonymous Author(s)
Affiliation
Address
email

1 Data Description1

We use two spatiotemporal datasets in our study.2

(1) Chicago Traffic Crash Data (CTC) 1 sourced from 277 police beats between January 1, 20163

and January 1, 2023. The CTC data records show information about each traffic crash on city streets4

within the City of Chicago limits and under the jurisdiction of Chicago Police Department.5

(2) Chicago Crime Records (CCR) 2 derived from 77 census tracts spanning January 1, 2003 to6

January 1, 2023. This dataset reflects reported incidents of crime (with the exception of murders7

where data exists for each victim) that occurred in the City of Chicago.8

Despite both CTC and CCR data originating from the Chicago area, their disparate reporting sources9

lead to different spatial units: census tracts for CCR and police beats for CTC. The temporal10

resolutions of the datasets are varied to demonstrate the ubiquitous sparsity issue and its practical11

significance in spatiotemporal analysis. For example, four temporal resolutions are created for CTC12

and CCR datasets, with further details available in Table 1. We designate the 1-hour and 8-hour cases13

of Crash and Crime datasets as sparse instances, due to a higher prevalence of zeros. Both datasets14

use the first 60% timesteps for training, 20% for calibration and validation, and 20% for testing.15

Dataset Resolution Size Sparsity Mean Max

CCR

1-hour (77, 175321) 67% 0.3 59
8-hour (77, 21916) 18% 2.7 206
1-day (77, 7306) 4% 8 223

1-week (77, 1044) < 0.1% 55.8 539

CTC

1-hour (277, 61369) 96% < 0.1% 5
8-hour (277, 7672) 76% 0.4 9
1-day (277, 2558) 47% 1.1 15

1-week (277, 366) 7% 7.3 45

Table 1: Characteristics of various datasets showing variation in sparsity at different temporal
resolutions. Dataset sizes are represented as (spatial, temporal) dimension pairs. Sparse cases are
marked grey.

For adjacency matrices, we calculate geographical distances dij between centroids of regions i and16

j, be they census tracts or police beats. This distance is then transformed into a similarity measure,17

Aij = e−dij/0.1, where 0.1 is a scaling parameter, thus forming an adjacency matrix. Notice that18

this scaling parameter can be varied, like using the standard deviations of the data as the parameter19

[?]. In our study, the results before and after calibrations come from the same model, therefore the20

1https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if
2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

Submitted to Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans. Do not distribute.

https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

selection of the adjacency matrix is pretty flexible in spatiotemporal prediction with Graph Neural21

Networks (GNNs).22

In the spatiotemporal dataset, the granularity of the temporal resolutions will result in different levels23

of resolutions, which are important. For crime and accident data, we control the data sparsity by24

varying the temporal resolution. We vary the temporal resolution from weekly, daily, 8 hours, and 125

hour. Such division is based on the fact that crime and accident data less frequently happened on the26

city scale.27

2 Implementation of Modified GNN28

2.1 Negative Binomial distribution29

A random variable that follows Negative Binomial (NB) distribution has a probability mass function30

fNB as:31

fNB(xk;µ, α) ≡ Pr(X = xk) =

(
xk + n− 1

n− 1

)
(1− p)xkpn. (1)

where n and p are the shape parameters that determine the number of successes and the probability32

of a single failure respectively. In our case, we use µ (the mean) and α (the dispersion parameter)33

instead, which has the form as:34

n =
µα

1− α
; p =

1

1 + µα
. (2)

We choose µ and α since the value of µ is directly related to the mean values, which is straightforward35

and keep consistent with location and scale parameters from Gaussian distributions.36

2.2 Modification of GNN Models37

Inspired by recent probabilistic GNN models that predominantly assume data distributions and38

leverage spatiotemporal architectures for parameter estimation, we transitioned traditional numerical39

GNN models to a probabilistic framework by altering the last layer. We modify two existing popular40

spatiotemporal forecasting models: Spatio-temporal Graph Convolution Network (STGCN) [?]41

and Graph WaveNet (GWN) [?]. They are designed for numerical value outputs. We modify their42

last layer to NB distributions to adapt our context. Specifically, we substituted parameters to ensure43

outcomes of µ and α. For example, STGCN applies one fully connected layer to the outputs of its44

spatial and temporal encoding. We modify it into two fully connected layers, with the same spatial45

and temporal encoding as the inputs for both layers, but output the values of µ and α respectively.46

