
Appendices
A Training Hyperparameters

Eight V100 GPUs were used for data-parallel training in every training experiment in the main paper.
Other hyperparameters are detailed in Table 4.

Table 4: Training hyperparameters for the networks tested.

Network Optimizer Initial LR LR schedule Momentum Weight Decay Epochs Batch Size
(1) MobileNet v2 SGD 0.045 Step (step_size=2) 0.9 4e-5 300 32
(1) MobileNet v3 (Small) RMSprop 0.064 Step (step_size=2) 0.9 1e-5 600 128
(1) MobileNet v3 (Large) RMSprop 0.064 Step (step_size=2) 0.9 1e-5 600 128
(1) SqueezeNet v1.0 SGD 0.04 Linear 0.9 2e-4 100 64
(1) SqueezeNet v1.1 SGD 0.04 Linear 0.9 2e-4 100 64
(2) MNASNet 1.0 SGD 1.0 Cosine 0.9 1e-5 300 256
(1) ShuffleNet v2 SGD 0.1 Cosine 0.9 1e-4 400 128
(3) EfficientNet B0 RMSprop 0.08 Cosine 0.9 1e-5 400 256
(1) ResNet-50 SGD 0.1 Step (step_size=30) 0.9 1e-4 90 32
(1) ResNetXt-50 SGD 0.1 Step (step_size=30) 0.9 1e-4 100 32
(1) DenseNet-161 SGD 0.1 Step (step_size=30) 0.9 1e-4 90 32

Leading numerals indicate the repository used to train each model:

1. https://github.com/pytorch/vision/tree/master/references/classification

2. https://github.com/1e100/mnasnet_trainer/tree/master

3. https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/efficientnet

B Results on Other Tasks

B.1 Semantic Segmentation

We use TorchVision (https://github.com/pytorch/vision/tree/main/references/segmentation) and its default hy-
perparameters to perform experiments on several networks performing semantic segmentation on the COCO2017
dataset, shown in Table 5.

Table 5: Semantic segmentation networks improve under the same fine-tuning schedule when using
permutations. (COCO2017)

Network Baseline (Dense) Default 2:4 Permuted (ours)
Accuracy Mean IoU ∆Accuracy ∆Mean IoU ∆Accuracy ∆Mean IoU

FCN-RN50 91.4 60.5 0.3 -0.3 0.3 0.1
FCN-RN101 91.9 63.7 0.2 0.0 0.3 0.4
DeepLabV3-RN50 92.4 66.4 0.0 0.3 0.2 0.4
DeepLabV3-RN101 92.4 67.4 0.1 0.5 0.5 0.9
DeepLabV3-MobileNetV3-Large 91.2 60.3 -0.3 -1.5 0.1 0.1
LR-ASPP-MobileNetV3-Large 91.2 57.9 -0.4 -0.9 0.1 0.2

B.2 Object Detection

We use TorchVision (https://github.com/pytorch/vision/tree/main/references/detection) and its default hyperpa-
rameters to perform experiments on several networks performing semantic segmentation on the COCO2017
dataset, after pre-training the backbones with ILSVRC2012, shown in Table 6.

B.3 Language Translation

We use the NVIDIA Deep Learning Examples (https://github.com/NVIDIA/DeepLearningExamples) and FairSeq
(https://github.com/pytorch/fairseq/tree/main/examples/translation) and their default hyperparamters to perform
experiments on GNMT and Transformer, respectively, using the WMT’16 EN-DE dataset, shown in Table 7.
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Table 6: Object detection networks’ bounding-box results improve under the same fine-tuning
schedule when using permutations. (COCO2017)

Network Baseline (Dense) Default 2:4 Permuted (ours)
Precision Recall ∆Precision ∆Recall ∆Precision ∆Recall

Mask R-CNN (RN50) 37.9 51.8 -0.1 -0.1 0.3 0.7
Keypoint R-CNN 54.6 63.5 0.7 0.7 0.9 0.9
RetinaNet RN50 FPN 36.4 53.9 -0.7 -0.7 0.2 0.2

Table 7: Language translation networks’ results improve under the same fine-tuning schedule when
using permutations. (WMT’16 EN-DE)

Network Baseline (Dense) Default 2:4 Permuted (ours)
BLEU4 ∆BLEU4 ∆BLEU4

GNMT 24.37 0.40 0.64
FairSeq Transformer 28.01 0.02 0.08

B.4 Language Modeling

We use the NVIDIA Deep Learning Examples (https://github.com/NVIDIA/DeepLearningExamples) and its
default hyperparameters to perform experiments on BERT-Large fine-tuned for the SQuAD task, both versions
1.1 and 2.0, shown in Table 8.

Table 8: BERT-Large’s modeling capabilities (on both the SQuAD v1.1 and v.20 datasets) improve
under the same fine-tuning schedule when using permutations.

