
Robust Learning against Relational Adversaries

Yizhen Wang
Visa Research

yizhewan@visa.com

Mohannad Alhanahnah
University of Wisconsin–Madison
alhanahnah@wisc.edu

Xiaozhu Meng ∗

Rice University
Xiaozhu.Meng@rice.edu

Ke Wang
Visa Research

kewang@visa.com

Mihai Christodorescu †

Visa Research
mihai.christodorescu@visa.com

Somesh Jha
University of Wisconsin–Madison

jha@cs.wisc.edu

Abstract

Test-time adversarial attacks have posed serious challenges to the robustness of
machine-learning models, and in many settings the adversarial perturbation needs
not be bounded by small ℓp-norms. Motivated by attacks in program analysis and
security tasks, we investigate relational adversaries, a broad class of attackers who
create adversarial examples in a reflexive-transitive closure of a logical relation. We
analyze the conditions for robustness against relational adversaries and investigate
different levels of robustness-accuracy trade-off due to various patterns in a relation.
Inspired by the insights, we propose normalize-and-predict, a learning framework
that leverages input normalization to achieve provable robustness. The framework
solves the pain points of adversarial training against relational adversaries and can
be combined with adversarial training for the benefits of both approaches. Guided
by our theoretical findings, we apply our framework to source code authorship
attribution and malware detection. Results of both tasks show our learning frame-
work significantly improves the robustness of models against relational adversaries.
In the process, it outperforms adversarial training, the most noteworthy defense
mechanism, by a wide margin.

1 Introduction

The robustness of machine learning (ML) systems has been challenged by test-time attacks using
adversarial examples [Szegedy et al., 2013]. These adversarial examples are intentionally manipulated
inputs that preserve the essential characteristics of the original inputs, and thus are expected to have
the same test outcome as the originals by human standard; yet they severely affect the performance
of many ML models across different domains [Moosavi-Dezfooli et al., 2016, Eykholt et al., 2018,
Qin et al., 2019]. As models in high-stake domains such as system security are also undermined by
attacks [Grosse et al., 2017, Rosenberg et al., 2018, Hu and Tan, 2018, Pierazzi et al., 2020], robust
ML in adversarial test environment becomes an imperative task for the ML community.

Existing work on test-time attack and defense evaluation predominately considers ℓp-norm bounded
adversarial manipulation [Goodfellow et al., 2014, Carlini and Wagner, 2017, Papernot et al., 2018,

∗This work was done when the author was at Rice University.
†This work was done when the author was at Visa Research. The author is now at Google.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Nicolae et al., 2018]. However, in many security-critical settings, the adversarial examples need
not respect the ℓp-norm constraint as long as they preserve the malicious behavior. For example, in
malware detection, a malware author can implement the same function using different APIs, or bind
a malware within benign software like video games or office tools. The modified malware preserves
the malicious functionality despite the drastically different syntactic features. Hence, focusing on
adversarial examples of small ℓp-norm in this setting will fail to address a sizable attack surface that
attackers can exploit to evade detectors.

In this paper, we consider a general threat model — the relational adversary — in which the attacker
can manipulate the original test inputs via transformations specified by a logical relation. Unlike
the prior work [Rosenberg et al., 2018, Hu and Tan, 2018, Hosseini et al., 2017, Hosseini and
Poovendran, 2018] which investigates specific adversarial settings, our paper extends the scope of
attacks to general logical transformation, which can be readily instantiated to incorporate real-world
transformations over different domains. Moreover, the relational adversary can apply an arbitrary
sequence of transformations to the inputs as long as the essential semantics of the input is preserved.

From the defense perspective, recent work has started to look beyond ℓp-norm constraints, including
adversarial training [Grosse et al., 2017, Rosenberg et al., 2019, Lei et al., 2019, Laidlaw et al.,
2020, Li et al., 2022], verification-loss regularization [Huang et al., 2019] and invariance-induced
regularization [Yang et al., 2019]. Adversarial training in principle can achieve high robust accuracy
when the adversarial example in the training loop maximizes the loss. However, finding such
adversarial examples is in general NP-hard [Katz et al., 2017] and even PSPACE-hard for attacks
considered in this paper (Appendix A.1). Huang et al. [2019] and Yang et al. [2019] add regularizers
which incorporate model robustness as part of the training objective. However, such regularization do
not strictly enforce the robustness, as a result, models are still vulnerable.

Normalize-and-Predict Learning Framework This paper attempts to overcome the limitations of
prior work by introducing a learning framework, normalize-and-predict (hereinafter abbreviated as
N&P), which guarantees robustness by design. Unlike the prior work which exclusively consider
the ℓp-norm bounded attacks, we target a relational adversary, whose admissible manipulation
is specified by a logical relation. We consider a strong adversary who can apply an arbitrary
number of transformations. The key idea underlying N&P is normalization, a powerful concept in
computer science — canonicalizing data with multiple representations into a unique form — that
is widely applied across various domains (e.g. canonicalization of filenames for computer security,
lemmatisation in computational liguistics, etc.). Technically, N&P first converts each data point to a
canonical form and subsequently restricts the training and test of models on the normalized data. A
potential downside of N&P is the sacrifice of model accuracy in exchange of guaranteed robustness.
To cope with this issue, we propose a unified framework that combines N&P with adversarial training
in an attempt to achieve the optimal robust-accuracy trade-off. Specifically, the unified framework
selectively normalizes relations over which model accuracy can be preserved and adversarially trains
on the rest. Our unified framework gets the benefits from both N&P and adversarial training.

We evaluate N&P in the settings of source code authorship attribution and malware detection. For the
former, we set out to defend two attribution approaches Caliskan-Islam et al. [2015], Abuhamad et al.
[2018] against the state-of-the-art attack proposed by Quiring et al. [2019]. For the latter, we first
formulate two types of common program transformation — (1) addition of redundant libraries and
API calls, and (2) substitution of equivalent API calls — as logical relations. Next, we propose two
generic relational adversarial attacks to determine the robustness of a model.

The results we obtained in both tasks show that:

1. Models obtained by N&P and the unified framework achieve significantly higher robust
accuracy than the vanilla models. In particular, the improvement of robustness far outweighs
the drop in accuracy on clean inputs, suggesting a worthwhile trade-off when a sizable
portion of the input comes from adversarial sources.

2. N&P achieves higher robust accuracy than adversarial training especially when attackers use
a stronger or different attack method than the one used in N&P or adversarial training.

3. Compared to adversarial training, N&P incurs a substantially lower computation overhead
when defending against problem space attacks, where adversarial examples are generated
through program transformation on the raw code samples rather than gradient manipulation
on input features.

2

Finally, based on our theoretical and empirical results, we conclude that input normalization is vital
to robust learning against relational adversaries. We believe techniques that can improve the quality
of normalization are promising directions for future work.

2 Related Work.

Test-time attacks using adversarial examples have been extensively studied in the past several
years. Research has shown ML models are vulnerable to such attack in a variety of application
domains [Moosavi-Dezfooli et al., 2016, Chen et al., 2017, Papernot et al., 2017, Eykholt et al., 2018,
Ebrahimi et al., 2018, Qin et al., 2019, Yang et al., 2020a] including system security and program
analysis where reliable defense is essential. For instance, Grosse et al. [2017] and Al-Dujaili et al.
[2018] evade API/library usage based malware detectors by adding redundant API calls; Rosenberg
et al. [2018], Hu and Tan [2018], and Rosenberg et al. [2019] successfully attack running-time
behavior based detectors by adding redundant execution traces; Quiring et al. [2019] shows semantic-
preserving edits over source code can evade authorship attribution. Pierazzi et al. [2020] extend the
attacks from feature-space to problem-space to create realistic, executable attack instances using
automated software transplantation.

On the defense end, adversarial training has been the most widely used approach [Grosse et al.,
2017, Al-Dujaili et al., 2018, Rosenberg et al., 2019, Li et al., 2022]. In particular, Al-Dujaili et al.
[2018] and Li et al. [2022] attempt adversarial training on the same malware detection and authorship
attribution tasks in our experiment evaluation, respectively. We show that adversarial training is
hard to optimize and ineffective against different attack algorithms or attacks with stronger search
parameters than in training. Yang et al. [2019] adds invariance-induced regularizers which indicate
the worst-case loss of searching over input transformations. Hendrycks et al. [2019] proposes self-
supervised learning in which the learner tries to identify the transformations applied to the training
inputs. We extend the scope from specific spatial transformation attacks in image classification to a
general adversary based on logic relations. We note that regularization and self-supervised learning
may not enforce model robustness on finite samples, nor will they be computationally efficient over
arbitrarily long sequence of input transformations. In contrast, N&P enforces robustness by design.
Incer et al. [2018], Kouzemtchenko [2018] enforce monotonicity over model outputs so that the
addition of feature values always increase the maliciousness score. These approaches are limited to
guarding against the addition attacks, thus lacks generality.

