Organization of the Appendix

A Proofs for Section 3
B Proofs for Section 4

C Experimental details

A Proofs for Stochastic Composite Minimization

A.1 Proof of Proposition 3

We break down the proof of Proposition 3 into different lemmas. The first one bounds the improvement
on G over an iteration, the second one bounds the improvement H over an iteration, the third one
combines the first two results and further exploits the structure of the functions at play. The proof
of the proposition then follows by carefully choosing A1 as a function of Ay. In the remainder
of the section, we work with the assumptions stated in Proposition 3 and do not restate them in the
statements of the lemmas.

Lemma 1.
Ap1G(Yrv1) — i1 ARG (yk) — ek + (Ary1 — Ak) (VG (), 2541)

2

A
+ 5 (Ak+1 —2A; + —F ) (BT
2 Akt

Proof. By smoothness

A1 Gloi) < A (G0 + (TG, i =00+ 5 e — wl?)

= (Akt1 — Ar) (G(vr) — (VG(vx), vi)) +Ak (G(vr) — (VG (vr), vi))

=Ck+1—Ck

+ Art (VG(), ) + Aenn S e — el
= i1 — k + Ak (G(or) + (VG (0r), yr — o)) — A(VG(0k), i)

F A (VG gi) + Ak 5 ks —
Scoy1 — o + ApG(yr) — Ae(VG(vk), Yr)

+ Ak 1(VG(vr), Yrg1) + Ak+1§ [

where the last inequality follows by strong convexity of GG, Now, since yr41 = A‘:fr Yk +
Apr1—Ap . . )
%Zk-.‘.l, we can simplify to

Ak11G(Yrt1) < 1 — ek + ArG(yr) + (A1 — Ak) (VG (vg), zkr1) + Ak+1§ [ [
Finally,

Apy1 — Ap)?
Ayt lyesr — vl? = Appam lze — 2o || = (j—) lzan = 2]l
+1

which concludes the proof. O
Lemma 2. For any g (zx) € OH(2y),
AprH(yrv1) — A1 H(zp41) < ApH (yr) — ArH (21) — Aelgn (21), 2641 — 21)
A

(21)
1% k 2 2 2
—=—A.|1—- 2 — — A= lzpe1 — 2 .
5 Ak ( Ak+1> |2k+1 — yil kg | 2k+1 — 2l
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Proof. By strong convexity of H, for any gg (yi+1) € OH (yr+1) we have

Ap1H (k1) = (Aky1 — Ax) H(Yr 1) + ApH (Y1)

< (Agy1 — Ag) (H(ZkJrl) — (9 (Ykt1)s Zht1 — Yky1) — % 2641 — yk+1H2)

0
+ Ay (H(yk) — (98 (Yr+1)s Y — Yrt1) — 5 lyx — yk+1||2> .

Now observe that

Ay
Zhr1 — Yhr1 = (L= 7)) (zps1 — yx) = oo (2k+1 — Yk)
Ap+1 — Ay
Yk — Ykt = Te(Uk — Zht1) = —2—(Zk+1 — Yi)
ket

and thus we see that the two inner product terms cancel out. Moreover we can also simplify the norms
and get

2 A2
Apy1H(Yrv1) <AcH (yr) + (Aps1 — Ap) H (2541) — g lzks1 = wil® | (Agia — Ak)Afz:il + Ay, et Ae)

k+1

Finally, observe that by strong convexity of H again, for any gp(2) € OH (zx),
—ApH (241) < —ApH (21) — Ap(gm (28), 2k41 — 2k) — Akg 21 — z&?,
which concludes the proof. O

Lemma 3. Defining my(x) = (di, ©) + ¢ + ApH(z) + pw(x), we have

Ak+1F(yk+1) — 7n}c+1(2k+1) § AkF(yk) - Tnk(’zk)
+ (Aks1 — Ae)(VG(vk) — gk, 2k+1)
2

