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Abstract: Some Learning from Demonstrations (LfD) methods handle small mis-1

matches in the action spaces of the teacher and student. Here we address the case2

where the teacher’s morphology is substantially different from that of the stu-3

dent. Our framework, Morphological Adaptation in Imitation Learning (MAIL),4

bridges this gap allowing us to train an agent from demonstrations by other agents5

with significantly different morphologies. MAIL learns from suboptimal demon-6

strations, so long as they provide some guidance towards a desired solution. We7

demonstrate MAIL on manipulation tasks with rigid and deformable objects in-8

cluding 3D cloth manipulation interacting with rigid obstacles. We train a visual9

control policy for a robot with one end-effector using demonstrations from a sim-10

ulated agent with two end-effectors. MAIL shows up to 24% improvement in a11

normalized performance metric over LfD and non-LfD baselines. It is deployed12

to a real Franka Panda robot, handles multiple variations in properties for objects13

(size, rotation, translation), and cloth-specific properties (color, thickness, size,14

material). We show generalizability to morphology adaptation from n-to-m end-15

effectors, in a rearrangement task executed in simulation and the real world. An16

overview is on this website.17

Keywords: Imitation from Observation, Learning from Demonstration18

1 Introduction19

Learning from Demonstration (LfD) [1, 2] is a set of supervised learning methods where a teacher20

(often, but not always, a human) demonstrates a task, and a student (usually a robot) uses this21

information to learn to perform the same task. Some LfD methods cope with small morphological22

mismatches between the teacher and student [3, 4] (e.g., five-fingered hand to two-fingered gripper).23

However, they typically fail for a large mismatch (e.g., bimanual human demonstration to a robot24

arm with one gripper). The key difference is that to reproduce the transition from a demonstration25

state to the next, no single student action suffices - a sequence of actions may be needed.26

Supervised methods are appealing where demonstration-free methods [5] do not converge or under-27

perform [6] and purely analytical approaches are computationally infeasible [7, 8]. In such settings,28

human demonstrations of complex tasks are often readily available e.g., it is straightforward for a29

human to show a robot how to fold a cloth. An LfD-based imitation learning approach is appealing30

in such settings provided we allow the human demonstrator to use their body in the way they find31

most convenient (e.g., using two hands to hang a cloth on a clothesline to dry). This requirement32

induces a potentially large morphology mismatch - we want to learn and execute complex tasks with33

deformable objects on a single manipulator robot using natural human demonstrations.34

We propose a framework, Morphological Adaptation in Imitation Learning (MAIL), to bridge this35

mismatch. MAIL enables policy learning for a robot withm end-effectors from teachers with n end-36

effectors. It does not require demonstrator actions, only the states of the objects in the environment37
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making it potentially useful for a variety of end-effectors (pickers, suction gripper, two-fingered38

grippers, or even hands). It uses trajectory optimization to convert state-based demonstrations into39

(suboptimal) trajectories in the student’s morphology. The optimization uses a learned (forward)40

dynamics model to trade accuracy for speed, especially useful for tasks with high-dimensional state41

and observation spaces. The trajectories are then used by an LfD method, which is adapted to work42

with suboptimal demonstrations and improve upon them by interacting with the environment.43
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Figure 1: MAIL generalizes LfD to large morphological
mismatches between teacher and student in difficult ma-
nipulation tasks. We show an example task: hang a cloth
to dry on a plank (DRY CLOTH). The demonstrations are
bimanual, yet the robot learns to execute the task with a
single arm and gripper. The learned policy transfers to
the real world and is robust to object variations.

Though the original demonstrations44

contain states, we generalize the solu-45

tion to work with image observations46

in the final policy.We showcase our47

method on challenging cloth manipula-48

tion tasks (Sec. 4.1) for a robot with one49

end-effector, using image observations,50

shown in Fig. 1. This setting is chal-51

lenging for multiple reasons. First, cloth52

manipulation is easy for bimanual hu-53

man demonstrators but challenging for54

a one-handed agent (even humans find55

cloth manipulation non-trivial with one56

hand). Second, deformable objects exist57

in a continuous state space; image ob-58

servations in this setting are also high-59

dimensional. Third, the cloth being ma-60

nipulated makes a large number of con-61

tacts (hundreds) that are made/broken per time step. These can significantly slow down simulation,62

and consequently learning and optimization. We make the following contributions:63