Normalization is a technique to reduce the number of syntactically distinct instances. First introduced
to network security in the early 2000s in the context of intrusion detection systems [Handley et al.,
2001], it was later applied to malware detection [Christodorescu et al., 2007, Coogan et al., 2011,
Bichsel et al., 2016, Salem and Banescu, 2016, Baumann et al., 2017]. Our work addresses the
open question whether normalization is useful for ML under relational adversary by investigating its
impact on both model robustness and accuracy.

The robustness-accuracy trade-off against ℓp-attacks has been discussed in literature [Zhang et al.,
2019, Tsipras et al., 2018, Fawzi et al., 2018, Raghunathan et al., 2020, Yang et al., 2020c]. The trade-
off can either be 1) distributional, where inputs with different Bayes-optimal labels are mixed up in
the adversarial feasible set, or 2) algorithmic, where the trade-off is due to low model expressiveness,
small sample size, inductive bias in training data or deficiency in the learning algorithm. The former
is inevitable because no classifier can achieve both optimal robustness and accuracy. Zhang et al.
[2019] construct such an example distribution: the real number line is divided into intervals of size
ϵ, and neighboring segments always have different labels. Our analysis focuses on distributional
trade-off because N&P guarantees robustness against the normalized transformations, i.e. there is
no further algorithmic trade-off if normalization is exact. The analysis helps strategically choose
the set of transformations to normalize in the unified framework. We also note that N&P can use
any existing training/testing procedure except the inputs are now normalized. Therefore, existing
ℓp-based trade-off analysis also applies on the normalized input space for ℓp-attacks.

3 Threat Model

We consider a data distribution D over an input space X and categorical label space Y . We use bold
face letters, e.g. x, for input vectors and y for the label. Given a hypothesis class H, the learner

3

p1

p2
p0

p3

Figure. 1: An example of semantic-preserving code transformations. Each arrow indicates one
transformation, and all code pieces are semantically equivalent.

wants to learn a classifier f : X → Y in H that minimizes the risk over the data distribution. In
non-adversarial settings, the learner solves minf∈H E(x,y)∼D ℓ(f,x, y), where ℓ is a loss function.
For classification, ℓ(f,x, y) = 1(f(x) ̸= y).

Logical Relation. A relation R is a set of input pairs. Each pair (x, z) ∈ R implies a viable
transformation from x to z. We write x →R z iff (x, z) ∈ R, and write x →∗

R z iff x can
arrive at z via an arbitrary number of transformations specified by R. In other words, →∗

R is the
reflexive-transitive closure of →R. We describe an example relation as follows:

Example 1 (Semantic-preserving Program Transformations). Let P denote a set of programs and
T be a set of transformations that preserves program semantics. Then T induces a relation R =
{(p, t(p))|∀p ∈ P, t ∈ T} on the space P . Figure 1 shows a concrete example. The initial program
p0 undergoes (1) for-to-while (2) printf-to-cout, and (3) 0/1-to-false/true transformations to become
p3. We have pi →R pi+1 and pi →∗

R pj for i ∈ {0, 1, 2}, j ≥ i.

Attacker’s Capability. A test-time adversary replaces a clean test input x with an adversarially
manipulated input A(x), where A(·) represents the attack algorithm that searches for adversarial
examples in a feasible set T (x). We consider an adversary who wants to maximize the classification
error rate: E(x,y)∼D 1(f(A(x)) ̸= y). We assume white-box attacks3, i.e. the adversary has total
access to f , including its structures, model parameters and any defense mechanism in place.

Definition 1 (relational adversary). An adversary is R-relational if T (x) = {z |x →∗
R z}.

In essence, a relational adversary can apply arbitrary composition of transformations specified in R.
We assume R to be accessible to both the learner and the adversary. We believe this is a reasonable
assumption to make: R determines the adversary’s search space like ϵ and p for ℓp-norm attacks, and
it is impossible to formally evaluate a defense technique against unknown adversarial feasible sets.

Challenges with Relational Adversaries. Relational adversaries are prevalent in program analysis
because 1) the attacker often has enough control over the victim input to make substantial changes,
and 2) well-defined semantic-preserving transformations exist. We will focus on two such threats —
misleading authorship attribution [Quiring et al., 2019] and evading malware detection [Al-Dujaili
et al., 2018] — in the empirical evaluation in Sec 5. In the former, the attacker transforms source
code samples so as to evade automated authorship attribution while maintains the behavior of the
code. In the latter, a malware author manipulates the API usage to evade ML-based detectors while
maintains the malicious functionality.

Relational adversaries pose new challenges to robust learning. First, since T (x) is discrete in nature
and the perturbation need not be bounded by ℓp-norm, defense mechanisms that leverage local
smoothness of model prediction are no longer applicable. Second, adversarial training specifically
suffers from efficiency issues against relational adversaries. The reasons are two two-fold. First,
the inner maximization procedure needs to search a combinatorially large discrete space. Second,
the generation of adversarial examples is based on program transformation in the problem space4

(rather than gradient manipulation in the feature space), which can not be performed in GPU. These
challenges motivate us to study the essence of R and leverage normalization as a remedy (Sec 4). We
evaluate models by the robustness and robust accuracy adapted for relational adversaries as follows,

3We consider a strong white-box attacker to avoid interference from security by obscurity, which is shown
fragile in various other adversarial settings [Carlini and Wagner, 2017].

4This is to ensure the syntactic validity of the generated program.

4

Definition 2 (Robustness and robust accuracy). Let Q(R, f,x) be the following statement:
∀ z((x →∗

R z) ⇒ f(x) = f(z)). Then, a classifier f is robust at x if Q(R, f,x) is true, and
the robustness of f to an R-relational adversary is: Ex∼DX 1Q(R,f,x), where 1(·) indicates the truth
value of a statement and DX is the marginal distribution over inputs. The robust accuracy of f w.r.t.
an R-relational adversary is then: E(x,y)∼D 1Q(R,f,x)∧f(x)=y.

4 N&P– A Robust Learning Framework

The Normalize-and-Predict (N&P) framework enhances model robustness by learning and testing
over normalized training and test inputs. The framework originates from the following principle:

Suppose we can convert a test input into some canonical form — the normal form —
and use the normal form as the model input, then the model prediction is robust if the
adversarial example and the original clean input share the same normal form.

We refer the conversion of an input to its normal form as normalization. In this section, we answer
the crucial questions of when and how to normalize. We first introduce the framework in Sec 4.1 and
then theoretically analyze its performance in light of robustness-accuracy trade-off in Sec 4.2. The
analysis shows that a carefully chosen normal form can help achieve the optimal robust accuracy.
Following these insights, we show a unified framework of N&P with adversarial training in Sec 4.3
and a computationally efficient heuristic normalizer in Sec 4.4.

4.1 An Overview of the N&P Framework

In N&P, the learner first specifies a normalizer N : X → X . We call N (x) the ‘normal form’ of input
x. The learner then both trains the classifier and predicts the test label over the normal forms instead
of the original inputs. Let D denote the training set. In the empirical risk minimization learning
scheme, for example, the learner will now solve the following problem

min
f∈H

∑
(x,y)∈D

ℓ(f,N (x), y), (1)

and use the minimizer f∗ as the classifier. For an actual learning algorithm, the N&P pipeline will
replace the training input (x, y) with (N (x), y). At test-time, the model will predict f∗(N (x)), i.e.
replace the original test input x with the normal form N (x).

4.2 Finding the Normalizer — Trade-off Analysis

The choice of N is crucial to N&P’s performance in terms of the robustness-accuracy trade-off. For
an input x, let SN (x) = {z ∈ X | N (x) = N (z)} denote the set of inputs that share the same normal
form as x. For robustness purpose, we want SN (x) to be inclusive: if SN (x) covers the adversary’s
feasible set T (x), then the model will be robust at x by design. Meanwhile, for accuracy purpose,
we want to restrict the size of SN (x): a constant N is robust, but has no utility as f(N (·)) is also
constant. Therefore, we seek an N that performs only the necessary normalization for robustness
with a minimal impact on accuracy.

