
Under review as a conference paper at ICLR 2024

Table 5: Pretraining hyper-parameters for V-JEPA.

Hyper-parameter ViT-L/16224 ViT-H/16224 ViT-H/16384

data
datasets VideoMix2M VideoMix2M VideoMix2M
resolution 224 224 384
num frames 16 16 16
temporal stride 4 4 4
horizontal flip true true true
random resize scale (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
random resize aspect ratio (0.75, 1.33) (0.75, 1.33) (0.75, 1.33)
masking
block aspect ratio (0.75, 1.5) (0.75, 1.5) (0.75, 1.5)
shortrange mask num blocks 8 8 8
shortrange mask spatial scale 0.15 0.15 0.15
longrange mask num blocks 2 2 2
longrange mask spatial scale 0.7 0.7 0.7
optimization
batch size 3072 3072 2400
total number of iterations 90000 90000 90000
warmup iterations fraction 0.15 0.15 0.15
lr 6.25e-4 6.25⇥10�4 6.25⇥10�4

start lr 2⇥10�4 2⇥10�4 2⇥10�4

final lr 1⇥10�6 1⇥10�6 1⇥10�6

start momentum 0.998 0.998 0.998
final momentum 1.0 1.0 1.0
start weight decay 0.04 0.04 0.04
final weight decay 0.4 0.4 0.4
scheduler scale factor 1.25 1.25 1.25
architecture
patch size 16 16 16
tubelet size 2 2 2
pred depth 12 12 12
pred embed dim 384 384 384
hardware
dtype bfloat16 bfloat16 bfloat16
accelerator A100 80G A100 80G A100 80G

A PRETRAINING DETAILS

In section, we report V-JEPA pretraining details. Table 5 summarizes the main hyperparameters
used during pretraining.

[16 x 224 x 224 x 3]

3D Conv
[2 x 16 x 16 x d]

[8 x 14 x 14 x d]

3D sin-cos absolute position 
embeddings

[8 x 14 x 14 x d]

[1568 x d]

+16 video frames
resolution 224 x 224

flatten

Figure 4: V-JEPA training operates on a video clip flattened into a sequence of tokens. To convert a video
clip of size 16 ⇥ 224 ⇥ 224 ⇥ 3 into a 1D token sequence, we apply a 3D convolution comprising d filters
of size 2 ⇥ 16 ⇥ 16 with a temporal stride of 2 and a spatial stride of 16, resulting in a tensor of shape
8⇥ 14⇥ 14⇥ d. Next we add absolute 3D sin-cos positional embeddings to the spatio-temporal feature map
and flatten it, resulting in a 1D token sequence of shape 1568⇥ d.

14



Under review as a conference paper at ICLR 2024

Table 6: Frozen Evaluation hyper-parameters.

Hyper-parameter K400 SSv2 IN1K Place205 iNat21
data
num clips 8 1 N.A. N.A. N.A.
num frames 16 16 N.A. N.A. N.A.
temporal stride 4 4 N.A. N.A. N.A.
horizontal flip true true true true true
random resize scale (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0)
random resize aspect ratio (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33)
auto augment false false true false false
optimization
batch size 256 256 512 256 256
epochs 20 20 20 20 20
lr 1e-3 1e-3 1e-3 1e-3 1e-3
final lr 0 0 0 0 0
weight decay 0.01 0.01 0.01 0.01 0.01

Architectures. We use Vision Transformer (Dosovitskiy et al., 2020) (ViT) architectures for the
context-encoder and target-encoder. We train three V-JEPA encoders: a ViT-L/16224, a ViT-H/16224

and a ViT-H/16384. All three encoders take as input a short video clip of 16 frames with a temporal
stride of 4 between consecutive frames. The subscripts, 224 and 384, indicate the spatial resolution
of the video clip. V-JEPA flattens the video clip into a sequence of non-overlapping spatio-temporal
patches of size 16⇥16⇥2 (see Figure 4). For all three models, the predictor is designed as a narrow
ViT architecture, consisting of 12 transformer blocks with an embedding dimension of 384. For
simplicity, we keep the number of self-attention heads in the predictor equal to that of the backbone
used for the context-encoder/target-encoder. V-JEPA is pretrained without using a [cls] token.