1 A
-3 (Ak(u+23)+5(’/—f4k+1)—5 . ) 2541 — 2]
2 A

17 Ak 2
——Ap 1 ———|||» -yl -
o ik < Ak+1> |Zk+1 — Yl

Proof. Summing the inequalities in the above two lemmas above we have that for any g (z;) €
0H (Zk.),

Ap 1 F(yrs1) = chrr — Apr H(2041) < ApF(yx) — o — ArH (21)

+ (Akt1 — Ap)(VG(vr), 2k41) — Arlgr (2k), 2k41 — 21)
2

1 A%
-5 <Ak(u +28) — BApp1 — B= ) (B
2 Ak-+1

i Ap 2
——Ap|1-— — .
5 Kk < Ak+1> |zk+1 — yll
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Substracting (dj+1, zx+1) on both sides and adding/substracting (dy, zx+1) and (d, zx) on the
right-hand side, we get
Ap1F(yrs1) — crp1 — App1 H (2pg1) —(dry1, 2r41)
SARF(yr) — cp — ApH (21) — (dk, 21)
+ {(dky 21) — (dict15 2k41) — (ks Zkt1) + (dies Zh+1)
+ (Aps1 — AR)(VG(vk), 2u41) — Ak(gr (2k), 2r+1 — 2k)

1 A2
- (Ak(u +28) — BAgy1 — B—E ) (B
2 Ak+1

12 Ak 2
— A1 — — —
o 1k ( Ak+1) | ze+1 — yrll

=ApF(yr) — cx — ArH (2x) — (dk, 2x)
+(dx — diy 1, 2r41)

+ (Ag+1 — A)(VG(vk), zk41) — (Argr (z1) + diy 21 — 2k)
2

1 Az
-3 (Ak(u +28) — BAy1 — B——E ) 241 — 2l
2 Akt

H Ay 2
— A 1- — .
o (1= 52 ) b -

Now, by first-order optimality conditions of (13), 0 € dy + AxOH (21) + fOw(zy). Therefore there
exist subgradients ¢, (z) € OH (zx) and ¢, (zx) € Ow(zy) such that dy, + Argly (2x) = —Bg., (2k).
Since the above inequality is true for any gg (zx) € OH (z1), it is in particular true for g7 (zx), and
thus we have

A1 F(Yrg1) — o1 — App1 H(Z1)—(dit1, 2h41)
<ApF(yr) — cx — ArH (2x) — (dk, 2x)
+ (dp — diy1, Zhy1)

+ (Arg1 — AR)(VG(vr), zey1) + 890 (21), 2kg1 — 21)
2

1 A
! (Ak<u+2ﬁ) B — fk ) i — 2l
2 Akt

- gAk <1 - ﬁ) 2k+1 — yk||2'
Since dy, — d+1 = —(Ag+1 — Ak)gr we get
A1 F(Yres1) = corr — Appr H(2ig1) — (diy1, 2oq1) < AeF'(yr) — cr — ApH (21) — (dg, 21)
+ (Ap1 — Ap) (VG (vk) — gk 2k+1)
+ B(Guw (21), 241 — 2k)

2

1 A
- - (Ak(lt +28) — BAjp1 — B——L ) 2021 — 2]
2 Akt

I Ay 9
——Ap([1—- — - .
ok ( Ak+1> | Zk+1 — Y|

Finally, by strong convexity of w we have

Blgn (), 21 = 7)< B (w(zrgn) = wzn) = 3 Nz = =)
and thus the previous inequality becomes
Ap1 F (Y1) — mpgr (2e41) < AeF (yr) — mu(2x)
+ (Apgr — Ae) (VG (k) = gie, 2k+1)
2

1 Az
—5 (Ak(u+25) + B — Aps1) — B ) |21 — 2l

Agt1
o Ay 9
B (1 - 2 —yl?.
D) k ( 4k+1) ”Zk—H yk“
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Those three lemmas allow us to prove Proposition 3.
Proof of Proposition 3.
We can rewrite the previous result as