Dataset Baseline (Dense) Default 2:4 Permuted (ours)
F1 ∆F1 ∆F1

SQuAD v1.1 91.35 0.13 0.30
SQuAD v2.0 81.22 0.21 0.42

C Counting Unique Permutations

In Section 4.2, we presented C!
M !GG!

as the number of unique permutations for a matrix with C columns and a
group width of M , leading to C/M = G total groups. Here, we derive this limit, starting with the expanded
form of the total number of ways to choose four columns from a matrix with C columns,

(
C
4

)
, and solve when

C = 4:
C!

(C − 4)!4!
=

4!

0!4!
= 1 (1)

As expected, there’s one way to choose four columns from a set of four columns. If we add another group (four
channels) to the matrix, this first stripe now has

8!

(8− 4)!4!
=

8!

4!4!

combinations. And, for each of them, the second (final) stripe has
(
4
4

)
options. Multiplying and simplifying(

4
4

)(
8
4

)
:

4!× 8!

0!4!× 4!4!× 2!
=

8!

4!2 × 2!
= 35 (2)

Since the two stripes could have been in either order without changing of the N:M (2:4) pruning decisions, there
is an additional divisor of 2!, the number of permutations of 2 stripes. Repeating this process once more for
three total stripes:

4!× 8!12!

0!4!× 4!4!× 8!4!× 3!
=

12!

4!3 × 3!
= 5775 (3)

Generalizing to any number of columns, C, we have:
C!

4!C/4 × (C/4)!
(4)
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Of course, we are using 4 as the group width M (number of columns in a group), and C/4 (or C/M is simply
the number of groups in C columns, G. Replacing the constants with these variables lets us generalize to:

C!

M !GG!
(5)

This general formula builds in the two constraints for a unique permutation: (1) the order of the stripes does
not matter, and (2) the order of columns within a stripe does not matter. Starting with the total number of
permutations of C columns, C!, (1) is satisfied by the G! divisor. Each stripe is further limited in its uniqueness
by the number of ways there are to order the values (column indices) in each stripe (M !) for each of G groups,
constraint (2), by the M !G divisor.

The algorithm described in Section 4.2, which generates all the unique permutations in O(n) time is shown in
Listing 2.

Algorithm 2: Generate unique permutations [O(n)]
Result: global UniquePermutations
def is_canonical_form(perm, col, M):

if len(perm) % M == 0:
if cols < col not in perm:

return False;
return col > perm[-M];

return col > perm[-1];

def generate_permutations(perm, remaining, M):
if remaining is empty:

UniquePermutations = UniquePermutations.append(perm);

for col in remaining:
if is_canonical_form(perm, col, M):

generate_permutations( perm.append(col), remaining.remove(col), M);

def generate_all_permutations(C, M):
init_perm = [0];
remaining_channels = [c for c in range(1,C)];
generate_permutations(init_perm, remaining_channels, M);

D Perfect Mask Discovery

The exhaustive search shown in Listing 2 will identify a perfect permutation (pp) that has 100% efficacy, but we
can reduce the cost of this exhaustive search by exploiting the property that a permutation with 100% efficacy
removes the smallest 50% of values in each row. By first generating the optimal mask (by applying 50%
unstructured sparsity to each row) and then permuting the mask until every group satisfies the 2:4 constraint, we
do not need to either (1) compute sums of speculatively-pruned values or (2) traverse sub-optimal branches of
the permutation tree. These optimizations are shown in Listing 3.

By first generating the perfect mask, incrementally building a permutation can trivially reject all recursively-
generated permutations for which the permuted mask does not satisfy the N:M constraint. If a dense matrix has
such a perfect permutation, this is a very efficient solution. If a dense matrix does not have a perfect permutation,
this routine will quickly return no solution. If a sparse matrix is given as the input, though, it can be nearly as
inefficient as a full exhaustive search, since there will be many plausible branches in permutation space that fail
to satisfy the constraint close to the leaves of the tree, rather than closer to the root.
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Algorithm 3: Find a perfect permutation (if it exists).
Result: global PerfectPermutation
def is_canonical_form(perm, col, M):

if len(perm) % M == 0:
if cols < col not in perm:

return False;
return col > perm[-M];

return col > perm[-1];

def generate_permutations(perm, remaining, N, M, Mask):
if len(perm) % M == 0 and not Mask[:,perm].satisfies(N,M):

return;

if remaining is empty:
PerfectPermutation = perm;
endProcedure();

for col in remaining:
if is_canonical_form_and_is_N:M(perm, col, N, M, Mask):

generate_permutations( perm.append(col), remaining.remove(col), M);

def find_perfect_permutation(Weights, C, N, M):
PerfectPermutation = None;
PerfectMask = prune_rows(Weights, N/M) != 0.0;
init_perm = [0];
remaining_channels = [c for c in range(1,C)];
generate_permutations(init_perm, remaining_channels, N, M, PerfectMask);

E Trading Minima with Stochasticity

There are other ways to induce stochasticity in a greedy search that will not necessarily improve the final efficacy.
While these cannot help an already-converged search escape a minimum, they can help an in-progress search to
bypass one minimum in favor of another. By repeating a search or construction with different random seeds and
choosing the best result, these techniques may allow the search to find a new, better permutation:

• Random initializations, as one might use to try different weight initializations in training a neural
network, can be analogous to first applying a random permutation before commencing the greedy
search.

