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APPENDIX FOR ”EFFICIENT TIME SERIES FORECASTING VIA
HYPER-COMPLEX MODELS AND FREQUENCY AGGREGATION”

A NOTATIONS & SYMBOLS

A.1 NOTATION

We provide a detailed table of the involved notation in this paper:

Symbol Description
B Batch size.
L Lookback window size.
D Number of features for each time step.
T Length of the prediction horizon.
E Embedding size.
M Number of frequencies to select from all the frequencies using the top M magnitudes.
X Multivariate time series with a lookback window of size L at timestamps ¢, where
X € RLxD,
X Multivariate values of D distinct series at timestamp ¢, where X; € RD,
Xt The value of the i-th feature of the distinct series at timestamp ¢, where X, ; € R.
X Ground truth target values, where X € RT*P
o activation function
P Number of windows in the STFT.
Nppr Number of frequency bins in each window of the STFT.
w Window function for the STFT.
XEg X after traversing through the embedding layer. X € REXDPXFE
XRec The reconstructed X after the frequency alteration. X g, € REXDPXF
ct The i-th window of the input in the time domain ¢! € CP>*2NrrrxE
C; The i-th window of the STFT containing Ny pr frequency bins C; € CPXNrrTXE,
Cin The :-th window of the STFT, retaining the top M frequency components based on
i magnitude C; € CP*MxE
Cout The i-th window of the STFT after the WM-MLP/WHC has been applied CiM €
A CD XMxXE .
W The weights that capture the frequency energy shift between window ¢ and j, defined
e as Wi, = Wi + jWiIigj, where W,;_,; € CF*E,
B The bais that capture the frequency energy shift between windows ¢ and 7, defined as
gl Bi_; = BR! + jB™ . where B;_,; € CP.

Table 4: Table of Symbols and Descriptions

A.2 DIMENSIONS

The following table summarizes the dimensions of the data tensor in every step of the FIA-Net.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTIONS

In our experiments, we utilized thirteen real-world datasets to assess the effectiveness of models
for long-term TSF. Below, we provide the details of these datasets, categorized by their forecasting

horizon.

* Exchange: This dataset includes daily exchange rates for eight countries (Australia,
Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to

2016.
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Symbol Dimension
X RBXLXD
XE RBXLXDXE
Ci (CBXNFFTXDXE
Cz'M (CBxMxDxE
C;"/OUt CBXMXDXE
XRec RBXLXDXE
X‘ RBXTxD

Table 5: Table of Symbols and Dimension

* Weather: This dataset gathers 21 meteorological indicators, including humidity and air
temperature, from the Weather Station of the Max Planck Biogeochemistry Institute in
Germany in 2020. The data is collected every 10 minutes.

* Traffic: For long-term forecasting, this dataset includes hourly traffic data from 862 free-
way lanes in San Francisco, with data collected since January 1, 2015.

* Electricity: For long-term forecasting, this dataset covers electricity consumption data
from 321 clients, with records starting from January 1, 2011, and a sampling interval of 15
minutes.

e ETT: This dataset is sourced from two electric transformers, labeled ETTh1 and ETTm]1,
with two different resolutions: 15 minutes and 1 hour. These are used as benchmarks for
long-term forecasting.

Datasets ‘Weather Traffic Electricity ETThl ETTml Exchange Rates
Features 21 862 321 7 7 8

Timesteps 52696 17544 26304 17420 69680 7588
Frequency 10m 1h 1h 1h 15m 1d

Lookback Window 96 48 96 96 96 96

Prediction Length 96, 192,336,720 96, 192,336,720 96, 192, 336, 720 96, 192, 336,720 96, 192,336,720 96, 192, 336, 720

Table 6: Long Term Datasets Parameters

B.2 BASELINES

We employ a selection of SoTA representative models for our comparative analysis, focusing on
Transformer-based architectures and other popular models. The models included are as follows:

 Informer: Informer enhances the efficiency of self-attention mechanisms to effectively
capture dependencies across variables. The source code was obtained from GitHub, and
we utilized the default configuration with a dropout rate of 0.05, two encoder layers, one
decoder layer, a learning rate of 0.0001, and the Adam optimizer.

* Reformer: Reformer combines the power of Transformers with efficient memory and com-
putation management, especially for long sequences. The source code was sourced from
GitHub, and we employed the recommended configuration for our experiments.

