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APPENDIX FOR ”EFFICIENT TIME SERIES FORECASTING VIA
HYPER-COMPLEX MODELS AND FREQUENCY AGGREGATION”

A NOTATIONS & SYMBOLS

A.1 NOTATION

We provide a detailed table of the involved notation in this paper:

Symbol Description
B Batch size.
L Lookback window size.
D Number of features for each time step.
T Length of the prediction horizon.
E Embedding size.
M Number of frequencies to select from all the frequencies using the top M magnitudes.

X
Multivariate time series with a lookback window of size L at timestamps t, where
X ∈ RL×D.

Xt Multivariate values of D distinct series at timestamp t, where Xt ∈ RD.
Xt,i The value of the i-th feature of the distinct series at timestamp t, where Xt,i ∈ R.
X̂ Ground truth target values, where X̂ ∈ RT×D

σ activation function
P Number of windows in the STFT.

NFFT Number of frequency bins in each window of the STFT.
ω Window function for the STFT.
XE X after traversing through the embedding layer. XE ∈ RL×D×E

XRec The reconstructed X after the frequency alteration. XRec ∈ RL×D×E

cti The i-th window of the input in the time domain cti ∈ CD×2NFFT×E .
Ci The i-th window of the STFT containing NFFT frequency bins Ci ∈ CD×NFFT×E .

C in
i

The i-th window of the STFT, retaining the top M frequency components based on
magnitude C

′

i ∈ CD×M×E .

Cout
i

The i-th window of the STFT after the WM-MLP/WHC has been applied CM
i ∈

CD×M×E .

Wi→j
The weights that capture the frequency energy shift between window i and j, defined
as Wi→j = WReal

i→j + jW Img
i→j , where Wi→j ∈ CE×E .

Bi→j
The bais that capture the frequency energy shift between windows i and j, defined as
Bi→j = BReal

i→j + jBImg
i→j , where Bi→j ∈ CE .

Table 4: Table of Symbols and Descriptions

A.2 DIMENSIONS

The following table summarizes the dimensions of the data tensor in every step of the FIA-Net.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTIONS

In our experiments, we utilized thirteen real-world datasets to assess the effectiveness of models
for long-term TSF. Below, we provide the details of these datasets, categorized by their forecasting
horizon.

• Exchange: This dataset includes daily exchange rates for eight countries (Australia,
Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to
2016.
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Symbol Dimension

X RB×L×D

XE RB×L×D×E

Ci CB×NFFT×D×E

CM
i CB×M×D×E

C
in/out
i CB×M×D×E

XRec RB×L×D×E

X̂ RB×T×D

Table 5: Table of Symbols and Dimension

• Weather: This dataset gathers 21 meteorological indicators, including humidity and air
temperature, from the Weather Station of the Max Planck Biogeochemistry Institute in
Germany in 2020. The data is collected every 10 minutes.

• Traffic: For long-term forecasting, this dataset includes hourly traffic data from 862 free-
way lanes in San Francisco, with data collected since January 1, 2015.

• Electricity: For long-term forecasting, this dataset covers electricity consumption data
from 321 clients, with records starting from January 1, 2011, and a sampling interval of 15
minutes.

• ETT: This dataset is sourced from two electric transformers, labeled ETTh1 and ETTm1,
with two different resolutions: 15 minutes and 1 hour. These are used as benchmarks for
long-term forecasting.

Datasets Weather Traffic Electricity ETTh1 ETTm1 Exchange Rates

Features 21 862 321 7 7 8
Timesteps 52696 17544 26304 17420 69680 7588
Frequency 10m 1h 1h 1h 15m 1d
Lookback Window 96 48 96 96 96 96
Prediction Length 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720

Table 6: Long Term Datasets Parameters

B.2 BASELINES

We employ a selection of SoTA representative models for our comparative analysis, focusing on
Transformer-based architectures and other popular models. The models included are as follows:

• Informer: Informer enhances the efficiency of self-attention mechanisms to effectively
capture dependencies across variables. The source code was obtained from GitHub, and
we utilized the default configuration with a dropout rate of 0.05, two encoder layers, one
decoder layer, a learning rate of 0.0001, and the Adam optimizer.

• Reformer: Reformer combines the power of Transformers with efficient memory and com-
putation management, especially for long sequences. The source code was sourced from
GitHub, and we employed the recommended configuration for our experiments.