Price for Robustness. Like against ℓp attacks, robustness-accuracy trade-off also exists for learning
against relational attacks. We first examine the intrinsic trade-off due to the structure of the relation.
Given a relation R, we have the following condition for a classifier to be robust everywhere.
Proposition 1. A classifier f is robust at all x ∈ X iff x →R z =⇒ f(x) = f(z) for all x ∈ X .

Under this condition, we characterize three interesting patterns of R that cause different levels of
trade-off as shown in Figure 2. First, if x →R z and x, z have the same label, then a robust classifier
f comes at no cost of natural accuracy. Second, if x, z have different labels but can be transformed
into each other under R, then a robust f will have to sacrifice the natural accuracy for either x or z.
Fortunately, as we will explain in Theorem 1, such cost to natural accuracy is indeed necessary for
achieving the best robust accuracy. Last, if x can be transformed to two outputs z1, z2 with different
labels, then enforcing robustness may cause additional trade-off to robust accuracy.

We note that all three patterns are common in program analysis tasks. The second pattern happens
when some syntactical feature is strongly correlated with the class label. For example, a malware can

5

x z x z xz1 z2

Figure. 2: Relations with different robustness-accuracy trade-off. Different node colors indicate
different most likely labels. Left: Robust classification preserves natural accuracy; Middle: Robust
classification preserves robust accuracy; Right: Robust classification is at odds with robust accuracy.

call two different APIs — one is open-sourced and the other is a secured version with authentication
— for the same function. Malware authors at large predominately use the former for convenience, and
thus make its usage a strong signal of malware. However, an advanced attacker may compromise
the authentication and subsequently uses the secured API to evade detection. N&P avoids using such
features and thus corrects the false sense of security. The third pattern often happens with code
injection: x could be an abstract function, while z1, z2 are two instantiations with different purposes.
Enforcing the same prediction over x, z1 and z2 makes no sense in most cases.

Optimal N for Robust Accuracy. Inspired by the robustness-accuracy trade-off analysis, we discover
the following normalizer N that preserves the optimal robust accuracy before and after normalization.
Definition 3 (Equivalence Group). A set E ⊆ X is an equivalence group under relation R iff 1)
∀x, z ∈ E , we always have x →∗

R z and z →∗
R x, and 2) ∀x, z ∈ X , (x →∗

R z) ∧ (z →∗
R x)

implies x, z ∈ E . In addition, a single-element set {x} is an equivalence group if x does not belong
to any equivalence group with more than one element.

Definition 4 (Normalizer by Equivalence Group). A normalizer by equivalence group N picks a
deterministic element z for each equivalence group E , and returns N (x) = z for all x ∈ E .

Theorem 1 (Preservation of Robust Accuracy). Let H be the set of all labeling functions and N
be a normalizer by equivalence group, then we must have a classifier f ∈ H such that 1) f has
the highest robust accuracy on D without normalization, 2) f(x) = f(z) for all x, z in the same
equivalence group, and 3) there exists a classifier g ∈ H over the normalized inputs such that
g(N (x)) = f(x),∀x ∈ X .

Theorem 1 convey an important message. The robustness guaranteed by N&P with a normalizer in
Definition 4, i.e. same prediction for all x in the same equivalence group, is also desired by some
model that achieve the highest robustness accuracy on the original unnormalized inputs. Therefore,
learning and testing on the normalized inputs incurs no additional robust-accuracy trade-off.

4.3 Synergy with Adversarial Training

Despite the difference between the underlying principles of N&P and adversarial training, we can
readily unify these two approaches to enjoy the benefits from both worlds. Let A(·) denote the attack
algorithm used in the inner loop of adversarial training. In the unified framework, the learner solves
the min-max loss of adversarial training over the normalized inputs, i.e.

min
f∈H

max
A(·)

∑
(x,y)∈D

ℓ (f,A (N (x)) , y) (2)

to obtain a model f∗ and predicts f∗(N (x)) at test-time. In the actual learning algorithm, the learner

• first normalizes all training examples with an N by equivalence groups, and
• in each iteration, trains over the adversarial variant of the normalized input (N (x), y).

Normalization offers many advantages to the unified approach. First, the unified framework still
guarantees robustness for adversarial examples in the same equivalence group as the clean input.
Second, normalization significantly reduced the search space of adversarial training. Suppose a
program uses n APIs and each API has k functionally equivalent substitutes, then the number
of variants by API substitution alone grows exponentially to kn. Normalization removes these
variants so that adversarial training can focus on other transformations. Third, normalization can
potentially reduce the model capacity needed to learn a robust model as shown in Appendix A.2. In
return, adversarial training can deal with transformations for which normalization incurs additional
robustness-accuracy trade-off, e.g. against code injection as shown in Sec 4.2.

6

4.4 Efficient Normalization

Although the problem of exact normalization in its most general form can be computationally hard,
we propose a practical framework of generating heuristic normal forms. First, for each equivalence
group E , we assign an order to all its elements. An ideal normalizer should return the element with
the lowest order. Given an input, our heuristic normalizer will iteratively apply the transformation
that lowers the order of the input until no such transformations are available. The final form will be
the approximate normal form. Taking semantically equivalent source codes in authorship attribution
as an example. We can rank code pieces by its syntactical features, e.g. number of for loops. The
normalizer, while trying to reduce the order, will apply the for-to-while transformation. To ensure that
the approximate normal form still lies in the same equivalence group, every transformation we use in
N has a reversible counterpart in R, e.g. for-to-while can be negated by while-to-for. Then, N (x)
can always be converted back to x by applying the transformations in the reverse direction. The
detailed description can be found in Appendix B. The code of our normalizer is also open sourced on
github. 5

5 Experiment

We now evaluate the effectiveness of N&P against relational attacks for real-world attacks. In
particular, we seek answers to the following questions.

1. Does N&P deliver the promised robustness improvement under real-world attacks?

2. How much performance edge does N&P provide — both in robust accuracy and computation
time — compared to standard adversarial training against relational adversaries?

3. How is the robustness-accuracy trade-off compared to without normalization, and is the
trade-off worthwhile?

We investigate these questions over two real-world tasks — authorship attribution and malware
detection. Our result shows that normalization in the learning pipeline can significantly boost model
robustness against relational adversaries compared to adversarially trained and unprotected models.

5.1 Authorship Attribution

Automated authorship attribution is a classical task in program analysis. Successful identification
of the author of a code piece can help catching plagiarism, tracking contributors to shared projects
and identify authors of malicious content [Caliskan-Islam et al., 2015, Abuhamad et al., 2018].
However, Quiring et al. [2019] shows that semantic-preserving transformation over the source code
can significantly reduce the performance of ML-based authorship attribution models. Although the
attack is hard to defend if the attacker knows the coding style of the imitation target well, we are
interested in whether authorship attribution is still possible under common code transformations that
does not require any knowledge of the imitation target.

Dataset. We use the dataset provided by Quiring et al. [2019], 6 which is collected from Google
Code Jam, a coding platform on which individual programmers compete to solve coding challenges.
It consists of 1,632 files of C++ code from 204 authors solving the same 8 programming challenge
questions. We follow the same train-test data splits in Quiring et al. [2019]. We create 8 different
data splits. Each split uses the codes from one challenge as the test set and the codes from the rest
seven challenges for training. We run the experiments over all 8 splits and report the average results.

Relation and Normalization. The attack proposed by Quiring et al. [2019] applies Monte-Carlo
tree search to determine the sequence of program transformations for creating adversarial examples.
As explained in Quiring et al. [2019], all transformations, 42 in total covering control-flow, variable
and function declaration, I/O API, etc., merely change the common, generic program features that
do not fundamentally alter the signature of each author, therefore, the generated forgeries should
have the same label as the original copies. To keep our engineering workload manageable, we
consider 35 transformations that are easier to normalize. Some of the transformations are shown in

5https://github.com/Mohannadcse/Normalizer-authorship
6https://github.com/EQuiw/code-imitator/tree/master/data/dataset_2017

7

Table 1: Authorship attribution accuracy(%). The leader for each series is highlighted in bold.