* Autoformer: Autoformer introduces a decomposition block embedded within the model to
progressively aggregate long-term trends from intermediate predictions. The source code
was accessed from|GitHub, and we followed the recommended settings for all experiments.

* FEDformer: FEDformer introduces an attention mechanism based on low-rank approx-
imation in the frequency domain combined with a mixture of expert decomposition to
handle distribution shifts. The source code was retrieved from GitHub. We utilized the
Frequency Enhanced Block (FEB-f) and selected the random mode with 64 as the experi-
mental configuration.
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e LTSF-Linear: LTSF-Linear is a minimalist model employing simple one-layer linear mod-
els to learn temporal relationships in time series data. We used it as our baseline for long-
term forecasting, downloading the source code from |GitHub, and adhered to the default
experimental settings.

e PatchTST: PatchTST is a Transformer-based model designed for TSF, introducing patch-
ing and a channel-independent structure to enhance model performance. The source code
was obtained from |GitHub, and we used the recommended settings for all experiments.

* FreTS: FRETS is a sophisticated model tailored for efficient TSF by exploiting a frequency
domain approach. The implementation is available on GitHub, and we utilized the default
configuration as recommended by the authors. In our work, FRETS serves as the founda-
tional model. We address its limitations, particularly its handling of non-stationary data,
while adapting its strengths, such as its complex frequency learner. To fully grasp the
contributions of this paper, we recommend reviewing FRETS in detail first.

B.3 IMPLEMENTATION DETAILS

Table [/]lists the hyperparameter values used in the FIA-Net implementation. Both WM-MLP and
HC-MLP backbones are implemented with the same hyperparameter values, except for p, the num-
ber of STFT windows.

DataSets \ Weather Traffic Electricity ETThl ETTml1 Exchange rate
Batch Size 16 4 4 8 8 8

Embed Size 128 32 64 128 128 128

Hidden Size 256 256 256 256 256 256

NFF 16 32 32 6 48 32

STFT Windows | 7 13 13 33 4 13

S-M 10 Mmax 4 4 4 Mmax

Epoch 10 10 10 10 10 10

Table 7: Hyperparameter Settings for Long-Term Datasets for the WM-MLP and HC-MLP

B.4 EVALUATION METRICS

In this study, we use the Mean Squared Error (MSE) as the loss function during training. However,
for evaluation, we report both the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE).

which are defined as follows:

n

1 ~
MSE = — Y; —Y;)?2, RMSE =
LY -

i=1

Where:

* Y, represents the true target values,

. Y represents the predicted values,
* n is the total number of samples.

B.5 NORMALIZATION METHODS

In this study, similar to the FRETS model Y1 et al.| (2023b)), we apply min-max normalization to
standardize the input data to the range between O and 1. This method helps in ensuring that all
features contribute equally to the model and prevents any specific feature from dominating due to
differences in scale. The formula for min-max normalization is given by:

X — Xmin
XNorm = Xi

max X min
By normalizing the data, we ensure that all input features are within the same range, which can
improve model convergence and performance.
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C ADDITIONAL INFORMATION ON HC NUMBERS AND MODELS

In this section we extend the discussion on HC numbers, considering additional values of p beyond
p = 4. We couple the presentation with the construction of the corresponding HC-MLP in the
considered base. Recall that the base of a HC number, i.e., the number of its components is given
by b = 2p. While hyper-complex number can be defined for any value of b, most research has been
performed on b that is given by a power of 2, as the resulting structure of the (algebraic) field. The
addition of two HC numbers is simply given by the component-wise summation. In what follows,
we focus on HC multiplication and additional properties. For more information on the HC number
system,, we refer the reader to|Kantor & Solodovnikov|(1989).

C.1 BASE 2 - COMPLEX NUMBERS

When b = 2, the resulting field is the complex plane C. We describe C for completeness of presen-
tation. Given two complex numbers C; = a3 + jag and Co = 1 + jf2, where o, ag, 51, P2 are
real numbers, their complex multiplication is defined as:

Cy - Coy = (181 — azf2) + j(a1fBe + 1)
The norm of a complex number is given by:

|Cilc = /af + a3,
which is preserved under multiplication, i.e.,
|C1 - Calc = |Chlc - |Cac.