Optimization. We use AdamW (Loshchilov & Hutter, 2017) to optimize the context-encoder and
predictor weights. The ViT-L/16224 and ViT-H/16224 models use a batch size of 3072 while the ViT-
H/16384 uses a batch size of 2400. Models are trained for a total of 90,000 iterations. The learning
rate is linearly increased from 2 ⇥ 10�4 to 6.25 ⇥ 10�4 during the first 12, 000 iterations of pre-
training, and decayed to 10�6 following a cosine schedule. Weight-decay is also linearly increased
from 0.04 to 0.4 throughout pretraining. The target-encoder weights are initialized identically to the
context-encoder, and subsequently updated as an exponential moving average (EMA) (Tarvainen &
Valpola, 2017) of the context-encoder weights using a momentum value which starts at 0.998 and
is linearly increased to 1.0 during training (Caron et al., 2021; Assran et al., 2022b). We scale all
hyper-parameter schedules 25% beyond the actual training schedule. Specifically, the learning rate
schedule, weight-decay schedule, and EMA schedule are computed assuming a training length of
112,500 iterations, even though we only train our model for 90,000 iterations. We found the last 25%
of the default scheduler period to update hyper-parameters too aggressively, and simply truncating
the schedulers improved performance.

Masking. As described in Section 3, we propose a 3D Multi-Block masking strategy. We use two
type of masks: short-range masks, where we take the union of 8 randomly sampled target blocks
with a spatial scale of 0.15, and long-range masks, where we take the union of 2 randomly sampled
target blocks with a spatial scale of 0.7. In both cases, the aspect ratio for all sampled blocks is
randomly chosen in the range (0.75, 1.5).

B EVALUATION DETAILS

B.1 FROZEN CLASSIFICATION

Attentive Probing. Given an input video, xL, the V-JEPA target encoder E✓̄(·) outputs a sequence
of L tokens, E✓̄(xL) = (s1, . . . , sL), where si 2 Rd. To pool this sequence of tokens into a single
feature vector, we apply a lightweight cross-attention using a learnable query token (Chen et al.,

15



Under review as a conference paper at ICLR 2024

2022). Specifically, our attentive pooling performs the following computation:

LX

i=1

exp(q>Wksi)P
j exp(q

>Wksj)
Wvsi,

where Wk,Wv 2 Rd⇥d are the key and value matrices, and q 2 Rd is a learnable query token.
The output of the attentive pooler is then fed into a standard linear classifier, and its parameters are
jointly learned with that of the linear classifier for the downstream task, while the encoder parameters
are kept frozen. Note that, in practice, we actually use an attentive pooler with 12 heads, each of
dimension d/12. In Appendix C we show that both V-JEPA and baselines benefit from the attentive
probing protocol.

Optimization. For all the tasks, we use AdamW optimizer with a cosine scheduler (no warmup)
that decays the learning rate from 0.001 to 0. We use a fixed weight-decay of 0.01 and apply simple
data augmentations (random resized crops and horizontal flips) during training of the attentive probe,
except on ImageNet, where we apply AutoAugment (Dogus Cubuk et al., 2019). Table 6 reports the
hyperparameters used for the different evaluation tasks.

Extension to multiple clips. On Kinetics-400 frozen evaluation, our attentive probe takes 8 video
clips as input to increase the temporal coverage of the video. Specifically, we first divide a video in
8 equal-length temporal segments and sample 1 clip at random per segment. The video encoder E✓̄
processes each clip separately and produces a clip-level feature map. The feature maps for each clip
are then concatenated together and fed to the attentive probe.

Application of video models to images. To evaluate the video models on image tasks, we simply
duplicate input images to generate still video clips of 16 frames. We perform this duplication op-
eration simply for convenience in evaluation of the video models, however we find this step to be
unnecessary in general. Given a video tokenizer implemented as a 3D-conv with a temporal stride
of 2, it is sufficient to simply duplicate the image into a 2 frame video clip. This would result in the
same number of input tokens as that produced by a static image model with a 2D-conv tokenizer.