• Autoformer: Autoformer introduces a decomposition block embedded within the model to
progressively aggregate long-term trends from intermediate predictions. The source code
was accessed from GitHub, and we followed the recommended settings for all experiments.

• FEDformer: FEDformer introduces an attention mechanism based on low-rank approx-
imation in the frequency domain combined with a mixture of expert decomposition to
handle distribution shifts. The source code was retrieved from GitHub. We utilized the
Frequency Enhanced Block (FEB-f) and selected the random mode with 64 as the experi-
mental configuration.
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• LTSF-Linear: LTSF-Linear is a minimalist model employing simple one-layer linear mod-
els to learn temporal relationships in time series data. We used it as our baseline for long-
term forecasting, downloading the source code from GitHub, and adhered to the default
experimental settings.

• PatchTST: PatchTST is a Transformer-based model designed for TSF, introducing patch-
ing and a channel-independent structure to enhance model performance. The source code
was obtained from GitHub, and we used the recommended settings for all experiments.

• FreTS: FRETS is a sophisticated model tailored for efficient TSF by exploiting a frequency
domain approach. The implementation is available on GitHub, and we utilized the default
configuration as recommended by the authors. In our work, FRETS serves as the founda-
tional model. We address its limitations, particularly its handling of non-stationary data,
while adapting its strengths, such as its complex frequency learner. To fully grasp the
contributions of this paper, we recommend reviewing FRETS in detail first.

B.3 IMPLEMENTATION DETAILS

Table 7 lists the hyperparameter values used in the FIA-Net implementation. Both WM-MLP and
HC-MLP backbones are implemented with the same hyperparameter values, except for p, the num-
ber of STFT windows.

DataSets Weather Traffic Electricity ETTh1 ETTm1 Exchange rate

Batch Size 16 4 4 8 8 8
Embed Size 128 32 64 128 128 128
Hidden Size 256 256 256 256 256 256
NFF 16 32 32 6 48 32
STFT Windows 7 13 13 33 4 13
S-M 10 Mmax 4 4 4 Mmax

Epoch 10 10 10 10 10 10

Table 7: Hyperparameter Settings for Long-Term Datasets for the WM-MLP and HC-MLP

B.4 EVALUATION METRICS

In this study, we use the Mean Squared Error (MSE) as the loss function during training. However,
for evaluation, we report both the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE).

which are defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, MAE =
1

n

n∑
i=1

|Yi − Ŷi|

Where:

• Yi represents the true target values,

• Ŷi represents the predicted values,
• n is the total number of samples.

B.5 NORMALIZATION METHODS

In this study, similar to the FRETS model Yi et al. (2023b), we apply min-max normalization to
standardize the input data to the range between 0 and 1. This method helps in ensuring that all
features contribute equally to the model and prevents any specific feature from dominating due to
differences in scale. The formula for min-max normalization is given by:

XNorm =
X −Xmin

Xmax −Xmin

By normalizing the data, we ensure that all input features are within the same range, which can
improve model convergence and performance.
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C ADDITIONAL INFORMATION ON HC NUMBERS AND MODELS

In this section we extend the discussion on HC numbers, considering additional values of p beyond
p = 4. We couple the presentation with the construction of the corresponding HC-MLP in the
considered base. Recall that the base of a HC number, i.e., the number of its components is given
by b = 2p. While hyper-complex number can be defined for any value of b, most research has been
performed on b that is given by a power of 2, as the resulting structure of the (algebraic) field. The
addition of two HC numbers is simply given by the component-wise summation. In what follows,
we focus on HC multiplication and additional properties. For more information on the HC number
system,, we refer the reader to Kantor & Solodovnikov (1989).