• Rather than traversing the swap map in greedy order, one could select entries at random from the set
of swaps with positive improvements. By moving only in a positive direction, the search will still
converge.

To show that it is necessary to repeat the search for all random seeds and that it is not sufficient to randomly
search for an improved initialization and greedily search from there, Table 9 shows the experimental efficacy for
three strategies on the same random input matrix: (1) the best of 10 random permutations, (2) a greedy search,
and (3) the solution found by (1) followed by (2). While (1) improves over the input, it does not lead to a better
final minimum.

Table 9: A better starting permutation does not guarantee a better permutation after searching.

Strategy Efficacy
(1) best of 10 random permutations 7.5%
(2) greedy search 46.5%
(3) (1) then (2) 46.1%

F Efficacy Details for MobileNet v2

When we fine-tune MobileNet v2 with the baseline permutation search algorithm, the top-1 and top-5 accuracies
are still worse than the dense baseline by -1.26 and -0.69 percentage points, in contrast to using our improved
algorithm with suggested settings, optimizing stripe groups of size 2 with 100 bounded regressions, which fully
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Figure 5: Per-layer efficacies for MobileNet v2 using different search strategies. Though the weighted
average values are very similar due to the overwhelming influence of the classifier, the difference
between the baseline algorithm ("Channel Swap") and our proposed setting ("OSG(2),BR(100)") is
pronounced in individual layers.

recovers to the original accuracy with the same fine-tuning schedule. As shown in Figure 5, the weighted average
efficacies over all layers for these two search techniques are within 0.4 percentage points. This single metric,
weighted average efficacy, hides some details, though - in 17 out of 33 layers, the efficacy of the proposed
algorithm is better by more than a full percentage point, and the non-weighted average improvement is similarly
more than a full percentage point, despite some layers performing slightly better with the baseline approach. It is
the small layers which show improvement, rather than the large classifier, which are likely responsible for the
significant improvement in final network accuracy.

This detailed breakdown also shows interesting trends in efficacy:

• For the same number of rows, increasing the column count allows more effective permutations. This
is because we have more degrees of freedom to change effective pruning groups.

• This effect is even more pronounced in layers with swapped row and column counts, where we
simultaneously reduce the number of rows and increase the number of columns.

• For the same aspect ratio, increasing the element count reduces efficacy.

G The Importance of Small Improvements

It could seem that small improvements in efficacy may have only a minor effect on final network accuracy,
especially considering the noisiness inherent in large-scale training. However, there is still practical value to
be gained from relatively minor improvements in permutation efficacy. If a network has been pruned without
structure, it may be advantageous to convert that network to a structured-sparse network for more efficient
deployment. Permuting the weights can, as in the case of pruning a dense matrix, reduce the impact of imposing
some N:M sparsity constraint, and make it more likely fine-tuning will recover accuracy (or reduce the amount
of fine-tuning needed). Better than reducing the magnitude of lost weights, though, is completely eliminating
it - by using the zeros already present in the unstructured sparse weight matrix, it may be possible to find a
permutation that does not lose any magnitude after applying the N:M constraint. Small improvements in the
permutation search strategy can make this possible.

As an example, we prune a layer from MobileNet_v2 (features.8.conv.2 with 384 channels and 64 1x1 filters)
with unstructured sparsity at rates of 70% and 75% and show the efficacy of different strategies in Table 10
(with the same meaning as Table 1). 70% unstructured sparsity is insufficient to achieve 100% efficacy with
the permutation strategies attempted; perhaps increasing the size of the stripe groups being optimized in the
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Table 10: Even small improvements in permutation efficacy can have a large effect on the utility of a
permutation - perfect permutations with efficacy of 100.0 mean that no fine-tuning is required for
some layer. BR (B) = bounded regressions (a total of B pairs of channels are swapped when the
greedy phase converges), OSG (D) = optimize stripe groups of size D during the greedy phase.

Greedy Phase Escape Phase Efficacy
70% 75%

Channel Swap - 95.2 99.7
Channel Swap BR (100) 96.8 100.0
OSG (2) - 95.8 99.8
OSG (2) BR (100) 96.2 100.0
OSG (3) - 99.5 100.0
OSG (3) BR (100) 99.9 100.0

greedy phase could recover the final 0.1% efficacy. While 75% unstructured sparsity can give an efficacy of
100%, bounded regressions are required to escape the local minima and find the optimal solution for both the
simple greedy phase as well as optimizing stripe groups of size 2 in the greedy phase; simply increasing the size
of the stripe groups to 3 is enough to find the optimal permutation without requiring bounded regressions. In this
case, the default approach (with no mechanisms to escape a local minimum) has an efficacy of 99.7%, but this is,
behaviorally, a long way from 100%.
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