Application of image models to videos. To evaluate image models such as DINOv2 and Open-
CLIP on video tasks, we simply process each frame independently with the image encoder to pro-
duce a frame-level feature map. The feature maps for each frame are then concatenated and fed to
the attentive probe, just as we do with the clip-level feature maps when evaluating video models.

B.2 FROZEN DETECTION

We evaluate our model on the AVA (Gu et al., 2018) spatio-temporal localization of human actions
dataset, containing 211k training and 57k validation video segments. We follow the experimental
protocol of (Feichtenhofer et al., 2021), and use precomputed masks from a pretrained Faster-RCNN
adapted to videos, which uses a ResNeXt-101-FPN backbone and is pretrained on ImageNet and
COCO. We train a linear classifier on top of the frozen V-JEPA features to classify the extracted re-
gions of interest and report mean Average Precision (mAP) on the 60 most common classes. Hyper-
parameters are provided in Table 7. Our frozen features are obtained by concatenating the last layer
of the transformer encoder with three intermediate layers. We use a batch size of 64 and pretrain
for 30 epochs with AdamW using a learning rate of 0.0001 with 2 epochs of warmup and a weight
decay of 0.05.

B.3 FINETUNING

We evaluate in Appendix 4.4 our V-JEPA ViT-H/16384 model on Kinetics-400 and Something-
Something v2 in the finetuning setting. Following Tong et al. (2022), we finetune a linear layer
on top of our model, using a layer decay schema and mixup as the data augmentation pipeline. We
provide all hyper-parameters for both K400 and SSv2 in Table 8.

16



Under review as a conference paper at ICLR 2024

Table 7: Frozen Detection hyper-parameters.

Hyper-parameter ViT-L/16 ViT-H/16
out layers [18, 20, 22, 24] [26, 28, 30, 32]
batch size 64 64
epochs 30 30
opt AdamW AdamW
opt eps 0.00000001 0.00000001
momentum 0.9 0.9
weight decay 0.05 0.05
lr 0.0001 0.0001
warmup lr 0.000001 0.000001
min lr 0.000001 0.000001
warmup epochs 2 2
warmup steps 1 1

Table 8: Finetuning Evaluation hyper-parameters.

Hyper-parameter K400 SSv2
data
num segments 1 1
num frames 16 32
sampling rate 4 4
resolution 384 384
model
model name ViT-H ViT-H
tubelet size 2 2
drop path 0.2 0.2
head drop rate 0.5 0.5
optimization
batch size 64 64
epochs 35 20
opt adamw adamw
opt eps 0.00000001 0.00000001
momentum 0.9 0.9
weight decay 0.05 0.05
lr 0.0003 0.0001
layer decay 0.8 0.8
warmup lr 0.00000001 0.00000001
min lr 0.000001 0.000001
warmup epochs 5 5
warmup steps 1 1
augmentations
color jitter 0.4 0.4
num sample 2 2
aa rand-m7-n4-mstd0.5-inc1 rand-m7-n4-mstd0.5-inc1
smoothing 0.1 0.1
train interpolation bicubic bicubic
test num segment 5 2
test num crop 3 3
erase
prob 0.25 0.25
mode pixel pixel
count 1 1
split False False
mixup
mixup 0.8 0.8
cutmix 1.0 1.0
mixup prob 1.0 1.0
mixup switch prob 0.5 0.5
mixup mode batch batch

17



Under review as a conference paper at ICLR 2024

C EXTRA RESULTS

C.1 FROZEN EVALUATION.

Table 9: Linear vs. Attentive Probe Evaluation for V-JEPA and VideoMAE. We evaluate the effect of
linear (Lin.) and attentive (Att.) probing when adapting V-JEPA to the K400 and SSv2 tasks. V-JEPA and
VideoMAE benefit from using a non-linear attentive probe. Specifically, using an attentive probe with V-JEPA
leads to an improvement of +22 points on K400 and +17 points on SSv2.