C.1 BASE 2 - COMPLEX NUMBERS

When b = 2, the resulting field is the complex plane C. We describe C for completeness of presen-
tation. Given two complex numbers C1 = α1 + jα2 and C2 = β1 + jβ2, where α1, α2, β1, β2 are
real numbers, their complex multiplication is defined as:

C1 · C2 = (α1β1 − α2β2) + j(α1β2 + α2β1)

The norm of a complex number is given by:

|C1|C =
√
α2
1 + α2

2,

which is preserved under multiplication, i.e.,

|C1 · C2|C = |C1|C · |C2|C.
Since the STFT with a single window (p = 1) is equivalent to the standard FFT, applying our method
for hyper-complex number MLP results in the following equation:

Cin = FFT(X)

Cout = σ(C in
Real ·W1,Real−C in

Imag ·W1,Imag+B1,Real)+σ(j(C in
Real ·W1,Imag+C in

Imag ·W1,Real+B1,Imag)

Here, Wi ∈ CE×E denotes the layer weights, B ∈ CE represents the bias term, and the multiplica-
tion occurs across the embedding dimension. Note that for b = 2 the HV formulation boils down to
the one from Yi et al. (2023b). Thus, the HC-MLP can be considered as an HC generalization of the
FD-MLP. which allows for efficient window aggregation.

C.2 BASE 4 - QUATERNIONS

Denote the field of Quaternions with Q̃. We represent Quatenions with a couple of Complex number,
i.e., for H1, H2 ∈ Q̃, H1 = (α1, α2) and H2 = (β1, β2), their multiplication is defined as

H1 ·H2 = (α1β1 − α2β2, α2β1 + α1β2)

The norm of a quaternion is given by:

|q|Q̃ =
√
|α1|2C + |α2|2C

The norm is preserved under multiplication, meaning:

|q1 · q2|Q̃ = |q1|Q̃ · |q2|Q̃
For our model, the corresponding HC-MLP (which we denote QuatMLP) operating on C in =
(C in

1 , C
in
2 ) ∈ Q̃, is given by,

Cout = QuatMLP(C in) = σ(C in ·W +B)

where:

Cout
1 = σ(C1 ·W1 − C2 ·W2 +B1), Cout

2 = σ(C2 ·W1 + C1 ·W2 +B2).

Here, Wi ∈ CE×E , i = 1, 2 denote the layer weights, B ∈ CE represents the bias term, and the
multiplication involves complex MLP operations across the embedding dimension.
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C.3 BASE 16 - SEDENIONS

Elements on the Sedenions field, denoted SS, are denoted with 8-tuples of complex numbers. Given
two sedenions represented by complex numbers S1, S2 ∈ SS, S1 = (α1, α2, . . . , α8) and S2 =
(β1, β2, . . . , β8), their multiplication is given by

S1 · S2 =



α1β1 − α2β2 − α3β3 − α4β4 − α5β5 − α6β6 − α7β7 − α8β8

α1β2 + α2β1 + α3β4 − α4β3 + α5β6 − α6β5 + α7β8 − α8β7

α1β3 − α2β4 + α3β1 + α4β2 + α5β7 − α6β8 − α7β5 + α8β6

α1β4 + α2β3 − α3β2 + α4β1 + α5β8 + α6β7 − α7β6 − α8β5

α1β5 − α2β6 − α3β7 − α4β8 + α5β1 + α6β2 + α7β3 + α8β4

α1β6 + α2β5 − α3β8 + α4β7 − α5β2 + α6β1 − α7β4 + α8β3

α1β7 + α2β8 + α3β5 − α4β6 − α5β3 + α6β4 + α7β1 − α8β2

α1β8 − α2β7 + α3β6 + α4β5 − α5β4 − α6β3 + α7β2 + α8β1


where each component follows the rules of Complex multiplication. The norm of a sedenion is given
by:

|S|SS =

√√√√ 8∑
j=1

|αj |2C

Unlike nase 2, 4 and 8, Sedenions do not preserve the norm under addition and multiplication.

The base-16 HC-MLP, denoted SedMLP, operating on an input C in from the STFT with multiple
windows C in = (C in

j )
8
j=1, is given by

Cout = SedMLP(C in) = σ(C in ·W +B)

where:

Cout
1 = σ

(
C in

1 W1 − C in
2 W2 − C in

3 W3 − C in
4 W4 − C in

5 W5 − C in
6 W6 − C in

7 W7 − C in
8 W8 +B1

)
Cout

2 = σ
(
C in

1 W2 + C in
2 W1 + C in

3 W4 − C in
4 W3 + C in

5 W6 − C in
6 W5 + C in

7 W8 − C in
8 W7 +B2

)
Cout

3 = σ
(
C in

1 W3 − C in
2 W4 + C in

3 W1 + C in
4 W2 + C in

5 W7 − C in
6 W8 − C in

7 W5 + C in
8 W6 +B3

)
Cout

4 = σ
(
C in

1 W4 + C in
2 W3 − C in

3 W2 + C in
4 W1 + C in

5 W8 + C in
6 W7 − C in

7 W6 − C in
8 W5 +B4

)
Cout

5 = σ
(
C in

1 W5 − C in
2 W6 − C in

3 W7 − C in
4 W8 + C in

5 W1 + C in
6 W2 + C in

7 W3 + C in
8 W4 +B5

)
Cout

6 = σ
(
C in

1 W6 + C in
2 W5 − C in

3 W8 + C in
4 W7 − C in

5 W2 + C in
6 W1 − C in

7 W4 + C in
8 W3 +B6

)
Cout

7 = σ
(
C in

1 W7 + C in
2 W8 + C in

3 W5 − C in
4 W6 − C in

5 W3 + C in
6 W4 + C in

7 W1 − C in
8 W2 +B7

)
Cout

8 = σ
(
C in

1 W8 − C in
2 W7 + C in

3 W6 + C in
4 W5 − C in

5 W4 − C in
6 W3 + C in

7 W2 + C in
8 W1 +B8

)
Here, Wi ∈ CE×E , i = 1, . . . , 8 denotes the layer weights, B ∈ CE represents the bias term, and
the multiplication involves complex MLP operations across the embedding dimension.
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D ADDITIONAL ABLATION STUDIES

This section presents additional ablation studies, expanding on the findings reported in Section 5.3.
We analyze the impact of FFT resolution, embedding size, and the number of STFT windows on
WM-MLP performance. Additionally, we include further results for the frequency compression,
sequence length, and Real vs. Imaginary component discussions. Furthermore, we provide a com-
parative analysis of various hyper-complex fields (Octonions, Quaternions, and Sedenions) for the
HC-MLP and report the corresponding results.

D.1 PARAMETER SENSITIVITY

In this section, we conduct a parameter sweep to examine the effects of different hyperparameters
on model performance. To accomplish this, we utilize two datasets: the ETTh1 dataset and the
electricity dataset. Each section presents four graphs illustrating the results on the two datasets for a
configuration of I/O = 96×96, 336. Except for the specific experiment sweep, the embedding size
is set to 128 for the ETTh1 dataset and 64 for the electricity dataset, with M set to 0 for all datasets.

Embed Size In this section, we evaluate the influence of embedding size on the
model’s performance. We conducted experiments with embedding dimensions E ∈
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, while keeping the following parameters fixed: NFFT = 16,
B = 8, p = 13, and M = Mmax.We can observe that as we increase the embedding size, the loss
decreases until we reach a certain point (which is dependent on the dataset). This is likely because
a larger embedding size enables the model to capture more features; however, an excessively high
embedding size may lead to overfitting.
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Figure 7: Comparison of MSE and MAE across different values of E for varying Ton the ETTh1
and Electricity datasets.

Amount of Windows (High Dim) In this section, we evaluate the influence of the number of
windows (p) on the model’s performance. We conducted experiments with different window counts
p ∈ {3, 6, 14, 17, 25, 33}, while keeping the following parameters fixed: B = 8, M = Mmax, and
the overlap between windows is 50%.
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Figure 8: Comparison of MSE and MAE across different values of p for varying T on the ETTh1
and Electricity datasets.

FFT Resolution (NFFT) In this section, we evaluate the influence of the FFT resolution
(NFFT) on the model’s performance. We conducted experiments with different NFFT ∈
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{6, 8, 12, 16, 24, 32, 48}, while keeping the following parameters fixed: p = 25, B = 8, M =
Mmax.
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Figure 9: Comparison of MSE and MAE across different values of NFFT for varying T on the
ETTh1 and Electricity datasets.

Frequency Choose Max (M) In this section, we provide additional results for various datasets
and prediction lengths T regarding the discussion on frequency compression 5.
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Figure 10: Comparison of MSE and MAE across different values of M for various T on the ETTh1
and Electricity datasets.