1. We propose a novel framework, MAIL, that bridges the large morphological mismatch in LfD.64

MAIL trains a robot with m end-effectors to learn manipulation from demonstrations with a65

different (n) number of end-effectors (n-to-m end-effector transfer).66

2. We demonstrate MAIL on challenging cloth manipulation tasks on a robot with one end-effector.67

Our tasks have a high-dimensional (> 15000) state space, with several 100 contacts being68

made/broken per step, and are non-trivial to solve with one end-effector. Our learned agent out-69

performs baselines by up to 24% on a normalized performance metric and transfers zero-shot to70

a real robot. We introduce a new variant of 3D cloth manipulation with obstacles - DRY CLOTH.71

3. We illustrate how MAIL can handle general instances of n-to-m end-effector transfer, with a72

simple rearrangement task with three rigid bodies, in simulation and the real world. This task73

illustrates a 3-to-2, 3-to-1, and 2-to-1 end-effector transfer.74

2 Related Work75

Imitation Learning and Reinforcement Learning with Demonstrations: Imitation learning76

methods [9, 10, 11, 12, 13] and methods that combine reinforcement learning and demonstra-77

tions [14, 15, 1, 2] have shown excellent results in learning a mapping between observations and78

actions from demonstrations. However, their objective function requires access to the demonstra-79

tor’s ground truth actions for optimization. This is infeasible for cross-morphology transfer due80

to action space mismatch. To work around this, prior works have proposed systems for teachers81

to provide demonstrations in the students’ morphology [16] which limits the ability of teachers to82

efficiently provide data. Similar to imitation learning, offline RL [17, 18, 19] learns from demonstra-83

tions stored in a dataset without online environment interactions. While offline RL can work with84

large datasets of diverse rollouts to produce generalizable policies [20, 21], it requires the availability85

of rollouts that have the same action space as the learning agent. MAIL learns across morphologies86

and is not affected by this limitation.87
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Imitation from Observation: Imitation from observation (IfO) methods [3, 9, 22, 23, 24, 25] learn88

from the states of the demonstration; they do not use state-action pairs. In [26], an approach is89

proposed to learn repetitive actions using Dynamic Movement Primitives [27] and Bayesian opti-90

mization to maximize the similarity between human demonstrations and robot actions. Many IfO91

methods [3, 23, 24, 28] assume that the student can take a single action to transition from the demon-92

stration’s current state to the next state. Some methods [3, 23] use this to train an inverse dynamics93

model to infer actions. Others extract keypoints from the observations and compute actions by sub-94

tracting consecutive keypoint vectors. However, when the student has a different space than the95

teacher, it may require more than one action for the student to reach consecutive demonstration96

states. For example, in an object rearrangement task, a two-picker teacher agent can move two ob-97

jects with one pick-place action. But a one-picker student will need two or more actions to achieve98

the same result. Zero-shot visual imitation [9] assumes that the statistics of visual observations99

and agents observations will be similar. However, when solving a task with different numbers of100

arms, some intermediate states will not be seen in teacher demonstrations. State-of-the-art learning101

from observation methods [25, 29] have made significant advancements in exploiting information102

between states. However, their tasks have much longer horizons, hence more states and learning103

signals than ours. Whether these methods work well on short-horizon, difficult manipulation tasks104

is uncertain. To address this and provide a meaningful comparison, we conducted experiments to105

compare MAIL with these methods (Sec. 4).106

Trajectory Optimization: Trajectory optimization algorithms [30, 8, 31] optimize a trajectory by107

minimizing a cost function, subject to a set of constraints. It has been used for manipulation of108

rigid and deformable objects [7], even through contact [32] using complementarity constraints [33].109

Indirect trajectory optimization only optimizes the actions of a trajectory and uses a simulator for110

the dynamics instead of adding dynamics constraints at every step.111

Learned Dynamics: Learning dynamics models is useful when there is no simulator, or if the112

simulator is too slow or too inaccurate. Learned models have been used with MPC to speed up113

prediction times [34, 35, 36]. A common use case is model-based RL [37], where learning the114

dynamics is part of the algorithm and has been shown to learn dynamics from states and pixels [38]115

and applied to real-world tasks [39].116

3 Formulation and Approach117

3.1 Preliminaries118

We formulate the problem as a POMDP with state s ∈ S , action a ∈ A, observation o ∈ O,119

transition function T : S×A → S, horizonH , discount factor γ and reward function r : S×A → R.120