Attack methods N&P-RF N&P-LSTM Adv-LSTM
Vanilla-RF Vanilla-LSTM

[Caliskan-Islam et al., 2015] [Abuhamad et al., 2018]
Clean 76.1±3.8 78.7±4.8 76.7±3.8 90.4±1.7 88.4±3.7
Non-Adaptive 72.3±4.0 73.7±3.6 30.8±4.0 13.2±3.3 21.1±2.8
Adaptive 70.5±4.6 71.2±4.8 30.8±4.0 13.2±3.3 21.1±2.8
Adaptive+ 37.3±13.3 49.9±7.4 25.2±5.1 1.0±0.4 0.9±0.4

Figure 1. Regarding the normalization procedure, we use the sum of selected syntactical features
of the code (e.g. number of for loops, C-style I/O API and Boolean variables) as the order of the
code. We iteratively apply transformations that lowers the order until reaching a fixed point. The full
transformation and syntactical features list are in Appendix B.

Attack Methods. We consider three attack modes. All three attacks use the Monte-Carlo tree search
(MCTS) method in Quiring et al. [2019] with the same parameters including number of iterations
and roll-out per iteration. The Non-Adaptive method attacks without knowing the existence the
normalizer N , i.e. runs MCTS using prediction scores over the original inputs. The Adaptive attack,
in contrast, runs MCTS using the model prediction over the normalized inputs. This means for
each roll-out attempt, the attacker will also run the normalizer and using the prediction score over
the normalized input to plan its next move. Last, we consider Adaptive+, which runs MCTS over
normalized inputs and also attacks with all 42 transformations in Quiring et al. [2019]. Although no
performance is guaranteed against an attacker with a larger adversarial feasible set than in training,
we are still curious about how N&P compares to the adversarial trained and the unprotected models.

Baseline Models. We consider both the random forest (RF) model and the recurrent neural net
model with LSTM units attacked in Quiring et al. [2019] for baseline performance. Hereinafter, we
name them Vanilla-RF and Vanilla-LSTM. Our N&P framework uses the same model structure,
parameters and training procedure as Quiring et al. Hereinafter, we call the normalized models
N&P-RF and N&P-LSTM. For the adversarial training baseline, we train the lone compatible model
Vanilla-LSTM into Adv-LSTM as Vanilla-RF, a non-parametric method, has no gradients for
adversarially training to exploit [Wang et al., 2018, Yang et al., 2020b]. We note that the standard
adversarial training is too computationally expensive for the attack on source code level. We make a
number of adaptations that reduce the number of MCTS roll-outs and generate adversarial examples
in batch for better parallelism so that the process finishes within a month on a 72-core CPU server.
The details of these adaptations can be found in Appendix B.

N&P v.s. Vanilla Models. Table 1 shows the test accuracy of all baselines against adversarial
examples and clean inputs. N&P-LSTM has the highest accuracy against all three attacks followed
by N&P-RF. Compared to the corresponding vanilla models with the same model structures, the
N&P models achieves higher accuracy by a wide margin. The accuracy increases by more than 50%
for both the non-adaptive and adaptive attack. The results show that N&P is highly effective when
the attacker uses transformations already considered by the normalizer. Intriguingly, even under the
Adaptive+ attack in which some attack transformations are not normalization, N&P still achieves
nontrivial accuracy – 37.3% for N&P-RF and 49.9% for N&P-LSTM – which is 36% and 49% higher
than Vanilla-RF/Vanilla-LSTM. This is because most of the time the MCTS attack will use the 7
transformations that have not been normalized. N&P effectively reduces the attack surface and thus
still enhances the accuracy. For clean inputs, the N&P models has lower accuracy compared to the
vanilla models due to the inevitable robustness-accuracy trade-off analyzed in Sec 4.2. However,
the difference (<10% for LSTM and <15% for RF) is much smaller than the accuracy gain in the
adversarial setting. The trade-off is worthwhile when a sizable portion of the inputs come from
adversarial sources.

N&P v.s. Adversarial Training. N&P models also consistently outperforms the adversarially trained
counterparts across all attacks by a significant margin (~40% for Non-Adaptive/Adaptive and up to
24% for Adaptive+). The performance of adversarial training is heavily affected by the strength of
the attack used in the training loop: a model adversarially trained with a weak attack in the loop may
succumb to a strong attack in test time. Recall that our adversarial training procedure uses an attack
with reduced search parameters in order to have reasonable training time. Adv-LSTM has ~60%
accuracy against the adaptive attack in the training loop. However, the accuracy drops significantly to

8

Table 2: Malware Detection: False Negative Rate (FNR) and False Positive Rate (FPR) on Sleipnir.

Unified (Ours) Adv-Trained Al-Dujaili et al. [2018] Natural

FNR(%) FPR(%) FNR(%) FPR(%) FNR(%) FPR(%) FNR(%) FPR(%)

Natural 5.0±0.4 11.9±1.2 5.8±0.9 12.1±1.2 6.4±0.5 10.7±0.3 6.2±0.6 10.0±0.6
Adversarial 5.5±0.5 11.9±1.2 27.9±8.2 12.1±1.2 89.9±7.8 10.7±0.3 100±0.0 10.0±0.6

30.8% against the full-strength MCTS attack in the actual test. In security applications, the attacker
is often assumed to have more computation power than the defender and may use attack algorithms
unknown to the defender in which case N&P is likely to show more consistent performance.

Running Time. The vanilla models take less than 12 hours to train on our infrastructure. N&P incurs
an overhead of less than 12 hours in normalization, which is in the same order of the vanilla training
time. In contrast, adversarial training requires much longer training time. Even with reduced search
parameters, adversarial training still takes more than 20 days to finish on the same infrastructure,
which is 40x more than the vanilla training time. N&P shows a clear advantage in running time.

5.2 Malware Detection

Dataset. We evaluate the effect of normalization on malware detection using Sleipnir, a data set
containing Windows binary API usage features of 34,995 malware and 19,696 benign software,
extracted from their Portable Executable (PE) files using LIEF [Thomas, 2017]. The dataset was
created by Al-Dujaili et al. [2018] and used to evaluate the effectiveness of their adversarial training
against API injection attacks. The detection is exclusively based on the API usage of a malware.
There are 22,761 unique API calls in the data set, so each PE file is represented by a binary indicator
vector x ∈ {0, 1}m, where m = 22, 761. We sample 19,000 benign PEs and 19,000 malicious PEs
to construct the training (60%), validation (20%), and test (20%) sets.

Relation and Normalization. Al-Dujaili et al. [2018] considers adding redundant API calls, i.e.,
(x, z) ∈ R iff z is obtained by flipping some x’s feature values from 0 to 1. On top of API addition,
We consider substitution of API calls with functionally equivalent counterparts, i.e., (x, z) ∈ R iff
z is obtained by changing some of x’s feature values from 1 to 0 in conjunction with some other
feature values changed from 0 to 1. With expert knowledge, we extract nearly 2,000 equivalent API
groups described in Appendix C.3. We normalizes API substitutions by condensing the features of
equivalent APIs into one whose value indicates if any API in the group is used.

Attack Methods. We introduce two new relational attack algorithms, which are GREEDYBYGROUP
and GREEDYBYGRAD. GREEDYBYGROUP searches the combination of API usage within each
equivalence group that maximizes the test loss, and then combine the adversarial perturbations from
all equivalence groups. GREEDYBYGRAD makes a first-order approximation of the change in test loss
caused by potential transformations, applies the transformations with top m approximated increases
and repeats this procedure for K iterations. Their detailed algorithm descriptions are in Appendix C.1.
In model evaluation, we use our attacks together with the rfgsm_k attack in Al-Dujaili et al. [2018]
and call an adversarial attack successful if any of the attack algorithms evades the detection.

Model and Baselines. We compare four ML-based malware detectors. The Unified detector uses
our unified framework in Sec 4.3: we normalize over equivalent API groups, and then adversarially
trains over API addition. The Adv-Trained detector is adversarially trained with the best adversarial
example generated using GREEDYBYGRAD and rfgsm_k additive attack. We also include the
model proposed by Al-Dujaili et al. [2018], which is adversarially trained against only rfgsm_k
additive attack, and lastly a Natural model with no defense. We use the same network architecture
as Al-Dujaili et al. [2018], a fully-connected neural net with three hidden layers, each with 300 ReLU
nodes, to set up a fair comparison. We train each model to minimize the negative log-likelihood loss
for 20 epochs, and pick the version with the lowest validation loss. We run five different data splits.