Ap1 F(Yrg1) — mpp1 (ze1) < ApF(yr) — my(zx)
+ (Akt1 — A)(VG (V) — Gy Zet1 — 2k)
+ (Ag+1 — Ar) (VG (k) — 9k, 2k)
2

1 A
3 (Ak(,u +28) + B(v — Akt1) — ﬂA k ) 241 — 2]
k1
% Ay 2
— A (1- Zh41 — .
e L R

Taking expectation at iteration k conditioned on the previous iterations, we have Ei[(Axy+1 —
Ak)<VG(Uk) — Gk, Zk> = 0]

Moreover, by Fenchel-Young inequality we have that for any p > 0,

1
(VG(vk) = gk 2141 — 21) < % IVG(vr) — gl + 5 ||Zk+1 — 2l

Taking expectation and using Assumption 1,
o2

(Apy1 — Ak>7+ (Ak+1 Ar)pEx || 2ks1 — 2|

—

(Akt1 — AR)E (VG (vk) = gy 241 — 21)] <

Thus we have

2

2

1 %
Ep [Arr 1 F(yrr1) = mia (2r0)] < AeF (o) = mi(z) + 5 (Apsr = Ak)7
1 A? )
— o | Ar(p+28) + B(v — Agy1) — B — p(Agr1 — A) )| Ex || 2641 — 2|
2 Apg1

A
- %Ak <1 — Akil) Ex ||lz641 — il

Now, observe that since 0 < Ay /Ay < 1, the term in Ey, || 2541 — yx||* is non-positive. Therefore,

to obtain the final result, it suffices to set A1 so that the term in Ey, ||2x41 — 2k H2 cancels out. In
other words, we require

A7
Ap(p+28) + B(v — Agg1) — ﬂA o

= p(Agy1 — Ax) =0

= A1 (B+p) — Ap(p+28+p) — 5V+ﬁ

k:+1
= Ap 1 (B+p) = Apr (Ar(p + 268+ p) + fv) + BA; = 0

A+ 28+ p) + Bv -+ /(A + 28 + p) + Br)® — 4(B + p) BA?

< A= 2B+ 7)
Ap(p+28+p) + Brv+ /B2 + 2BvAk(n+ 2B + p) + A2p2 + A2p2 + 2A% up + 4 A 13
= e = 23+ 1)
A, = Ap(p 428 + p) + Br + /(Br + pAx)? + 445(B%v + AgB) + 20vAp + A5 p* + 243 up
+ —_ .
2(84+p)

Setting p = /3 yields the update for Ay in Algorithm 1 and proves the proposition.

A.2 Proof of Theorem 1

Proof. Unrolling the recursion in Proposition 3 and taking total expectation, we have

1
—Bw(z) + Ak o?

E [AkF(yx) — mui(21)] < AoF(yo) — mo(z0) + Ak SN/

1 2
g
2v/up
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Now,

k—1
mi(ys) = ApH (y.) + Bw(y.) + Z (Apyr — (G(ve) = (VG(vy), ve) + (gt, Yx))
t=0

Taking total expectation on the g, we get

k-1
Elm(y.)] = AxH (y.) + fw(ys) + Z (Aps1 = A E[G(ve) + (VG (1), yu — v1)]

t=0
< ARH(y,) + Bw(y.) + ArG(y«) = ArF (y.) + Bw(y.)

where the inequality is by convexity of G. Moreover, m(z;) < my(y,) by construction and thus

E[AxF(yr) — ApF(y.) — Bw(ys)] < E[ARF (yr) — mi(ys)]
S E[ALF(yr) — mr(zr)]

< —Bw(zp) +

and thus

Bw(y,) —w(z)) o

E[F(yx) — F(y.)] < " * 375
_ ﬁDw(’y*,yO) + o’
Ag 2V

as yo = 2o and w(y..) — w(yo) is equal to Dy (ys,y0) := w(yx) — w(yo) — (9w (y0): ¥« — yo) (With
9w (yo) € dw(yp)) through the choice g, (yo) = 0 € dw(yo), which is valid as yo minimizes w(-).

