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1 Detailed Balance1

We want to prove that p(x)T (x′|x) = p(x′)T (x|x′) for all x′ 6= x. We have that2
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By observing that 1(x′ ∈ N(x)) = 1(x ∈ N(x′)) and using the balancing property, we can simplify3

previous equality to obtain the following relation:4
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Therefore, we can apply standard algebra to simplify even more5

p̃(x)A(x′,x) = p̃(x)A(x,x′)
Z(x)

Z(x′)

Finally, recall that for balancing functions A(x,x′) = min
{
1, p̃(x)Q(x′|x)

p̃(x′)Q(x|x′)

}
= min

{
1, Z(x′)

Z(x)

}
and6

therefore previous equality becomes an identity, namely:7

p̃(x)A(x′,x) = p̃(x)A(x′,x)

thus proving detailed balance.8

2 Ergodicity9

Let’s consider a Markov chain, namely10

T (x′|x) = A(x′,x)Q(x′|x) + 1[x′ = x]
∑

x′′∈X

(
1−A(x′′,x)

)
Q(x′′|x)) (1)

with a proposal of the following form:11

Q(x′|x) =
g
( p̃(x′)
p̃(x)

)
1[x′ ∈ N(x)]

Z(x)
(2)
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We can prove the ergodicity of the Markov chain for the case where the fixed-point distribution12

p(x) > 0 for every x ∈ X and then extend it to a general distribution p.13

Now, assume that p(x) > 0 for any point x ∈ X , g(t) > 0 for any t > 0 and X is a d-dimensional14

discrete space. Then, the Markov chain in Eq. 1 with proposal defined according to Eq. 2 can reach15

any state x′ from any state x in d steps with non-zero probability. More formally, we can construct a16

new Markov chain by applying d times the original one and identify its transition probability with17

T d(x′|x). We can easily check, thanks to our assumptions, that T d(x′|x) > 0 for any x,x′. In18

other words, the original Markov chain is regular. This is sufficient to satisfy the assumptions of the19

fundamental theorem of homogeneous Markov chains [1], thus proving ergodicity.20

We can extend the previous result to any arbitrary p (namely considering cases where p(x) = 0 for21

some x ∈ X ). This can be achieved by modifying our assumptions on g, namely considering that22

g(t) > 0 for any t ≥ 0 and reusing the same proof strategy.23

3 Monotonicity24

We consider parametrization LSB 2, namely gθθθ(t) = min{hθθθ(t), thθθθ(1/t)}, and we introduce a25

regularizer for the learning objective defined in Section 3, to penalize violations to the condition26

hθθθ(1/t)− 1
t
dhθθθ(1/t)

dt ≥ 0, or equivalently dthθθθ(1/t)
dt ≥ 0:27

Lreg(θθθ, t) = max

{
thθθθ(1/t)− (t+ ε)hθθθ(1/(t+ ε))

ε
, 0

}
where the left argument in the max operator corresponds to the finite difference approximation of28

−dthθθθ(1/t)dt . The final objective used in the experiments (for LSB 2) is defined in the following way:29

J(θθθ) = EQinit{J (θθθ,xxx)}+ EQθθθ0 {J (θθθ,xxx)}+ EU(0,2){Lreg(θθθ, t)} (3)

4 Derivation of the Objective Function30
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 1: Samplers’ performance on four cases of the Ising model (30× 30) for the mixing phase. (a)
Case 1: Independent-noisy, (b) case 2: Independent-clean, (c) case 3: Dependent-noisy, (d) case 4:
Dependent-clean

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 2: Traceplots on four cases of the Ising model (30 × 30) for the mixing phase. (a) Case
1: Independent-noisy, (b) case 2: Independent-clean, (c) case 3: Dependent-noisy, (d) case 4:
Dependent-clean

5 Hyperparameters Used in the Experiments31

• Learning rate η = 1e− 4 for SGD optimizer with momentum.32

• Burn-in iterations K = 2000 (for Ising) K = 500 (for UAI).33

• Iterations for sampling 30000 (for Ising) 10000 (for UAI).34

• Batch size N = 30 (for Ising) N = 5 (for UAI).35

• Monotonic network 20 blocks of 20 neurons.36

6 Further Results for Ising37

See Figure 1 and Figure 2.38

7 Further Results for UAI39

See Figure 3.40
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(a) BN 1 (b) BN 8

Figure 3: Traceplots on UAI benchmarks model (100 vars near-deterministic dependencies) for the
mixing phase.

(a) Iteration 0 (b) Iteration 1000 (c) Iteration 2000 (d) Iteration 3000

(e) Iteration 4000 (f) Iteration 5000 (g) Iteration 6000 (h) Iteration 7000

Figure 4: Training the monotonic network to match max{1, t} balancing function.

8 Capacity of the Monotonic Network used in the Experiments41

We analyze the capacity of the monotonic network used in our experiments, to see whether it can42

learn basic balancing functions. In particular, we train the monotonic network to match the max{1, t}43

function using a L2 loss (we use SGD with learning rate 1e− 2). As we can see from Figure 4, the44

network has no sufficient capacity to well approximate the target function. That explains why in45

Figure 3(a) of the main manuscript, LSB 2 is performing slightly worse than max{1, t}.46
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