K400 SSv2

Method Arch. Lin. Att. Lin. Att.
VideoMAE ViT-L/16 52.5 77.6 41.3 61.2
V-JEPA ViT-L/16 56.7 79.1 50.1 67.1

Table 10: Linear vs. Attentive Probe Evaluation for DINOv2 and OpenCLIP. We evaluate the effect
of linear (Lin.) and attentive probing (Att.) when adapting DINOv2 and OpenCLIP. Image-baselines benefit
from using an attentive probing strategy. Results shown in gray are reported from the linear probe evaluation
in Oquab et al. (2023).

K400 SSv2 IN1K Place205 iNat21

Method Arch. Lin. Att. Lin. Att. Lin. Att. Lin. Att. Lin. Att.
DINOv2 ViT-g/14 78.4 84.4 38.3 50.0 86.5 86.2 67.5 68.4 85.7 88.8
OpenCLIP ViT-G/14 78.3 83.3 35.8 39.0 86.2 85.3 69.8 70.2 76.0 83.6

Linear vs. Attentive probe We compare the effect of using an attentive versus a linear probe
when adapting a pretrained model to various downstream tasks. Table 9 shows that V-JEPA and
VideoMAE benefit from using a non-linear attentive probe on the K400 and SSv2 downstream tasks.
In particular, using an attentive probe with V-JEPA leads to an improvement of +22 points on
K400 and +17 points on SSv2. Additionally, Table 10 shows that attentive probing leads to better
performance on average for DINOv2 and OpenCLIP models. Since attentive probing improves the
performance of all models, we use it as our default evaluation protocol.

Table 11: Temporal Coverage on Kinetics-400. We evaluate the effect of temporal coverage on K400. We
train an attentive probe on K400 using either 1 clip (⇡ 2 seconds of a video) or 8 clips (⇡ 16 seconds of a
video). To sample N clips, we first divide a video in N equal-length temporal segments and sample one clip
at random per segment. The video encoder processes each clip in parallel and all the encoder output tokens are
concatenated at the input of the attentive probe. Increasing the temporal coverage from 1 clip per video to 8
clips significantly improves the performance for both our VideoMAE baseline and V-JEPA. Specifically, using
8 clips leads to an improvement of +6.2 points on K400 with a V-JEPA ViT-H/16384.

Method Arch. 1 Clip 8 Clips
VideoMAE ViT-L/16 69.4 77.6

V-JEPA ViT-L/16 72.3 79.1
ViT-H/16384 75.8 82.0

Temporal coverage on Kinetics-400. We examine the impact of changing the temporal coverage
of a model during downstream evaluation on K400 action classification. In Table 11, we evaluate
VideoMAE and V-JEPA models using an attentive probe with access to either the feature map of 1
clip randomly sampled from the video, or the concatenated feature map of 8 clips randomly sampled
from the video. To sample 8 clips from a video, we first divide the video into 8 equal length temporal
segments, and sample 1 clip at random from each segment. A single clip corresponds to ⇡ 2 seconds
of a video on average, while 8 clips correspond to ⇡ 16 seconds. The video encoders processes each
clip separately to produce a clip-level feature map, which are then concatenated at the input to the
attentive probe.

Increasing the temporal coverage from 1 clip per video to 8 clips improves the performance of
both V-JEPA and VideoMAE on K400 action classification. Specifically, using 8 clips leads to
an improvement of +6.2 points on K400 with a V-JEPA ViT-H/16384. We therefore use the 8
clip attentive probing setup as our default evaluation pipeline on K400 for all video and image

18



Under review as a conference paper at ICLR 2024

models. While we would expect multi-clip evaluation to be helpful for other downstream video
action classification tasks, we still only sample one clip when training an attentive probe on SSv2,
as videos from that dataset are only 2 to 4 seconds long on average.

C.2 SAMPLE EFFICIENCY OF PRETRAINING

We compare the sample efficiency of pretraining various state-of-the-art image and video models.
Specifically, we look at the number of samples (image or video clips) processed by the network
during pretraining, which is larger than the size of the pretraining dataset for multi-epoch training.
Notably, our results with V-JEPA are obtained while processing an order of magnitude fewer samples
than previous methods, and notably two orders of magnitude fewer samples than OpenCLIP. We
believe that further investment towards improving the video pretraining data distribution could lead
to substantial gains in downstream image and video tasks.