Finally, we can bound Ay, as

j+ 28 + /B + \/u2+4uﬂ+m_/>’2+2u\/u_ﬁ
2(8 +Vb)
w428+ VuB +2v/up
2(8+ VuB)

241+ %)

:Ak(”w—%)

App1 > Ay

> Ay

and thus

E[F(yk) - F*] < eXp( (\/]i\{’_ﬁ\/_)> w y*,yo) + ;ﬁ

B Proofs for Accelerated Frank-Wolfe

B.1 Proof of Theorem 2
B.1.1 Proof of feasibility

First we show that z, € K forall £ € N.
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Proof. We prove this by induction. By assumption zy € K. Now suppose zj, € K for some k € N.
We then have

Epay = 8 o — di41
T A 87 A+ B
__ B o — di, + (Ak+1 — Ag)gr
Agt1+ 0 A1 + 8
(A +B) (%Jrﬁl‘o - ﬁ) — (Ap+1 — Ak
o Ak+1 + 4

_ (A +5) . Apg1 — A (—gx)
Ap+1 + B Apr1+ 8

_ At At B,
 Ag +ﬂxk+<1 Agt1 +5)( )-

By induction hypothesis, x;, € K. We also have —g;, € K since
1 m
—gk = _E Z; 9k i
7=

1 m
= — Z argmax(u, —vp + al\;).
m uek

In other words, —gy, is a convex combination of elements of K and is thus in K. Therefore z;1 € K
as a convex combination of elements of K. O

B.1.2 Proof of dual gap convergence
Proof. With H(y) = f*(y). G(y) = sa(—y). B = &2 and ;s = L, we can apply Proposition 3 to
F = H + G and get

0.2

Ex[Apr1F (Yr+1) — mer1(2r1)] < AP (yr) — mi(zk) + (k1 — Ak) 5=

2P

where my(y) = (dg, y) + ¢ + ApH(y) + Pw(y), and z;, = V f(z1). Unrolling the recursion as
before and taking total expectation we have
2
o

2VuB

Recall that we set w(y) = f*(y) — (0, y). Plugging in the function H = f*, and recalling that zj,
minimizes myg (y), we get

my(zx) = if;f {(di, y) + e + (Ax + B) f*(y) — B{(o, y)}
= ¢ —sup {(—dy + Bzo, y) — (Ax + 8)f*(v)}

Y
— o (e p (5

=cp — (Ar + B) f(ar).

BlARF (yr) — mi(21)] < —Pw(zo) + Ak

Thus we can conclude that
2

E[AxF(yr) + (Ax + B) f(zr)] < —Bw(z0) + Ak;ﬁ + ck,
and in particular
2
E[AcF(yr) + Arf(zr)] < =Bf(2.) — Bw(20) + Ak 2;@ + ck. (28)
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Now,
k—1

ok =Y (Aip1 — A)(G(v:) — (VG(vy), vi)).

=0
Forany v € V, G(v) = so(—v) and thus
G(v) —(VG(v), v) = sa(—v) + (Vs (—v), v).
From Fenchel-Young, (Vs (—v), —v) = s4(—v) + s%(Vsq(—v)), and thus
G(v) —(VG(v), v) = —s(Vsa(—v)).
Now, forall u € V*,

Sa(u) = sup {{u, v) = sa(v)}

> sup {{u, v) — s(v) — as1(0)}
vEV

= s"(u) — as1(0)
= I (u) — as1(0)

where the inequality is from Proposition 2. In particular, since Vs, (—v) is always feasible, we have
8% (Vsa(—v)) > —as1(0). and thus

e < Z i1 — Ai)as1(0) = Agas(0).