Since the STFT with a single window (p = 1) is equivalent to the standard FFT, applying our method
for hyper-complex number MLP results in the following equation:

Cin = FFT(X)
Cout = O—(CliQneal * Wl,ReaI _Clig]ag 'Wl,lmag"_Bl,Real) +0(j(cli?nea| : Wl,lmag+clir213g 'Wl,ReaI +Bl,|mag)

Here, W; € CF*F denotes the layer weights, B € C¥ represents the bias term, and the multiplica-
tion occurs across the embedding dimension. Note that for b = 2 the HV formulation boils down to
the one from Y1 et al.|(2023b)). Thus, the HC-MLP can be considered as an HC generalization of the
FD-MLP. which allows for efficient window aggregation.

C.2 BASE 4 - QUATERNIONS

Denote the field of Quaternions with Q. We represent Quatenions with a couple of Complex number,
i.e., for Hi, Hy € Q, Hy = (a1, a2) and Hy = (31, B2), their multiplication is defined as

Hy - Hy = (a181 — 3B, a2f1 + 1)

The norm of a quaternion is given by:

ldlg = \/loalg + laz[2

The norm is preserved under multiplication, meaning:
lq1 - Q2|@ = \CI1|@ ) \Q2|@

For our model, the corresponding HC-MLP (which we denote QuatMLP) operating on cn =
(Cir, CiMy € Q, is given by,

Ceut — QuatMLP(Cin) = O-(Cin W+ B)
where:
CY =0(C1- Wy = Cy-Wo+ By), C53*" =0(Co- Wi+ Cy-Wa+ By).

Here, W; € CF*F i = 1,2 denote the layer weights, B € C¥ represents the bias term, and the
multiplication involves complex MLP operations across the embedding dimension.

16



Under review as a conference paper at ICLR 2025

C.3 BASE 16 - SEDENIONS

Elements on the Sedenions field, denoted .S .S, are denoted with 8-tuples of complex numbers. Given
two sedenions represented by complex numbers S1, 52 € S5, S1 = (a1,9,...,a5) and Sy =
(51, B2, - - ., Bs), their multiplication is given by

11 — B — asfs — aufls — a5 Ps — s Be — 7By — asPs
o182 + o + By — aufBs + a5 Bs — s + a7 fBs — asPr
o183 — 2By + B + aufBa + s By — asPBs — arPBs + asPe
S-Sy = o181+ asfBs — asBa + auf + asBs + asfr — arfBs — asfPs
o185 — s — 3By — aufBs + as B + agBa + azPs + asPa
o186 + 235 — aBs + aufr — as B + agBi — azfa + asPs
a1B7 + asfls + a3fBs — aufls — asB3 + agfs + arBi — agfBa
a1fs — aaf7 + azfe + auffs — asBs — apfBz + arfBe + asfr

where each component follows the rules of Complex multiplication. The norm of a sedenion is given
by:

Unlike nase 2, 4 and 8, Sedenions do not preserve the norm under addition and multiplication.

The base-16 HC-MLP, denoted SedMLP, operating on an input C'" from the STFT with multiple

windows C'" = (CI")3_,, is given by

C*"* = SedMLP(C™") = o(C™" - W + B)

where:
ot = o (O CYW, — CPWs5 — CP Wy — CY W, — CfWg — CW; — C'Ws + By)
C°“t:0(C’1 W2+C Wi + CrWy — CtWs + CPWs — CiW; + C'Ws — Cf Wy + Bo)
Cs"t = o (C'W;3 — CY Wy + CYW1 + O Wo + C W7 — CfWs — CY W5 + 08 We + Bs)
Ct =0 (CF W4 + CyWs — Cy¥ Wy + CyY Wy + CEWs + CgWr — CF W — C{ Wi + By)
2" = (CY'Ws — C§We — C§Wq — Cf Wy + CEWy + CWa + CPWs + C{ Wy + Bs)
Cet =0 (C] W6+02W5 Ci'Wg 4+ C"W, — C'Wy + Cinw CW4+CSW3+B6)
C*t =0 (CY W7+CQW8+C§“W5—CL”W6—C5W3+C W4+C — CQWs + By)
Ct =0 (CF OMWr + O W + O W5 — C2Wy — CW3 + CF W2 + CQW1 + Bs)
Here, W; € CF*E i =1,... 8 denotes the layer weights, B € C¥ represents the bias term, and

the multiplication involves complex MLP operations across the embedding dimension.
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D ADDITIONAL ABLATION STUDIES

This section presents additional ablation studies, expanding on the findings reported in Section[5.3]
We analyze the impact of FFT resolution, embedding size, and the number of STFT windows on
WM-MLP performance. Additionally, we include further results for the frequency compression,
sequence length, and Real vs. Imaginary component discussions. Furthermore, we provide a com-
parative analysis of various hyper-complex fields (Octonions, Quaternions, and Sedenions) for the
HC-MLP and report the corresponding results.