Results. As Table 2 shows, relational attacks are overwhelmingly effective to detectors that are
oblivious to potential transformations. Adversarial examples almost always (>99% FNR) evade the
naturally trained model, and also evade the detector in Al-Dujaili et al. [2018] most of the time (>89%
FNR) as it does not consider API substitution. On the defense end, Unified achieves the highest robust
accuracy: the evasion rate (FNR) only increases by 0.5% on average. Adv-Trained comes second

9

but the evasion rate is > 20% higher. The evasion is mostly caused by GREEDYBYGROUP, the attack
that is too computationally expensive to be included in the training loop. This result corroborates
with the theoretical advantage of N&P: its robustness guarantee is independent of training algorithms.
Last, all detectors using robust learning techniques have higher FPR compared to Natural, which is
expected because of the inevitable robustness-accuracy trade-off. However, the difference is much
smaller compared to the cost due to attacks, and thus the trade-off is worthwhile.

6 Conclusion and Future Work

In this work, we set the first step towards robust learning against relational adversaries: we theoret-
ically characterize the conditions for robustness and the sources of robustness-accuracy trade-off,
and propose a provably robust learning framework. Our empirical evaluation shows that input nor-
malization can significantly enhance model robustness. For future work, we see automatic detection
of semantics-preserving transformation as a promising addition to our current expert knowledge
approach, and plan to extend the normalization approach to model explanability, fairness and security
problems beyond relational adversaries.

7 Societal Impact

We propose input normalization as a principle approach to enhance ML model robustness against
relational adversaries. In most cases, the extra robustness in security-critical tasks will reduce the
loss caused by malicious behaviors and thus bring positive societal impact. We do acknowledge that
one of our specific empirical evaluation setting — automated authorship attribution — can cause
privacy issues when used for censorship; an enhanced authorship attribution technique may allow the
censoring agent to better identify the author. We note that N&P in our experiment only normalizes
over the most basic set of program features to investigate ML models’ stability in common use cases.
For more privacy-sensitive cases, an author can still use more advanced techniques, such as randomize
variable/function names, encrypt its code or even normalize its code with a more comprehensive
relation before code submission, to remove the idiosyncrasies in its codes. Our N&P framework over
generic program features will not conflict with these anonymization techniques.

10

References
Clang: a c language family frontend for llvm. https://clang.llvm.org/, 2016. Accessed:

2021-10-24.

Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang. Large-scale and
language-oblivious code authorship identification. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 101–114, 2018.

Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adversarial deep learning
for robust detection of binary encoded malware. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 76–82. IEEE, 2018.

Richard Baumann, Mykolai Protsenko, and Tilo Müller. Anti-proguard: Towards automated deobfus-
cation of android apps. In Proceedings of the 4th Workshop on Security in Highly Connected IT
Systems, SHCIS ’17, pages 7–12, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5271-0. doi:
10.1145/3099012.3099020. URL http://doi.acm.org/10.1145/3099012.3099020.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation
of android applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 343–355, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978422. URL http://doi.acm.org/10.
1145/2976749.2978422.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss, Fabian Ya-
maguchi, and Rachel Greenstadt. De-anonymizing programmers via code stylometry. In 24th
USENIX Security Symposium (USENIX Security 15), pages 255–270, 2015.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26.
ACM, 2017.

Mihai Christodorescu, Somesh Jha, Johannes Kinder, Stefan Katzenbeisser, and Helmut Veith.
Software transformations to improve malware detection. Journal in Computer Virology, 3:253–265,
10 2007. doi: 10.1007/s11416-007-0059-8.

Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of virtualization-obfuscated software:
A semantics-based approach. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 275–284, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0948-6. doi: 10.1145/2046707.2046739. URL http://doi.acm.org/10.1145/
2046707.2046739.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 31–36, 2018.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1625–1634, 2018.

Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to adversarial
perturbations. Machine learning, 107(3):481–508, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel.
Adversarial examples for malware detection. In European Symposium on Research in Computer
Security, pages 62–79. Springer, 2017.

11

https://clang.llvm.org/
http://doi.acm.org/10.1145/3099012.3099020
http://doi.acm.org/10.1145/2976749.2978422
http://doi.acm.org/10.1145/2976749.2978422
http://doi.acm.org/10.1145/2046707.2046739
http://doi.acm.org/10.1145/2046707.2046739

Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics. In Proceedings of the 10th Conference on
USENIX Security Symposium - Volume 10, SSYM’01, Berkeley, CA, USA, 2001. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1251327.1251336.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised
learning can improve model robustness and uncertainty. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32, pages 15663–15674. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
a2b15837edac15df90721968986f7f8e-Paper.pdf.

Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1614–1619,
2018.

Hossein Hosseini, Baicen Xiao, Mayoore Jaiswal, and Radha Poovendran. On the limitation of
convolutional neural networks in recognizing negative images. In 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 352–358. IEEE, 2017.

Weiwei Hu and Ying Tan. Black-box attacks against rnn based malware detection algorithms. In
Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal, Krishna-
murthy Dvijotham, and Pushmeet Kohli. Achieving verified robustness to symbol substitutions via
interval bound propagation. pages 4074–4084, 2019.

Inigo Incer, Michael Theodorides, Sadia Afroz, and David Wagner. Adversarially robust malware
detection using monotonic classification. In the Fourth ACM International Workshop on Security
and Privacy Analytics (IWSPA), Tempe, AZ, USA, Mar. 2018.

G. Katz, C. Barrett, D.L. Dill, K. Julian, and M.J. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In International Conference on Computer Aided Verification,
2017.

Alex Kouzemtchenko. Defending malware classification networks against adversarial perturbations
with non-negative weight restrictions. arXiv preprint arXiv:1806.09035, 2018.

Dexter Kozen. Lower bounds for natural proof systems. In FOCS, 1977.

Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense against
unseen threat models. arXiv preprint arXiv:2006.12655, 2020.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G Dimakis, Inderjit S Dhillon, and Michael Witbrock.
Discrete adversarial attacks and submodular optimization with applications to text classification.
Systems and Machine Learning (SysML), 2019.

Zhen Li, Chen Chen, Yayi Zou, Shouhuai Xu, et al. Ropgen: Towards robust code authorship
attribution via automatic coding style transformation. arXiv preprint arXiv:2202.06043, 2022.

Qianjun Liu, Shouling Ji, Changchang Liu, and Chunming Wu. A practical black-box attack on
source code authorship identification classifiers. IEEE Transactions on Information Forensics and
Security, 16:3620–3633, 2021. doi: 10.1109/TIFS.2021.3080507.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2574–2582, 2016.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba,
Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben
Edwards. Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018. URL https:
//arxiv.org/pdf/1807.01069.

12

http://dl.acm.org/citation.cfm?id=1251327.1251336
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://arxiv.org/pdf/1807.01069
https://arxiv.org/pdf/1807.01069

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia conference on computer and communications security, pages 506–519, 2017.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey Ku-
rakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan,
Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg,
Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber,
and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. Intriguing properties
of adversarial ML attacks in the problem space. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1308–1325. IEEE Computer Society, 2020. doi: 10.1109/SP40000.2020.00073. URL
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073.

Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin Raffel. Imperceptible, robust,
and targeted adversarial examples for automatic speech recognition. In International Conference
on Machine Learning, pages 5231–5240, 2019.

Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship attribution of source code
using adversarial learning. In Proceedings of the 28th USENIX Conference on Security Symposium,
SEC’19, page 479–496, USA, 2019. USENIX Association. ISBN 9781939133069.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Understand-
ing and mitigating the tradeoff between robustness and accuracy. In Proceedings of the 37th
International Conference on Machine Learning, pages 7909–7919, 2020.

Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box end-to-end attack
against state of the art api call based malware classifiers. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 490–510. Springer, 2018.

Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Defense methods against adversarial
examples for recurrent neural networks. arXiv preprint arXiv:1901.09963, 2019.

Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated programs using machine
learning. In Proceedings of the 6th Workshop on Software Security, Protection, and Reverse
Engineering, SSPREW ’16, pages 1:1–1:11, New York, NY, USA, 2016. ACM. ISBN 978-1-
4503-4841-6. doi: 10.1145/3015135.3015136. URL http://doi.acm.org/10.1145/
3015135.3015136.

Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky. Semantics-Preserving
Inlining for Metaprogramming, page 14–24. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450381772. URL https://doi.org/10.1145/3426426.
3428486.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Romain Thomas. Lief - library to instrument executable formats. https://lief.quarkslab.com/, April
2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Ro-
bustness may be at odds with accuracy. In International Conference on Learning Representations,
2018.

Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest neighbors
to adversarial examples. In International Conference on Machine Learning, pages 5133–5142.
PMLR, 2018.

Fanny Yang, Zuowen Wang, and Christina Heinze-Deml. Invariance-inducing regularization using
worst-case transformations suffices to boost accuracy and spatial robustness. In Advances in Neural
Information Processing Systems, pages 14757–14768, 2019.

13

https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073
http://doi.acm.org/10.1145/3015135.3015136
http://doi.acm.org/10.1145/3015135.3015136
https://doi.org/10.1145/3426426.3428486
https://doi.org/10.1145/3426426.3428486

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan. Greedy attack and
gumbel attack: Generating adversarial examples for discrete data. Journal of Machine Learning
Research, 21(43):1–36, 2020a.

Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. Robustness for non-
parametric classification: A generic attack and defense. In International Conference on Artificial
Intelligence and Statistics, pages 941–951. PMLR, 2020b.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaud-
huri. A closer look at accuracy vs. robustness. Advances in neural information processing systems,
33:8588–8601, 2020c.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pages 7472–7482, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
A: Yes.

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
A: Yes.

(c) Did you discuss any potential negative societal impacts of your work?
A: Yes, this is done in Section 7, Page 9.

(d) Did you describe the limitations of your work?
A: Yes. In fact, a main contribution of our paper is to discuss the robustness-accuracy
trade-off caused by input normalization, i.e. the fundamental limitation of learning
against relational adversaries.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?
A: Yes.

(b) Did you include complete proofs of all theoretical results?
A: Yes. The full proofs and the formal version of the statements can all be found in
Appendix A.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
A: The normalizer in our paper is now open sourced on https://github.com/
Mohannadcse/Normalizer-authorship.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
A: Yes.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
A: Yes.

(d) Did you include the amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)?
A: Yes.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators?
A: Yes.

14

https://github.com/Mohannadcse/Normalizer-authorship
https://github.com/Mohannadcse/Normalizer-authorship

(b) Did you mention the license of the assets?
A: Yes. The source code used in Al-Dujaili et al. [2018] is under MIT li-
cense. The repo can be found at https://github.com/ALFA-group/
robust-adv-malware-detection. We directly requested the authors to obtain
the Sleipnir dataset. The dataset and code used in Quiring et al. [2019] is under GPL-3.0
license. We got the code from its github page at https://github.com/EQuiw/
code-imitator.

(c) Did you include any new assets either in the supplemental material or as a URL?
A: At this moment, we are waiting for the internal legal inspection over proprietary
information. We can release the code as soon as the process is complete.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?
A: Yes. We obtain the code directly from the collector of the datasets. The datasets
contain no personal biometric information.

5. If you used crowdsourcing or conducted research with human subjects...
A: No, we did not.

15

https://github.com/ALFA-group/robust-adv-malware-detection
https://github.com/ALFA-group/robust-adv-malware-detection
https://github.com/EQuiw/code-imitator
https://github.com/EQuiw/code-imitator

A Proofs and Explanation for Theoretical Results

In this section, we present the omitted proofs for theorems and observations due to page limit of the
main body.

A.1 Proof for Computational Hardness of Adversarial Training

We first write the full statement of hardness in the following theorem.
Theorem 2. Let R ⊆ {0, 1}d × {0, 1}d be a relation. Given a function f , an input x ∈ {0, 1}d and
a feasible set T (x) = {z : x →∗

R z}, solving the following maximization problem:

max
z∈T (x)

l(f, z, y)

is PSPACE-hard when l(f,x, y) is the 0-1 classification loss.

Proof. Let α : {0, 1}d → {0, 1} be a predicate. Define a loss function l(f, z, y) as fol-
lows: l(f, z, y) = α(z) (the loss function is essentially the value of the predicate). Note that
maxz∈T (x) l(f, z, y) is equal to 1 iff there exists a z ∈ T (x) such that α(z) = 1. This is a well
known problem in model checking called reachability analysis, which is well known to be PSPACE-
complete (the reduction is from the problem of checking emptiness for a set of DFAs, which is known
to be PSPACE-complete Kozen [1977]).

Recall that the maximation problem maxz∈Bp(x,ϵ) l(f, z, y) used in adversarial training for the image
modality was proven to be NP-hard Katz et al. [2017]. Hence it seems that the robust optimization
problem in our context is in a higher complexity class than in the image domain.

A.2 Model Capacity Requirement

In this section, we illustrate how the N&P framework can potentially help reduce the model complexity
for learning a robustly accurate classifier. We start with the following proposition.
Proposition 2 (Model Capacity Requirement). For some hypothesis class H and relation R, there
exists f ∈ H such that f(NR(·)) is robustly accurate, but no f ∈ H can be robustly accurate on the
original inputs. In other words, robustly accurate classifier can only be obtained after normalization.

We first define an equivalence relation induced by equivalent coordinates over binary inputs, and then
write the formal statement of the observation in the following claim.
Definition 5 (Equivalence relation induced by equivalent coordinates). Let x = (x1, · · · ,xd) be a
binary input vector on {0, 1}d, where each xi, i ∈ {1, · · · , d} is a coordinate. Let I = {1, · · · , d} be
the set of coordinate indices for inputs in X and U = {i1, · · · , im} ⊆ I . In an equivalence relation
R induced by U , x →R z iff 1) xi = zi for all i ∈ I\U , and 2)

∨
i∈U xi =

∨
i∈U zi. Notice that

x →R z iff z →R x.

The notation
∨

i∈U xi means taking a logic or operation over all xis for i ∈ U . Intuitively, having an
equivalence relation induced by coordinates with indices in U means the presence of any combination
of such coordinates is equivalent to any other combination. Usage of interchangeable APIs in malware
implementation is an example of equivalence relation: the attacker can choose any combination from
a set of equivalent APIs to implement the same functionality.

In Definition 5, we use U to represent the set of indices of the equivalent coordinates. In the following
theorems and proofs, we overload U to also represent the set of equivalent coordinates directly, and
the

∨
operation will be taken over all coordinates in U .

Claim 1. Consider X = {0, 1}5 and Y = {0, 1}. Let the coordinates of an input x ∈ X be
{x1,x

′
1,x2,x3,x4}. Suppose we have an equivalence relation induced by U = {x1,x

′
1}. Meanwhile,

the true label y of an input x is 1 iff any of the following clauses is true: 1) (x2 = 1) ∧ (x3 = 1), 2)
(x1 ∨x′

1 = 1) ∧ (x2 = 1), 3) (x1 ∨x′
1 = 1) ∧ (x3 = 1) ∧ (x4 = 1). Then

1. no linear model can classify the inputs with perfect robust accuracy, but

2. a robust and accurate linear model exists under normalize-and-predict.

16

Proof. Let H = {fw,b : sgn(⟨w,x⟩ + b)}. Let w1,w
′
1,w2,w3,w4 denote the coordinates in w

that corresponds to x1,x
′
1,x2,x3,x4.

We know y = 1 if x1 = 1,x2 = 1 and the other coordinates are zero because the second clause in
the labeling rule is satisfied. Therefore, in order to classify this input instance correctly, we must have
w2 +w1 +b > 0. Since x1 and x′

1 are equivalent, we should also have w2 +w′
1 +b > 0.

Similarly, we know y = 0 if x2 = 1,x4 = 1 and the other coordinates are zero because none of the
clauses are satisfied. Therefore, we must have w2 +w4 +b < 0.

In order to classify all possible x correctly, the classifier fw,b must satisfy

w2 +w4 +b < 0 (3)
w2 +w1 +b > 0 (4)

w2 +w′
1 +b > 0 (5)

w3 +w1 +w′
1 +b < 0 (6)

w3 +w4 +w1 +b > 0 (7)

First, by Formula 3, 4 and 5, we have w1 > w4 and w′
1 > w4. However, by Formula 6 and 7, we

have w1 +w′
1 < w4 +w1, which implies w′

1 < w4. Contradition. Therefore, no linear classifier
can satisfy all the equations.