We can then rewrite (28) as
2

E[A f*(yr) + Apsa(—yk) + Apf(2r)] < —Bw(20) — Bf () + AkQUW + Agasi(0).
Now,
w(z0) = [*(20) — (0, 20) = —f(20)
by Fenchel-Young and since zo = V f(z0). Thus
2
E[Af*(yr) + Arsa(—yr) + A f(zi)] < B(f(z0) — f(24)) + Ak 2\(;#_5 + Apas1(0).
Finally, from Proposition 2,
sa(—y) > s(—y)
for any y. We can then conclude
. B(f(xo) — flax) | o2
_ < )
B () + (i) + ()] € SIS 4 ST s (0)
Bounding Ay, as in Theorem 1 yields
B ) + o)+ Fan)] < exp (=52 () = S o +asi(0)
2(vB+ n) 2\/
(29)
It remains to bound the variance 2. Using Assumption 2 we have
AR?
o* = Elgn — VG(w)|? < —ELLL-

Plugging this back into equation (29), and plugging in the values of g = RKM and u = L gives
V T Ry M 2Rrl, [ _aL
E[f(zr) —d(yx)] <exp | =k T B2 (fzo) — flz) + ==/ momr + @s1(0).
2(\/ Ta Ty z)

Assuming Z£M > 1 yields the result. O

20



B.2 Proof of Theorem 3

Proof. Setting

. € Me?m?
a = min , ,
351(0) 36LR§’<pﬁAH*
it is easy to verify that

as1(0) <

)

2R%<P|-*\/QT<§
m R M — 3

It remains to compute & such that the first term in the bound of Theorem 2 is also smaller than €/3.
This gives

Wl ™

and that

\/E RKM €
—k x9) — f(ry)) < =
€xXp ( 4\/m o (f(TO) f(T*)) =3
— s 4VLRxkM log (SRKM(f(wo) - f(l‘*))> _
Va ea
The O-complexity follows directly from plugging the value of « in the bound. O

B.3 Dependence on the norms

In this section, we compute the value of pj. for different £, norms when the underlying vector
space has dimension d.

B.3.1 Euclidean norm

In the case of the Euclidean norm, we have ||-|| = ||-||, = |||, and thus

2
=E

2
E

1 m
— g+ Vsa(—vr)
m =1

1 m
— E Ok,i — VG(Uk)
m

i=1

1 2
) ;E llgr,i + Vsa(—uvg)]l

2

to3 Z E[{gr,i + Vsal—vk), gr,j + VSa(—vk))]
1<i<j<m
1 & 2
=3 > Ellgri + Vsa(—vk)|
=1

2

1 m
=— ; E H— arger?(axm, —vg + ;) + Vo (—vg)
where the second equality simply comes from the properties of the Euclidean norm, and the third
one comes from the fact that gi ; + Vso(—vy) and gi ; + Vs, (—vy) are zero-mean independent
random variables for all 7 # j.

Finally, arg max,, ¢ 5 (u, v) € K for any v, and similarly Vs, (v) = E [arg max,, ¢ i (u, v + aA)] €
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K for all v. Therefore we have

2 m

E

< — max |lu — vl|?

1 m

— ki — VG(vg

m Z ! (ve) m?2 £~ uwek
=1 =1

IN

1 2
L e (4 )

1
< — max 2|ful* + 2|jv||?
u,veEK

m
4R
m
and we see that in this case p., = 1.
B.3.2 /,-norms for 2 < p < oo
When |||, = |-[|,,, we have [|-|| = ||, for J + ¢ = 1. Since ¢ € (1,2], from [6] we know that

1 ||H(21 is (¢ — 1)-strongly convex with respect to [|[| .. Therefore i ||||123 is qi—l-smooth with respect
to [|-[[,, [29]. We have

1 1
Y v,y
¢g—1 1-1/g ¢
s0 % |- ||§ is (p — 1)-smooth with respect to [|-[|,,. We now closely follow the proof from [30, Lemma
2]. Let F = L||-|? and let Z; = g; — VG(v) so that B || Z]|? < 4R%. Let S; = Y'_} S;. By
smoothness of F' we have

-1
F(Sio1+ Z) < F(S0) + (VF(Siea), Zi) + 5= | Zill;

Taking conditional expectation with respect to Z1, ..., Z;_1, since E[Z;] = 0 we have
-1
EJfF(Si) | 21y Zica] S F(Si1) + pTE [HZLHZQ, | Z1ye o Zia
-1
< F(Si-1) + pT4R§(.