D.1 PARAMETER SENSITIVITY

In this section, we conduct a parameter sweep to examine the effects of different hyperparameters
on model performance. To accomplish this, we utilize two datasets: the ETTh1 dataset and the
electricity dataset. Each section presents four graphs illustrating the results on the two datasets for a
configuration of /0 = 96 x 96, 336. Except for the specific experiment sweep, the embedding size
is set to 128 for the ETTh1 dataset and 64 for the electricity dataset, with M set to O for all datasets.

Embed Size In this section, we evaluate the influence of embedding size on the
model’s performance. We conducted experiments with embedding dimensions E €
{1,2,4,8,16, 32,64, 128,256,512}, while keeping the following parameters fixed: Ngpr = 16,
B =28,p =13, and M = M,,.x.We can observe that as we increase the embedding size, the loss
decreases until we reach a certain point (which is dependent on the dataset). This is likely because
a larger embedding size enables the model to capture more features; however, an excessively high
embedding size may lead to overfitting.
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Figure 7: Comparison of MSE and MAE across different values of E for varying Ton the ETTh1
and Electricity datasets.

Amount of Windows (High Dim) In this section, we evaluate the influence of the number of
windows (p) on the model’s performance. We conducted experiments with different window counts
p € {3,6,14,17,25,33}, while keeping the following parameters fixed: B = 8, M = Max, and

the overlap between windows is 50%.
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Figure 8: Comparison of MSE and MAE across different values of p for varying T on the ETThI
and Electricity datasets.

FFT Resolution (NFFT) In this section, we evaluate the influence of the FFT resolution
(Nppr) on the model’s performance. We conducted experiments with different Nppr €
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{6,8,12,16, 24, 32,48}, while keeping the following parameters fixed: p = 25, B = 8, M =
Mmax~

0.0° 0.0470
\ 0.1006 0.07000
0.05910 0.0708 0.0430 0.0737
0.08795 -
\ 0.1004 0.06975 0.0469
0.0707
0.06950 0.0429 00736
, 0:08790 0.05905 1, 0.1002 0695 0.07061 || w 0.0468
g g 2 ooe02sE B \ 004284 2 ¢
2 ).08785 = %0.1000 = 200705 S Zoo073s
0.05900 0.0427 0.0467
0.06900 0.0704 -
0.0998 00734
0.08780 00703 0.0426 0.0466
0.05895 0.0996 0-06875 —=— RMSE —=— RMSE
— 0.0702
0.08775 0.06850 —me o045 00733 —— e
81216 24 32 48 81216 24 32 48 81216 24 32 48 81216 24 32 48
Neer - Window size / FFT resolution Neer - Window size / FFT resolution Neer - Window size / FFT resolution Neer - Window size / FFT resolution
(a) T=96 on ETThl (b) T=336 on ETThl (c) T=96 on electricity (d) T=336 on electricity

Figure 9: Comparison of MSE and MAE across different values of Np g for varying T on the
ETTh1 and Electricity datasets.

Frequency Choose Max (M) In this section, we provide additional results for various datasets
and prediction lengths 7" regarding the discussion on frequency compression 5]
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Figure 10: Comparison of MSE and MAE across different values of M for various T on the ETTh1
and Electricity datasets.
D.2 DIFFERENT LOOKBACK WINDOW

In this section, we present additional results for various lookback windows on the ETThl and
ETTm1 datasets.
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Figure 11: MAE and RMSE in relation to the Lookback Window L for varying prediction lengths
T € {96,192, 336, 720} for the ETTh1 and ETTm1 datasets.