Therefore, the loss function needs to change, from mean square error loss to the loss defined in47

Equation 3:48

L(µ, α, y) = −
[
y · log

(
µ+ ϵ

µ+ α+ 2ϵ

)]
− Γ(y + α+ ϵ) + Γ(y + 1) + Γ(α+ ϵ)

− α · log
(

α+ ϵ

µ+ α+ 2ϵ

)
+ λ · ||α||2

, (3)

where y is the target variable, µ and α are model outputs, Γ is the gamma function, λ is the49

regularization parameter, and ϵ is a small constant added to improve numerical stability. This loss50

function is derived from the likelihood of NB distribution controlled by µ and α.51

3 Implementation of the Modified GNNs52

To implement the modified GNNs, we use the Github repositories for STGCN 3 and GWN 453

respectively. We basically keep all the hyper-parameters and important parameters as the default from54

the original repositories, which can be referred to in our Github repository 5. Notice that we keep the55

3https://github.com/FelixOpolka/STGCN-PyTorch
4https://github.com/nnzhan/Graph-WaveNet
5https://github.com/AnonymousSAUC/SAUC

2

https://github.com/FelixOpolka/STGCN-PyTorch
https://github.com/nnzhan/Graph-WaveNet
https://github.com/AnonymousSAUC/SAUC

same model parameters in both the original models and the modified models, which can be found in56

Table 257

Parameters/Models STGCN GWN

Input window length 12 12
Output window length 12 12

Learning rate 0.001 0.001
Batch size 24 24

Output layer Linear Conv2d
Training epochs 1000 100

Early stop No Yes
Table 2: Parameters of original and modified GNN models.

Training loss on CCR datasets can be found in Figure 1. All models are converged properly.58

0 200 400 600 800 1000
Epochs

10 1

100

101

102

103

No
rm

al
ize

d
Tr

ai
ni

ng
 L

os
s

STGCN Original - 1h
STGCN NB - 1h
STGCN Original - 8h
STGCN NB - 8h
STGCN Original - daily
STGCN NB - daily
STGCN Original - 1w
STGCN NB - 1w

(a) Training Loss of STGCN on CCR dataset

0 500 1000 1500 2000 2500 3000 3500
Epochs

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Tr

ai
ni

ng
 L

os
s GWN Origin - 1h

GWN-NB - 1h
GWN Origin - 8h
GWN-NB - 8h
GWN Origin - daily
GWN-NB - daily
GWN Origin - 1w
GWN-NB - 1w

(b) Training Loss of GWN on CCR dataset

Figure 1: Training loss of STGCN, GWN, and their modifications on the CCR dataset.

The full implementation results can be found in Figure 3. It is clear that the model’s performance in59

terms of numerical accuracy is close to the results using models before modification. In fact, the NB60

modification shows better performance in the sparse dataset as the NB distributions are more suitable61

for the nature of discrete data.62

3.1 Reproducibility63

All our experiments are implemented on a machine with Ubuntu 22.04, with Intel(R) Core(TM)64

i9-10980XE CPU @ 3.00GHz CPU, 128GB RAM, and NVIDIA GeForce RTX 4080 GPU.65

4 Baseline Calibration Methods66

We list the introductions and pseudo codes to implement the baseline models.67

4.1 Temperature Scaling68

Temperature scaling is a parametric method that modifies the outputs of a regression model. This69

modification is controlled by a single parameter, the temperature T . The algorithms can be formulated70