The discounted return at time t is Rt =
∑H
i=t γ

ir(si,ai) and si ∼ T (si−1,ai−1). A task is121

instantiated with a variant sampled from the task distribution, v ∼ V . The initial environment state122

depends on the task variant, s0(v),v ∼ V . We train a policy πθ to maximize expected reward123

J(πθ) of an episode over task variants v, J(πθ) = Ev∼V [R0], subject to initial state s0(v) and the124

dynamics from T . For a method overview see Fig. 2.125

For an agent with morphology M , we differentiate between datasets available as demonstrations126

(DM
Demo) and those that are optimized (DM

Optim). For our cloth environments, our teacher mor-127

phology is two-pickers (M = 2p) and student morphology is one-picker (M = 1p). We assume the128

demonstrations are from teachers with a morphology that can be different from the student (and from129

each other). We refers to these as teacher demonstrations, DTeacher, to emphasize that they do not130

necessarily come from an expert or an oracle. Further, these can be suboptimal. The demonstrations131

are state trajectories τT = (s0, . . . , sH−1). The teacher dataset is made up of KT such trajectories,132

DTeacher = {τT,i}∀i = 1, . . . ,KT , using a few task variations from the task distribution vd ∼ V .133

We now discuss the components of MAIL. The user provides teacher demonstrations DTeacher.134

First, we create a dataset of random actions, DRandom, and use it to train a dynamics model, Tψ .135

The learned dynamics are not task-specific and depend on the objects in the environment. Tψ reduces136
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Figure 2: An example cloth folding task with demonstrations from a teacher with n = 2 end-
effectors, deployed on a Franka Panda with m = 1 end-effector (parallel-jaw gripper). We train
a network to predict the forward dynamics of the object being manipulated in simulation, using a
random action dataset DRandom. Given teacher demonstrations we use indirect trajectory optimiza-
tion to find student actions that solve the task. Finally, we pass the optimized dataset DStudent to a
downstream LfD method that combines imitation and RL to get a final policy π that generalizes to
task variations and extends task learning to image space, enabling real-world deployment.

computational cost when dealing with contact-rich simulations like cloth manipulation (Sec. 4.1).137

Next, we convert each teacher demonstration to a trajectory suitable for the student’s morphology.138

For our tasks, we find gradient-free indirect trajectory optimization [31] performs the best (Ap-139

pendix Sec. A.2.1). We used Tψ for this optimization as it provides the appropriate speed-accuracy140

trade-off. The optimization objective is to match with object states in the demonstration (we can-141

not match demonstration actions across morphologies). We combine these optimized trajectories to142

create a dataset DStudent for the student. Finally, we pass DStudent to a downstream LfD method143

to learn a policy π that generalizes from the task variations in DTeacher to the task distribution V . It144

also extends π to use image observations and deploys zero-shot on a real robot (rollouts in Fig. 5).145

3.2 Learned Spatio-temporal Dynamics Model146

MAIL uses trajectory optimization to convert demonstrations into (suboptimal) trajectories in the147

student’s morphology. This can be prohibitively slow for large state spaces and complex tasks such148

as cloth manipulation. Robotic simulators have come a long way in advancing fidelity and speed, but149

simulating complex deformable objects and contact-rich manipulation still requires significant com-150

putation making optimization intractable for challenging simulations. We use the NVIDIA FLeX151

simulator that is based on extended position-based dynamics [40]. We learn a CNN-LSTM based152

spatio-temporal forward dynamics model with parameters ψ, Tψ , to approximate cloth dynamics, T .153

This offers a speed-accuracy trade-off with a tractable computation time in environments with large154

state spaces and complex dynamics. The states of objects are represented as N particle positions:155

s = P = {pi}i=1...N . Each particle state consists of its x, y, and z coordinates. For each task, we156

generate a corpus of random pick-and-place actions and store them in the dataset DRandom = {di},157

where i = 1, . . . ,KR and di = (Pi, ai, P
′
i ). For each datum i, we feed Pi to the CNN network158

to extract features of particle connectivity. These features are concatenated with ai and input to the159

LSTM model to extract features based on the previous particle positions. A fully connected layer160

followed by layer normalization and tanh activation is used to learn the non-linear combinations161

of features. The outputs are the predicted particle displacements. The objective function is the162

distance between predicted and ground-truth particle displacements, ∥∆Psim − ∆Ppred∥2. Here163

∆Psim = {∆pi}i=1,...,N is obtained from the simulator and ∆pi = pi+1 − pi for every particle i.164