Thus, F(S;) — @ is a supermartingale and therefore

2

1| m(p — 1)4R3%
EF(S,)] = |5 S o0 - VG | | < M= D
i=1 »
which shows that Pl =P — 1.
B.3.3 {,-normsfor 1 <p <2
Recall that forco > g >r > 1,
Il < -0l < @/, (30)
If the norm of interest is [|-||, = [|-[|,, for 1 < p < 2, we have
1 & ’ 1 & ’
E - ng,i —VG(w)|| =E — ngﬂ; - VG(vg)
=1 * 1=1 P
< (ar12) R Ez;gk,i — VG(vy)
i= 2

1
< d®P=Y — max |lu— |3
m u,ve K
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where the second inequality comes from the derivation for the Euclidean norm in Appendix B.3.1.
Using (30) we get
2

E

1
< d®P=Y = max |lu—o|?
m uveK b

1 m
— Y gri — VG(vg)
m im1

*

2
_ gem-niBk

m
and thus p”.”p = d@/r-1),
B.3.4 /. .-norm
When |[|-]|, = |||, we use inequality (30) to get that for any 1 < r < oo,

2 2

=E

*

1 m
E E ng’,i - VG(Uk)

=1

1 m

— > gri — VG(vg)
m =1 0o
2

<E

1 m
—> gri— VG(vy)
m 1=1

T

Now, if r > 2, from Appendix B.3.2 we have that
2

<

- u— of?
ma u —v
m u,vE}I{( r

E

1 m
— E gk,i — VG(’Uk)
m

i=1

r

L)

2/r a2
mo el

(T — 1)4R%( d?/T‘
—m .

Taking » = 2 + log d (so that r > 2), we then have

(T _ 1)4R%{ (,% log(d)
—m >

2
1 m
— ng,i — VG(wy)
m

=1

E

IN

4R2 2logd
= —E (logd + 1)e2+logd
m

4R?
K 2(logd + 1)
l

IN

and thus we have p|._ = 2(logd + 1).

B.3.5 General norm

For a general norm, since we are in a finite-dimensional space, there exist constants ¢, C' > 0 such
that ¢ ||-]|, < |||, < C[|-|l5- We then have

2 2

< C?’E

*

1 m
— > gk — VG(vg)
m

i=1

E

1 m
— > gri — VG(vp)
m 4

i=1 2

m
<C2L E max |lu— |2
- m2 ‘ 1u,v€K 2
1=

2 m
< —02 —12 max _|lu — v||i
ce M= < u,veK
=1
2 1 P2
_ C2 4R},
)

where the second inequality comes from the derivation in Appendix B.3.1. Thus we p). < f—;
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C Experimental Details

In the experiments we only consider Euclidean norms so that ||-|| = ||-||,.
If the entries of z are independently distributed according to a Gumbel distribution with location O
and scale 1, the probability density function reads

p(z) = 6_(22';1 zite %)

so that (z) = Z?zl z; + e~ *i. Thus we have

1—e™?
1—e*2
Vn(z) = .
1—e¢ %
and
d
2 .
V)" =D (1 —e %)
j=1

Algorithm 2 and Algorithm 3 require a bound on the value of M. We compute it now.

M? =E|Vy(Z)|

d
= / Z(l - e_zj)Qe—(z’?:l Zz_;'_ele)dz
Rt =1

= d (1 — 6721)2€_<Z;l:1 Zl"‘eizi)dz

Rd
= d/(l — )2 (Bten ™) / e~ (2Fe™2) // e Fate D a0 dzdz
R R R JR

For any 7 > 2,
/ e Fite gz = 1.
JR

/(1 —e )2 te gy — e T p 2 Ty O

Moreover, one can check that

where C' is some constant. Taking limits one gets
/(1 _ 6721)26*(21+6_7’1)d21 =1
R

and thus
M? =d.

The derivation in the case of a multivariate normal distribution is similar.
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