as follows:71

3

Dataset Models MAE MSE RMSE

CCR_1h STGCN 0.429 0.406 0.637
STGCN-NB 0.317 0.494 0.703

GWN 0.848 0.926 0.962
GWN-NB 0.334 0.587 0.766

CCR_8h STGCN 1.499 5.691 2.386
STGCN-NB 1.452 5.413 2.326

GWN 1.395 4.212 2.052
GWN-NB 1.478 5.645 2.376

CCR_daily STGCN 2.951 26.698 5.167
STGCN-NB 2.719 18.368 4.286

GWN 2.521 14.316 3.784
GWN-NB 2.681 19.152 9.703

CCR_weekly STGCN 14.146 544.415 23.333
STGCN-NB 12.505 409.741 20.242

GWN 9.938 259.311 16.103
GWN-NB 14.516 539.679 23.231

CTC_1h STGCN 0.084 0.046 0.214
STGCN-NB 0.044 0.048 0.220

GWN 0.960 0.960 0.980
GWN-NB 0.044 0.048 0.220

CTC_8h STGCN 0.453 0.401 0.633
STGCN-NB 0.346 0.527 0.726

GWN 0.810 0.855 0.924
GWN-NB 0.352 0.557 0.746

CTC_daily STGCN 0.861 1.318 1.148
STGCN-NB 1.433 3.193 1.786

GWN 0.895 1.332 1.154
GWN-NB 1.019 2.404 1.55

CTC_weekly STGCN 2.474 11.004 3.317
STGCN-NB 3.618 15.442 3.929

GWN 2.423 10.098 3.178
GWN-NB 3.279 13.608 3.689

Table 3: Comparisons between modified models and the original models.

Algorithm 1 Temperature Scaling for Regression
1: Train a model on a training dataset, yielding point predictions f(x).
2: Optimize the temperature T on the validation set by minimizing the mean squared error between

the predicted and true values.
3: for each new input x do
4: Compute the model’s prediction f(x).
5: Apply temperature scaling with the learned T to the prediction f(x), yielding scaled prediction

g(f(x)).
6: end for

Temperature scaling is an efficient and straightforward method for calibration that requires optimiza-72

tion of only a single parameter. By scaling the outputs, it can yield calibrated predictions without73

modifying the rank ordering of the model’s predictions.74

4.2 Isotonic Regression75

Isotonic regression is a non-parametric method utilized for the calibration of a predictive model’s76

outputs. In the context of regression, this method operates as shown below:77

Notice that isotonic regression makes no assumptions about the form of the function connecting the78

model’s predictions to calibrated predictions. This flexibility allows it to fit complex, non-linear79

mappings, which can provide improved calibration performance when the model’s outputs are not80

well-modeled by a simple function.81

4

Algorithm 2 Isotonic Regression for Regression
1: Train a model on a training dataset, providing point predictions f(x).
2: Fit an isotonic regression model on the validation set predictions f(x), mapping them to calibrated

predictions.
3: for each new input x do
4: Compute the model’s prediction f(x).
5: Use the isotonic regression model to convert the prediction f(x) to a calibrated prediction

g(f(x)).
6: end for

4.3 Histogram Binning82

Histogram binning can also be applied in a regression setting to calibrate predictions. The idea is to83

split the range of your model’s outputs into several bins, and then adjust the predictions within each84

bin to match the average actual outcome within that bin. The specific algorithm is:85

Algorithm 3 Histogram Binning for Regression
1: Train a model on a training dataset, yielding predictions f(x).
2: Determine the bins for the predictions on the validation set.
3: for each bin do
4: Compute the average true value for all examples in the bin.
5: Adjust the prediction for each example in the bin to the average true value.
6: end for
7: for each new input x do
8: Compute the model’s prediction f(x).
9: Find the bin that f(x) falls into and adjust f(x) to the average true value for that bin.

10: end for

This method assumes that predictions within each bin are uniformly mis-calibrated. It is less flexible86

than isotonic regression, but it is simpler and less prone to overfitting, especially when the number of87

bins is small.88

4.4 Platt Scaling89

In a regression setting, Platt Scaling can be interpreted as applying a sigmoid function transformation90

to the model’s outputs. The output is then considered as the mean of a Bernoulli distribution. While91

this might be useful in some contexts, it is not generally applicable to regression problems but can be92

useful in sparse datasets. A linear transformation is fitted to the model’s predictions to minimize the93

mean squared error on the validation set. The parameters of this transformation are learned from the94

data, making this an instance of post-hoc calibration. Note that this adaptation might not be suitable95

for all regression tasks, especially those where the target variable has a non-linear relationship with96

the features.97

Algorithm 4 Platt Scaling for Regression
1: Train a model on a training dataset, yielding predictions f(x).
2: Minimize the mean squared error on the validation set between g(f(x)) and the true outcomes,

where g(f(x)) = af(x) + b is a linear transformation of the model’s predictions.
3: for each new input x do
4: Compute the model’s prediction f(x).
5: Apply the learned linear transformation to f(x) to get the calibrated prediction.
6: end for

5

	Data Description
	Implementation of Modified GNN
	Negative Binomial distribution
	Modification of GNN Models

	Implementation of the Modified GNNs
	Reproducibility

	Baseline Calibration Methods
	Temperature Scaling
	Isotonic Regression
	Histogram Binning
	Platt Scaling