Due to its simplicity, the CNN-LSTM dynamics model provides fast inference, compared to a sim-165

ulator which may have to perform many collision checks at any time step. This speedup is crucial166

when optimizing over a large state space, as long as the errors in particle positions are tolerable. In167

our experiments, we were able to get 162 fps with Tψ , compared to 3.4 fps with the FleX simula-168

tor (50x speed up) (Fig. 8). However, this stage is optional if the environment is low-dimensional,169

or if the simulation speed-up from inference is not significant. Simulation accuracy is important170
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when training a final policy, to provide accurate end-effector locations for execution on a real robot.171

Hence, the learned dynamics model is not used for training in the downstream LfD method.172

3.3 Indirect Trajectory Optimization173

We use indirect trajectory optimization [31] to find the open-loop action trajectory to match the174

teacher state trajectory, τT . This optimizes for the student’s actions while propagating the state with175

a simulator. We use the learned dynamics Tψ to give us fast, approximate optimized trajectories.176

This is in contrast to direct trajectory optimization (or collocation) that optimizes both states and177

actions at every time step. Direct trajectory optimization requires dynamics constraints to ensure178

consistency among states being optimized, which can be challenging for discontinuous dynamics.179

We use the Cross-Entropy Method (CEM) for optimization, and compare this against other methods,180

such as SAC (Appendix A.2.1). The optimization objective is to match the object’s goal state sgoal181

in the demonstration with the same task variant vd. Formally, the problem is defined as:182

min
at

∥sgoal − sH∥2 subject to s0 = s0(vd) and st+1 = T (st,at) ∀t = 0, . . . ,H − 1 (1)

where sH is the predicted final state. Note that if τT has a longer time horizon, it would help to183

match intermediate states and use multiple-shooting methods.After optimizing the action trajecto-184

ries for each demonstration τT,i ∈ DTeacher, we use them with the simulator to obtain the opti-185

mized trajectories in the student’s morphology. These are combined to create the student dataset,186

DStudent = {τ1, τ2, τ3, . . . }, where τi = (st,ot, at, st+1,ot+1, rt, d)∀t = 1 . . . H − 1. For gener-187

alizability and real-world capabilities, we train an LfD method using DStudent. At this stage, we188

use the learned dynamics model, trading faster simulation speed for lower accuracy in the learned189

model. This is also partially responsible for why DStudent contains suboptimal demonstrations.190

3.4 Learning from the Optimized Dataset191

Our chosen LfD method is DMfD [41], an off-policy LfD method that learns in state and image192

spaces. As part of tuning, we employ 100 demonstrations, about two orders of magnitude fewer than193

the 8000 recommended by the original work. To prevent the policy from overfitting to suboptimal194

demonstrations in DStudent, we disable demonstration-state matching, i.e., resetting the agent to195

demonstration states and applying imitation reward (see Appendix A.2.5). These were originally196

proposed [42] as reference state initialization (RSI). These modifications are essential for our LfD197

implementation, where the demonstrations do not come from an expert.198

We use the simulator instead of the learned dynamics model Tψ at this stage. This is not because it199

is computationally infeasible to use the learned model, but because accuracy is important in the final200

reactive policy. From DMfD, the policy π is parameterized by parameters θ, and learns from data201

collected in a replay buffer B. The policy loss contains an advantage-weighted loss LA where actions202

are weighted by the advantage function Aπ(s,a) = Qπ(s,a)− V π(s) and temperature parameter203

λ. It also contains an entropy component LE to promote exploration during data collection. The204

final policy loss Lπ is a combination of these terms (Eq. 2).205

LA = E
s,a,o∼B

[
log πθ(a|o) exp

(
1

λ
Aπ(s,a)

)]
LE = E

s,a,o∼B
[α log πθ(a|o)−Q(s,a)]

206
Lπ = (1− wE)LA + wELE , 0 ≤ wE ≤ 1 (2)

where wE is a tuneable hyper-parameter. The resulting policy is denoted as πθ. We pre-populate207

buffer B with DStudent. Using LfD, we extend from state inputs to image observations, and gener-208

alize from vd to any variation sampled from V .209

4 Experiments210

Our experiments are designed to answer the following questions: (1) How does MAIL compare to211

state-of-the-art (SOTA) methods in solving tasks? (Sec. 4.2) (2) How well can MAIL solve tasks212

in the real world? (Fig. 4.2) (3) Can MAIL generalize to different n-to-m end-effector transfers?213

(Sec. 4.3) (4) How do different components of MAIL affect performance? (Sec. 4.4)214
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4.1 Tasks215