On the other hand, if we perform normalization by letting x1 = x1 ∨x′
1 and removing x′

1, then a
classifier fw,b – with w1 = 0.4,w2 = 0.7,w3 = 0.5,w4 = 0.2, b = −1 – can perfectly classify
x.

A.3 Proof for Theorem 1

Proof. We prove the statement by contradiction: suppose all classifiers f ∈ H with the highest robust
accuracy has f(x) ̸= f(z) for some x, z in the same equivalence group E , then we must be able to
find a f ′ such that f ′ is at least as robust accurate as f and f ′(x) = f ′(z).

We construct a classifier f ′ as follows: 1) f ′(x) = f ′(z), and 2) f ′(z′) = f(z′) for all z′ ∈ X , z′ ̸= z,
i.e. f ′ and f agree at all inputs except at z. We discuss the robust accuracy of f and f ′ in the following
two complementary cases.

Case 1. If x and z are not in the adversarial feasible set T (x′) of an input x′, then f is robust
accurate at x′ iff f ′ is robust accurate at x′. This is obvious as f(x′′) = f ′(x′′) for all x′′ ∈ T (x′).

Case 2. If x or z is in T (x′), then both x and z must be in T (x′). Suppose x ∈ T (x′), then by
the definition of relational adversary, we have x′ →∗

R x and by the definition of equivalence group,
we have x →∗

R z. Therefore, we must have x′ →∗
R z, i.e., z ∈ T (x′). Similarly, x must be in

T (x′) if z is in T (x′). In this case, f cannot be robust accurate at x′: both x and z are in T (x′), and
f(x) ̸= f(z); if f(x′) = f(x), then z will become a successful adversarial example; similarly, if
f(x′) = f(z), then x will be the adversarial example. Since f is already not robust accurate at x′,
the robust accuracy of f ′ cannot be lower than f in this case.

Combining the two cases, we can conclude that f ′ is at least as robust accurate as f over the
underlying data distribution D. The existence of g naturally follows the definition of normalizer by
equivalence group: the normalizer N guarantees the consistency of prediction within each E , and g
just need to match f ’s prediction on all normalized inputs.

17

Attack Transformation

Normalizer Transformation

2 3
Author A

Normal Form

¬ Author A

1

Figure. 3: Normalizer in action.

B Authorship Attribution – Algorithms and Implementation Details

B.1 Implementation and Infrastructure

We implement source code normalizer on top of Clang cla [2016], an open-source C/C++ frontend
for the LLVM compiler framework. For fair comparison of running time, we run all experiment series
on an Amazon EC2 c5.18xlarge instance with 72 cores and 144GB memory. We train the model
using the sklearn and keras APIs with tensorflow backend.

B.2 Attack Transformations to be Normalized

The evasion and impersonation attack in Quiring et al. [2019] uses a total of 42 transformation options.
These transformations can be divided into two categories based on the information needed. The
general transformations, such as changes in control statement, can be applied to any code without
prior knowledge of the target author. In contrast, the template-based transformations, which aim
to mimic the target author’s function/variable naming and type-def habits, will require samples of
the target author’s code pieces. We considers 35 of the the 42 transformations as listed in Table 3. 7

The selection covers most transformations including API usage, variable declaration, I/O style and
control statement. The transformations are also common across attack papers Quiring et al. [2019],
Liu et al. [2021]. The only general transformation not considered by us is function in-lining, which
removes declared functions in the code and move the commands in-line to the caller function. While
this may be done for simple online judge submissions, the boundary of usage of a function is in
general hard to track in large code projects. In-lining function in one script may raise problems in
other scripts that import and call the function. We do not normalize the transformation as it is hardly
semantics-preserving Stucki et al. [2020]. The template-based attack transformations not considered
by our normalizer is function/variable renaming. The function/variable transformer peeks into the
codes written by the target of imitation, and then rename the function and variables to match the
target author’s habit. This attack action requires extensive knowledge to the target author’s coding
habit. In the extreme case, the attacker may be more familiar to the target author than the learner, and
thus makes the evasion inevitable. We do not normalize this transformation as it can significantly
obscure the ground truth.

7We follow the counting method in Quiring et al. [2019] and count by the number of options instead of
number of transformers. For example, the input interface transformer has two options – stdin and file; therefore,
we count the input interface transformer as having two transformation options.

18

Table 3: List of code transformations and their corresponding normalized transformation

Transformer Family Transformer Description Syntactic Fea-
ture of Inter-
ests (SFoI)

Normalizing Ac-
tion in TN

For statement
transformer Control

Replaces a for-statement by an
equivalent while-statement No. of for loops Transform for loops

to while
While statement
transformer

Replaces a while-statement by an
equivalent for-statement

If statement
transformer

Split the condition of a single if-
statement at logical operands (e.g.,
&& or ||) to create a cascade or a se-
quence of two if-statements depend-
ing on the logical operand

No. of logical
predicate in an
if-statement

Split all if-statement
so that each state-
ment only has one
logical predicate.

Array trans-
former

Declaration

Converts a static or dynamically al-
located array into a C++ vector ob-
ject

No. of array
that can poten-
tially be con-
verted to C++
vector object

Convert ALL static
or dynamically allo-
cated array into a
C++ vector object.

String trans-
former

Array option: Converts a char array
(C-style string) into a C++ string ob-
ject. The transformer adapts all us-
ages in the respective scope, for in-
stance, it replaces all calls to strlen
by calling the instance methods size.
String option: Converts a C++ string
object into a char array (C-style
string). The transformer adapts all
usages in the respective scope, for
instance, it deletes all calls to c str().

No. of char ar-
ray

Convert all string to
C++ string object.

Integral type
transformer

Promotes integral types (char, short,
int, long, long long) to the next
higher type, e.g., int is replaced by
long.

Number of
integral type
declaration
lower than long
long

Replace all integral
type with long long.

Floating-point
type trans-
former

Converts float to double as next
higher type.

No. of float
type declaration
lower than dou-
ble

Convert all float to
double.

Boolean trans-
former

Bool option: Converts true or false
by an integer representation to ex-
ploit the implicit casting. Int op-
tion: Converts an integer type into a
boolean type if the integer is used as
boolean value only

No. of Boolean
values

Use int representa-
tion in all cases

Init-Decl trans-
former

Move into option: Moves a decla-
ration for a control statement if de-
fined outside into the control state-
ment. For instance, int i; ...; for(i =
0; i <N; i++) becomes for(int i = 0; i
<N; i++). Move out option: Moves
the declaration of a control state-
ment’s initialization variable out of
the control statement.

No. of loop-
ing variable de-
clared outside
the control state-
ment

Use move-in option
for all scenarios.

Typedef trans-
former

Convert option: Convert a type from
source file to a new type via type-
def, and adapt all locations where
the new type can be used. Delete op-
tion: Deletes a type definition (type-
def) and replace all usages by the
original data type.

No. of user-
defined types

Apply the delete
option to all
typedef.

19

Table 2: Continued

Transformer Family Transformer Description Syntactic Fea-
ture of Inter-
ests (SFoI)

Normalizing Ac-
tion in TN

Include-
typedef trans-
former

Template Inserts a type using typedef, and up-
dates all locations where the new
type can be used. Defaults are ex-
tracted from the 2016 Code Jam
Competition.

No. of user-
defined types

Apply the delete
option to all
typedef.

Unused code
transformer

Declaration Function option: Removes functions
that are never called. Variable op-
tion: Removes global variables that
are never used.

No. of unused
variables &
functions

Remove unused
variables and
functions.

Input interface
transformer
Output API

Stdin option: Instead of reading the
input from a file (e.g. by using the
API ifstream or freopen), the input
to the program is read from stdin di-
rectly (e.g. cin or scanf). File option:
Instead of reading the input from
stdin, the input is retrieved from a
file.

No. of file I/O Use stdin always.

Output inter-
face trans-
former

Stdout option: Instead of printing
the output to a file (e.g. by ofstream
or freopen), the output is written di-
rectly to stdout (e.g. cout or printf).
File option: Instead of writing the
output directly to stdout, the output
is written to a file.

Use stdout always.

Input API trans-
former

C++-Style option: Substitutes C
APIs used for reading input (e.g.,
scanf) by C++ APIs (e.g., usage of
cin). C-Style option: Substitutes
C++ APIs used for reading input
(e.g., usage of cin) by C APIs (e.g.,
scanf).