19



Under review as a conference paper at ICLR 2025

D.3 REAL VS IMAGINARY COMPONENTS

This section provides additional information regarding the real versus imaginary experiment dis-

cussed in Section [3.3.3!
1/0 96/96 96/192 96/336 96/720
Dataset Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE
X Real 0.0522  0.0797 0.0560 0.0850 0.0597 0.0888 0.0658 0.0958
XImag 0.0521 0.0792 0.0562 0.0844 0.0592 0.0879 0.0684 0.0976
W Real 0.0522  0.0791 0.0557 0.0843 0.0588 0.0875 0.0669 0.0964
ETTml Wimag 0.0526  0.0801 0.0560 0.0849 0.0596 0.0888 0.0651 0.0953
Wimag xlmag (00523 0.0798 0.0560 0.0849 0.0592 0.0884 0.0644 0.0947
WReal xReal (0522  0.0791 0.0557 0.0843 0.0588 0.0887 0.0669 0.0930
Normal 0.0522  0.0791 0.0565 0.0848 0.0592 0.0878 0.0685 0.0975
X Real 0.0584 0.0877 0.0638 0.0944 0.0684 0.0997 0.0767 0.1047
XImag 0.0582 0.0879 0.0634 0.0943 0.0679 0.0997 0.0756 0.1041
W Real 0.0586 0.0880 0.0644 0.0948 0.0685 0.0998 0.0759 0.1039
ETTh1 Wimag 0.0584 0.0880 0.0646 0.0951 0.0694 0.1008 0.0781 0.1065
Wimag xlmag (00586 0.0880 0.0644 0.0947 0.0685 0.0998 0.0759 0.1040
WReal xReal (0587 0.0882 0.0642 0.0948 0.0690 0.1005 0.0765 0.1050
Normal 0.0586 0.0878 0.0639 0.0945 0.0684 0.0998 0.0765 0.1043

Table 8: Performance comparison on the ETTm1, ETTh1, and Electricity datasets for
I/O =96 x {96,192, 336, 720} with different modes. X R and X'™2€ refer to hiding the real and
imaginary parts of the input, respectively. R and 1¥7'm28 denote zeroing the real and imaginary
weights, respectively. The cases where both the real and imaginary components are completely

ignored (i.e., both weights and inputs are zeroed) are represented by W'm2&_X'mag apd

WReal xReal MAE and RMSE are reported, where lower values indicate better performance.

E HC-MLP EXPERIMENTAL RESULTS WITH FOR VARIOUS VALUES OF p

In this section, we present additional results on the HC-MLP for various bases. We provide results
for the Complex base (p=1 - FreTS), Quaternion base (p=2 - QuatMLP), Octonion base (p=4 -
OctMLP), and Sedin base (p=8 - SedMLP).

Metric ‘

Traffic

ETTh1

ETTml1

96 192

36 720 | 96

192 336

720 | 9

192

336 720

RMSE

SedenionMLP (p = 8)
MAE

0.0340  0.0346
0.0168 0.0169

0.0351  0.0363 | 0.0896
0.0173  0.0186 | 0.0598

0.0948  0.0999
0.0640  0.0685

0.1047| 0.0814 0.0857
0.0767| 0.0542 0.0573

0.0894  0.0977
0.0609 0.0682

RMSE

OctontionMLP (p = 4)
MAE

0.0335 0.0343
0.0166  0.0167

0.0349 0.0361| 0.0834
0.0172  0.0185| 0.0579

0.0874 0.0941
0.0635 0.0676

0.1017| 0.0739 0.0831
0.0759| 0.0496 0.0556

0.0888  0.0967
0.0603 0.0673

RMSE

QuaternionMLP (p = 2)
MAE

0.0335 0.0343
0.0165 0.0167

0.0350 0.0362| 0.0874
0.0172  0.0184| 0.0580

0.0938 0.0997
0.0633  0.0687

0.1059| 0.0796 0.0847
0.0783| 0.0526 0.0564

0.0887 0.0974
0.0603  0.0678

Table 9: Comparison between the WM-MLP and the HC-MLP of RMSE and MAE on ETThI,
Traffic, and ETTm]1 datasets
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E.1 VISUALIZATIONS
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Figure 12: Ground Truth vs. Predictions for Different I/O Settings (Traffic Dataset).
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Figure 13: Ground Truth vs. Predictions for Different I/O Settings (Electricity Dataset).

21



	Notations & Symbols 
	Notation
	Dimensions

	Additional Experimental Details
	Dataset Descriptions
	baselines
	Implementation Details
	Evaluation Metrics
	Normalization Methods

	Additional Information on HC Numbers and Models
	Base 2 - Complex Numbers
	Base 4 - Quaternions
	Base 16 - Sedenions

	Additional Ablation Studies
	Parameter Sensitivity
	Different LookBack Window
	Real Vs imaginary Components

	HC-MLP Experimental Results With For Various Values of p
	Visualizations