Table 12: Sample efficiency. We compare the sample efficiency of pretraining various state-of-the-art image
and video models. The #Samples Seen entry corresponds to the number of samples (image or video clips)
processed by the network during pretraining, which is larger than the size of the pretraining dataset for multi-
epoch training. The V-JEPA results in this paper are obtained while processing an order of magnitude fewer
samples than previous methods.

Method Arch. Data #Samples Seen

OpenCLIP ViT-G/14 LAION-2B 39000M
DINOv2 ViT-g/14 LVD 142M 1900M
VideoMAEv2 ViT-g/14 UnlabeledHybrid 1600M
V-JEPA ViT-H/16384 VideoMix2M 210M

C.3 MASKING STRATEGY

An important component of the V-JEPA pretraining strategy is the 3D clip masking strategy. In this
section, we detail 26 ablation experiments exploring different masks. For all the experiments, we
pretrain a ViT-B/16 pretrained on K400. Figure 5 presents a summary of those results.

Recall that each video mask is constructed by sampling several (possibly overlapping) blocks and
taking their union. These spatial multi-block masks are then repeated along the temporal dimension
to create a 3D Multi-Block mask. Figure 5c shows the effect of changing the spatial and temporal
masking ratio. Figure 5b ablates the number of sampled blocks used to construct the masks given a
fixed effective masking ratio of 90%. Finally, in Figure 5a we examine our multi-masking strategy
and find that sampling two masks for each clip (long-range and short-range) to be more effective
than sampling just a single mask for each clip. By default we sample masks that remove roughly
90% of the frame and extend along the entire temporal dimension of the clip.

1 2 3

50

51

52

53

54

55

Number of Masks per Samples

K
in

et
ics

40
0

Ablating Number of Masks per Sample

(a)

1 2 4 8 16

47

48

49

50

Number of Blocks per Mask

K
in

et
ics

40
0

Ablating Number of Blocks per Mask

(b)

25 50 75 90
0

10

20

30

40

50

Spatial Masking Ratio

K
in

et
ics

40
0

Ablating Masking Ratio

Temporal Masking Ratio
100%
75%
50%

(c)

Figure 5: Masking Strategy Ablation. Evaluating a linear probe on a ViT-B/16 pretrained with V-JEPA on
K400 under various 3D Multi-Block masking settings. We examine the impact of (a) sampling several masks
per video, (b) varying the number of blocks in a mask, and (c) varying the average spatial and temporal masking
ratio. A temporal masking ratio of 100% extends the spatial mask across all the frames in the clip. We find it
important to maintain a high spatial and temporal masking ratio during pretraining.

In Table 13, we explore different average spatial and temporal masking ratio, i.e. the spatial/temporal
ratio of the area that is covered by a mask on average for a clip. Recall that each mask is constructed
by sampling several (possibly overlapping) blocks and taking their union. We change the average

19



Under review as a conference paper at ICLR 2024

Table 13: Masking Ratio. We explore the impact of the spatial and temporal ratio masking. Low spatial or
temporal coverage results in a trivial prediction task, which degrades downstream performance.

Mask Statistics 3D Multi-Block Mask Details

Avg. Depth Avg. Spatial Size Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

100%

25 % 112⇥ 112 16 1 0.23
50 % 160⇥ 160 16 1 0.31
75 % 192⇥ 192 16 1 0.44
90 % 176⇥ 176 16 2 0.50
95 % 192⇥ 192 16 2 0.47

75%

25 % 112⇥ 112 12 1 0.10
50 % 160⇥ 160 12 1 0.14
75 % 192⇥ 192 12 1 0.16
90 % 176⇥ 176 12 2 0.22
95 % 192⇥ 192 12 2 0.21

50%

25 % 112⇥ 112 8 1 0.04
50 % 160⇥ 160 8 1 0.11
75 % 192⇥ 192 8 1 0.13
90 % 176⇥ 176 8 2 0.12
95 % 192⇥ 192 8 2 0.14

spatial or temporal masking ratio by changing block spatial or temporal size, as well as the overall
number of blocks. We found that low spatial or temporal coverage results in a trivial prediction task,
which degrades downstream performance. Based on those results, we sample masks that remove
roughly 90% of the frame and extend along the entire temporal dimension of the clip by default.