No. of
C-style I/O
API

Use C++ API al-
ways

Output API
transformer

C++-Style option: Substitutes C
APIs used for writing output (e.g.,
printf) by C++ APIs (e.g., usage of
cout). C-Style option: Substitutes
C++ APIs used for writing output
(e.g., usage cout) by C APIs (e.g.,
printf).

Use C++ Style al-
ways.

Sync-with-
stdio trans-
former

Enable or remove the synchroniza-
tion of C++ streams and C streams
if possible

No. of po-
tential synchro-
nization sites

Enable all synchro-
nization.

Compound
statement trans-
former

Misc Insert option: Adds a compound
statement ({...}). The transformer
adds a new compound statement
to a control statement (if, while,
etc.) given their body is not already
wrapped in a compound statement.
Delete option: Deletes a compound
statement ({...}). The transformer
deletes compound statements that
have no effect, i.e., compound state-
ments containing only a single state-
ment.

No. of com-
pound state-
ments

Apply the delete op-
tion to all locations.

Return state-
ment trans-
former

Adds a return statement. The trans-
former adds a return statement to
the main function to explicitly re-
turn 0 (meaning success). Note that
main is a non-void function and is
required to return an exit code. If the
execution reaches the end of main
without encountering a return state-
ment, zero is returned implicitly.

No. of implicit
return sites

Adds the return
statement to all ap-
plicable locations.

20

B.3 Order Function λ & Normalizing Transformer TN

We identify the Syntactic Features of Interests (SFoI) corresponding to the transformers as shown in
Table 3. Each SFoI’s value can be changed by one or multiple transformers. For example, we use the
number of for loops in the code as one SFoI, and its value can be changed by two transformers – the
for-to-while and the while-to-for transformer over the control flow.

We take the order function λ as the sum of values of the SFoIs, and the normal form of a code piece
is the variant that has the smallest sum of SFoIs. For example, if the SFoIs are 1) number of for loops
and 2) number of printf statements, then the normal form will be the variant that has the least number
of for loops and printf statements in total. In Table 3, we identify a total of 16 SFoIs and use the sum
of all of them as our order function λ.

We select a subset of the attack transformations as the set of normalizing transformations TN so as
to respect the equivalence groups. Our TN contains and only contains the attack transformations
that strictly decrease the value of SFoIs. For example, when the number of for loops is used as
an SFoI, we keep the for-to-while transformer in TN and discard the while-to-for. The right-most
column of Table 3 shows all the transformations we keep in TN . Notice that the SFoIs all take
non-negative integer values, and the normalizing transformations reduce the value of λ by 1 once
applied. Therefore, the number of iterations in normalization for an input x is bounded by the value
of λ(x).

B.4 Normalization in Action

Figure 3 shows an example of our normalizer in action. The left-most box contains an code snippet
originally written by Author A. The subsequent code boxes in the top row illustrate a sequence of
transformations applied to the original code. The attacker first converts the C-style printf statement
to the C++ style cout statement, then changes the for loop to a while loop, and eventually changes
the value of a boolean variable from 0 to False. The final variant in right-most box is a successful
adversarial example that misled the model to predict a different author.

In this code example, three syntactical features of interests are involved: 1) the number of for loops,
2) the number of C-style I/O statements and 3) the number of Boolean values that can be cast into
integers. The normalizer applies the normalizing actions in a iterative manner, reducing the number
of for loops, C-style IO statements and Boolean values until no more action is applicable. All four
code pieces – the original input, the final adversarial example and the two intermediate variants – will
be normalized into the same normal form as depicted in the bottom box in Figure 3.

B.5 Adaptation for Adversarial Training

In existing adversarial training literature, the ℓp-norm based adversarial examples are created directly
in the feature-space using gradient ascent; the attack can be readily computed in GPU in a similar
manner as model updates. The code transformations, however, are performed in the problem-space;
the MCTS computation is CPU-intensive and thus takes much longer. In addition, the validity check
of adversarial examples further increases the computational load. We make the following adjustments
to speed up the adversarial training process. First, we use Vanilla-LSTM as the initial model and
fine-tune it using adversarial inputs. The models show improved robust accuracy (~60%) to the
attacks in the training loops after 10 epochs. Second, instead of generating adversarial examples at
every training step, we generate the adversarial training inputs for all .cpp files with respect to the
model at beginning of an epoch. This change allows us to generate the adversarial training inputs in
parallel. To further speed up the adversarial training procedure, we also reduce the max-depth from
25 to 5 as well as the number of random play-outs at each node from 50 to 10 in the Monte-Carlo
tree-search. With these modification, we finally manage to finish adversarial training within a month.

21

C Malware Detection – Algorithms and Implementation Details

In this section, we present the omitted algorithm descriptions and experiment implementation details
for the malware detection experiment.

C.1 Generic Relational Attack Algorithms

In Sec 5, we introduce two generic relational attack algorithms – GREEDYBYGROUP and
GREEDYBYGRAD. The algorithm boxes below shows the exact description of both algorithms.

Algorithm 1 GREEDYBYGROUP
(x, y,K)
xadv = x, k = 0
Partition R into m groups {R1, · · · ,Rm}.
while k < K do

k = k + 1
for Ri ∈ {R1, · · · ,Rm} do

xi = arg max
z:xadv→∗

Ri
z
ℓ(f, z, y).

end
Combine xis to obtain the new xadv

end
return xadv

Algorithm 2 GREEDYBYGRAD(x, y,m,K)
xadv = x, k = 0
while k < K do

k = k + 1
g = ∇xℓ(f,x

adv, y)
for (xadv, z) ∈ R do

c(xadv,z) =
∑d

i=1 gi(zi −xadv
i)

end
Apply the transformations with top m largest
positive c(xadv,z) to obtain the new xadv .

end
return xadv

C.2 GREEDYBYGRAD and GREEDYBYGROUP for Malware Detection on Sleipnir

We instantiate the two attacks on our malware detection task as follows. For GREEDYBYGROUP,
we divide the relation by equivalent API groups. In each iteration, the attacker searches the best
combination of API in each equivalence group that causes the most increase in test loss. These
combinations are concatenated using a logical OR operation. For GREEDYBYGRAD, the attacker tries
all single API substitutions and additions allowed by the relation, and use the first-order approximation
of test loss to determine the m transformations to be applied in each iteration. We run both attacks
for various K and m. We find that K = 10 and m = 10 suffices to bypass detection for the vanilla
model.

C.3 Extract API Substitution Rules

In Sec 5, we consider malware authors who can substitute API calls with equivalent API calls to
evade ML-based malware detector. We now explain how we extract the equivalent APIs. We identify
four types of patterns for extracting equivalent APIs:

• API with the same name but located in different Dynamically Linkable Libraries (DLLs). For
example, memcpy, a standard C library function, is shipped in libraries with different names,
including crtdll.dll, msvcr90.dll, and msvcr110.dll.

• API with and without the Ex suffix. The Ex suffix represents an extension to the same API without
the suffix.

• API with and without the A or W suffixes. The A suffix represents the single character version. The
W suffix represents the wide character version.

• API with/without _s suffix. The _s suffix represents the secure version of an API.

Using these four patterns, we extracted about 2,000 equivalent API groups. About 500 of the groups
have more than 2 APIs and the maximal group has 23 APIs.

22

	Introduction
	Related Work.
	Threat Model
	N&P– A Robust Learning Framework
	An Overview of the N&P Framework
	Finding the Normalizer — Trade-off Analysis
	Synergy with Adversarial Training
	Efficient Normalization

	Experiment
	Authorship Attribution
	Malware Detection

	Conclusion and Future Work
	Societal Impact
	Proofs and Explanation for Theoretical Results
	Proof for Computational Hardness of Adversarial Training
	Model Capacity Requirement
	Proof for Theorem 1

	Authorship Attribution – Algorithms and Implementation Details
	Implementation and Infrastructure
	Attack Transformations to be Normalized
	Order Function & Normalizing Transformer TN
	Normalization in Action
	Adaptation for Adversarial Training

	Malware Detection – Algorithms and Implementation Details
	Generic Relational Attack Algorithms
	GreedyByGrad and GreedyByGroup for Malware Detection on Sleipnir
	Extract API Substitution Rules