D.2 DIFFERENT LOOKBACK WINDOW

In this section, we present additional results for various lookback windows on the ETTh1 and
ETTm1 datasets.
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Figure 11: MAE and RMSE in relation to the Lookback Window L for varying prediction lengths
T ∈ {96, 192, 336, 720} for the ETTh1 and ETTm1 datasets.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.3 REAL VS IMAGINARY COMPONENTS

This section provides additional information regarding the real versus imaginary experiment dis-
cussed in Section 5.3.3.

Dataset
I/O 96/96 96/192 96/336 96/720

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ETTm1

XReal 0.0522 0.0797 0.0560 0.0850 0.0597 0.0888 0.0658 0.0958
X Imag 0.0521 0.0792 0.0562 0.0844 0.0592 0.0879 0.0684 0.0976
WReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0875 0.0669 0.0964
W Imag 0.0526 0.0801 0.0560 0.0849 0.0596 0.0888 0.0651 0.0953

W Imag, X Imag 0.0523 0.0798 0.0560 0.0849 0.0592 0.0884 0.0644 0.0947
WReal, XReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0887 0.0669 0.0930

Normal 0.0522 0.0791 0.0565 0.0848 0.0592 0.0878 0.0685 0.0975

ETTh1

XReal 0.0584 0.0877 0.0638 0.0944 0.0684 0.0997 0.0767 0.1047
X Imag 0.0582 0.0879 0.0634 0.0943 0.0679 0.0997 0.0756 0.1041
WReal 0.0586 0.0880 0.0644 0.0948 0.0685 0.0998 0.0759 0.1039
W Imag 0.0584 0.0880 0.0646 0.0951 0.0694 0.1008 0.0781 0.1065

W Imag, X Imag 0.0586 0.0880 0.0644 0.0947 0.0685 0.0998 0.0759 0.1040
WReal, XReal 0.0587 0.0882 0.0642 0.0948 0.0690 0.1005 0.0765 0.1050

Normal 0.0586 0.0878 0.0639 0.0945 0.0684 0.0998 0.0765 0.1043

Table 8: Performance comparison on the ETTm1, ETTh1, and Electricity datasets for
I/O = 96×{96, 192, 336, 720} with different modes. XReal and X Imag refer to hiding the real and
imaginary parts of the input, respectively. WReal and W Imag denote zeroing the real and imaginary
weights, respectively. The cases where both the real and imaginary components are completely
ignored (i.e., both weights and inputs are zeroed) are represented by W Imag, X Imag and
WReal, XReal. MAE and RMSE are reported, where lower values indicate better performance.

E HC-MLP EXPERIMENTAL RESULTS WITH FOR VARIOUS VALUES OF p

In this section, we present additional results on the HC-MLP for various bases. We provide results
for the Complex base (p=1 - FreTS), Quaternion base (p=2 - QuatMLP), Octonion base (p=4 -
OctMLP), and Sedin base (p=8 - SedMLP).

Traffic ETTh1 ETTm1

Metric 96 192 336 720 96 192 336 720 96 192 336 720

SedenionMLP (p = 8)
RMSE 0.0340 0.0346 0.0351 0.0363 0.0896 0.0948 0.0999 0.1047 0.0814 0.0857 0.0894 0.0977

MAE 0.0168 0.0169 0.0173 0.0186 0.0598 0.0640 0.0685 0.0767 0.0542 0.0573 0.0609 0.0682

OctontionMLP (p = 4)
RMSE 0.0335 0.0343 0.0349 0.0361 0.0834 0.0874 0.0941 0.1017 0.0739 0.0831 0.0888 0.0967

MAE 0.0166 0.0167 0.0172 0.0185 0.0579 0.0635 0.0676 0.0759 0.0496 0.0556 0.0603 0.0673

QuaternionMLP (p = 2)
RMSE 0.0335 0.0343 0.0350 0.0362 0.0874 0.0938 0.0997 0.1059 0.0796 0.0847 0.0887 0.0974

MAE 0.0165 0.0167 0.0172 0.0184 0.0580 0.0633 0.0687 0.0783 0.0526 0.0564 0.0603 0.0678

Table 9: Comparison between the WM-MLP and the HC-MLP of RMSE and MAE on ETTh1,
Traffic, and ETTm1 datasets
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E.1 VISUALIZATIONS
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Figure 12: Ground Truth vs. Predictions for Different I/O Settings (Traffic Dataset).
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Figure 13: Ground Truth vs. Predictions for Different I/O Settings (Electricity Dataset).
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