Table 14: Block Spatial Size. We investigate the impact of blocks spatial size given an effective masking ratio
of 75%. We find that sampling several small blocks to perform better than sampling a single large block.

Mask Statistics 3D Multi-Block Mask Details

Avg. Depth Avg. Spatial Size Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

100% 75%

64⇥ 64 16 16 0.49
96⇥ 96 16 8 0.50

128⇥ 128 16 6 0.49
160⇥ 160 16 2 0.48
192⇥ 192 16 1 0.47

In Table 14, we explore different block size given an effective spatial masking ratio of 75% and
temporal ratio of 100%. We keep the masking ratio approximately constant by changing the block
size and the number of block at the same time. We find that sampling several blocks to perform
better than sampling a single large block. Figure 6 visually illustrates the effect of sampling several
smaller blocks to construct a mask.

Table 15: Number of Masks Per Sample. We explore the effect of sampling several mask for each video
clip in the batch. Sampling two masks for each clip, with different spatial block sizes for each, is more effective
than sampling just a single mask.

3D Multi-Block Mask Details

Masks per Sample Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

1 160⇥ 160 16 2 0.50
2 160⇥ 160 16 2 0.55
3 160⇥ 160 16 2 0.55

In Table 15, we explore the effect of sampling various number of masks per samples. We find that
sampling two masks for each clip, with different spatial block sizes for each, to be more effective
than sampling just a single mask. We hypothesize that this masking strategy induces complementary
tasks. In our experiment, we use this as our default masks sampling.

D THEORETICAL MOTIVATION OF EMA FOR L1 LOSS

Consider just the first loss term in the summation of equation 1. To condense the notation, denote
the output of the context encoder with parameters ✓ by zN (✓), and denote the first token output

20



Under review as a conference paper at ICLR 2024

(a) Num. Blocks: 8, Spatial Block Size: 32⇥ 32

(b) Num. Blocks: 4, Spatial Block Size: 80⇥ 80

(c) Num. Blocks: 2, Spatial Block Size: 160⇥ 160

Figure 6: Illustration of mask with number of blocks and block size. Each mask is constructed by
sampling several (possibly overlapping) blocks and taking their union.

by the predictor as p(zN (✓)) = [P�(zN ,mM )]i1 . Finally, define the corresponding target token
(output by the target encoder) as a random vector X 2 Rd. Now, if we were to compute the optimal
predictor under our loss function, we would obtain the following functional expression,

p?(zN (✓)) = argminpkp(zN (✓))�Xk1 = median(X|zN (✓)).

Substituting this expression for the optimal predictor into the loss function and evaluating the ex-
pected gradient of the context encoder gives

r✓Ekp?(zN (✓))�Xk1 = r✓

dX

l=1

MAD(Xl|zN (✓)),

where Xl is the lth entry of the random vector X , and MAD(· |zN (✓)) is the median absolute devia-
tion of a random variable conditioned on zN (✓). Thus, in the case where the predictor is optimal, the
context encoder must learn to capture as much information about the masked clip as possible to min-
imize the deviation of the target. The hypothesis is that by updating the target encoder weights via
an exponential moving average of the context encoder weights, we ensure that the predictor evolves
much faster than the target encoder and remains close to optimal, thereby preventing collapse.

21


	Introduction
	Background
	Methodology
	Experiments
	Experimental Setting
	Evaluation on Video Tasks
	Evaluation on Image Tasks
	Finetuning
	Ablations

	Discussion
	Pretraining details
	Evaluation details
	Frozen classification
	Frozen detection
	Finetuning

	Extra Results
	Frozen Evaluation.
	Sample Efficiency of Pretraining
	Masking Strategy

	Theoretical Motivation of EMA for L1 Loss