We experiment with cloth manipulation tasks that are easy for humans to demonstrate but difficult216

to perform on a robot. We also discuss a simpler rearrangement task with rigid bodies to illustrate217

generalizability. The tasks are shown in Appendix Fig. 6. We choose a pick-and-place action space,218

as is common for cloth manipulation [43, 6, 44, 45]. Our action space is 6D (pick and place pose).219

The end-effectors are pickers in simulation, and a two-finger parallel jaw gripper on the real robot.220

CLOTH FOLD: Fold a square cloth in half, along a specified line. DRY CLOTH: Pick up a square221

cloth from the ground and hang it on a plank to dry, variant of [46]. THREE BOXES: A simple222

2D environment where three boxes of different sizes are randomly placed and need to be moved to223

designated goal locations. This task is used to illustrate the generalizability of MAIL with various224

n-to-m end-effector transfers, and is not used in the SOTA comparisons. For details on metrics and225

task variants, see Appendix A.1.226

Cloth fold Dry cloth
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Figure 3: SOTA performance comparisons. For
each training run, we used the best model in each
seed’s training run, and evaluated using 100 roll-
outs across 5 seeds, different from the training
seed. Bar height denotes the mean, error bars in-
dicate the standard deviation. MAIL outperforms
all baselines, in some cases by as much as 24%.

We use particle positions as the state for train-227

ing dynamics models and trajectory optimiza-228

tion. We record pre-programmed demonstra-229

tions for the teacher dataset for each task. For230

non-LfD and LfD RL training, we use a 32x32231

RGB image as the visual observation. The in-232

stantaneous reward function, used in learning233

the policy, is the task performance metric at234

a given state. Further details on architecture235

and training are in the supplementary material.236

In all experiments, we compare each method’s237

normalized performance, measured at the end238

of the task given by p̂(t) = p(st)−p(s0)
popt−p(s0)

, where239

p is the performance metric of state st at time t,240

and popt is the best performance achievable by241

the task. We use p̂(H) at the end of the episode242

(t = H).243

4.2 SOTA comparisons244

Many LfD baselines ( Sec. 2) are not directly applicable (they do not handle large difference in action245

space due to different morphologies). We compare MAIL with those LfD baselines that produce a246

policy with image observations, given demonstrations without actions.247

1. SAC-CURL [47]: An image-based RL algorithm that uses contrastive learning and SAC [5] as248

the underlying RL algorithm. It does not require demonstrations.249

2. SAC-DrQ [48]: An image-based RL algorithm that uses a regularized Q-function, data augmen-250

tations, and SAC as the underlying RL algorithm. It does not require demonstrations.251

3. GNS [49]: A SOTA method that represents cloth as a graph and predicts dynamics using a graph252

neural network (GNN). It does not require demonstrations but learns dynamics on a random253

action dataset with particle positions. We run this learned model with a planner [43], provided254

with full state information.255

4. SAC-DrQ-IR: A custom variant of SAC [5] that uses DrQ-based [48] image encoding and a state-256

only imitation reward (IR) to reach the desired state of the object to be manipulated. It does not257

imitate actions, as they are unavailable.258

5. GAIfO [25]: An adversarial imitation learning algorithm that trains a discriminator on state-state259

pairs (s, s′) from both the demonstrator and agent. This is a popular extension of GAIL [13] that260

learns the same from state-action pairs (s, a).261

6. GPIL [29] A goal-directed LfD method that uses demonstrations and agent interactions to learn262

a goal proximity function. This function provides a dense reward to train a policy.263

Fig. 3 shows the results. In each environment, the first three columns are demonstration-free base-264

lines, and the last four are LfD methods. MAIL outperforms all baselines, in some cases by as much265

as 24%. For the easier CLOTH FOLD task, the SAC-DrQ baseline came within 11% of MAIL.266
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(a) Teacher demonstration with three pickers.

(b) Final policy: Two pickers

(c) Final policy: One picker

(d) Final policy: One Franka Panda robot

Figure 4: Sample trajectories of the THREE
BOXES task. A three-picker teacher trajectory
to reach the goal state (Fig. 4a). Final policy of
the two-picker agent (2 actions to solve the task
Fig. 4b). Final policy of the one-picker agent (3
actions to solve the task Fig. 4c). The final policy
of the one-picker agent in the real world (Fig. 4d).

However, all baselines do not perform well in267

the more difficult DRY CLOTH task. RL meth-268

ods fail because they have not explored the pa-269

rameter space enough without guidance from270

demonstrations, and thus converge to a subop-271

timal solution. Our custom LfD baseline, SAC-272

DrQ-IR, does have reasonable performance, but273

the results show that naive imitation alone is not274

a good form of guidance to solve it. The other275

LfD baselines, GAIfO and GPIL, have poor276

performance in both environments. One of the277

primary reasons for this is the effect of cross-278

morphological demonstrations. They perform279

significantly better with student morphology280

demonstrations, even if they are suboptimal.281

Moreover, environment difficulty also plays an282

important part in the final performance. These283

and other ablations are described in Sec. 4.4 and284

more thoroughly in Appendix Sec. A.2.285

Surprisingly, the GNS baseline with structured286

dynamics does not perform well, even though it287

has been used for cloth modeling [50]. We believe that this is because it is designed to learn particle288

dynamics via small displacements, but our pick-and-place action space enables large displacements.289

Similar to [43], we break down each pick-and-place action into 100 delta actions to work with the290

small displacements that GNS is trained on. Thus, planning will accumulate errors from the 100291

GNS steps for every action of the planner, which can grow superlinearly due to compounding errors.292

This makes it difficult to solve the task. This is especially seen in the DRY CLOTH task (Fig. 3),293

where the displacements required to move the entire cloth over the plank are much higher than the294

displacements needed for CLOTH FOLD. The rollouts of MAIL on DRY CLOTH show the agent295

following the demonstrated guidance - it learned to hang the cloth over the plank. However, it also296

displayed an emergent behavior to straighten out the cloth on top of the plank, in an effort to spread297

it out to receive higher performance. This was not seen in the two-picker teacher demonstrations.298

Demonstrations and rollouts are in the supplementary video file, and on this website.299

Real-world results For DRY CLOTH and CLOTH FOLD tasks, we deploy the learned policies on300

a Franka Panda robot (Fig. 5) with a single parallel-jaw gripper. We test the policies with many301

different variations of square cloth (size, rotation, translation, thickness, color, and material). For302

performance metrics, see Appendix Sec. A.5 The policies achieve ∼ 80% performance, close to the303

average performance of our method in simulation, for both tasks.304

4.3 Generalizability305

We show, in a simple THREE BOXES task (Fig. 4), how MAIL learns from a demonstrator morphol-306

ogy with n end-effectors and deploys to a robot with m end-effectors. Consider a three-picker agent307

that solves the task in one pick-place action. It provides the teacher demonstrations, DTeacher. We308

transfer them into one-picker or two-picker demonstrations using indirect trajectory optimization309

and the learned dynamics model. These will be the optimized datasets that are fed to a downstream310

LfD method. In both cases, the LfD method learns to solve the task with a globally optimal 100%311

normalized performance. It generalizes from state inputs in the demonstrations to the image inputs312

we receive from the environment. Fig. 4 shows the three picker demonstration, a 3-to-2 and 3-to-1313

end-effector transfer. We could also do this for the 2-to-1 case, in which a two-picker teacher’s314

demonstration would take multiple pick-and-place actions to solve the task. Thus, MAIL can solve315

a task using n-to-m end-effector transfer with n > m, shown here for 3-to-2, 3-to-1, and 2-to-1316

cases. It is trivial to perform the transfer for n-to-m with n ≤ m. One may simply append the317

teacher’s action space with m − n arms that do no operations. Thus, MAIL is capable of general318

n-to-m end-effector transfer.319
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4.4 Ablation studies320

Cloth fold

Performance 0.818

Dry cloth

Spread metric 8/10

Figure 5: Real-world results for CLOTH FOLD
and DRY CLOTH. Statistics over 10 rollouts.

We use the DRY CLOTH task for all ablations321

unless specified; it is the most challenging of322

our tasks. We provide detailed answers to the323

following questions in Appendix A.2. Ap-324

pendix Fig. 7 illustrates the ablations corre-325

sponding to each part of the overall method.326

(1) How do different methods perform in cre-327

ating optimized dataset DStudent? (2) What is328

the best architecture to learn the task dynam-329

ics? (3) How good is DStudent compared to the330

recorded demonstrations? (4) How well does331

the downstream LfD method handle different332

kinds of demonstrations? (5) How does the use of expert state matching affect the downstream333

LfD? (6) How do the baselines perform across related morphologies and environment?334

We discovered that the Cross-Entropy Method (CEM) is the most effective optimizer for generating335

a DStudent from demonstrations. When combined with CEM, the 1D CNN-LSTM architecture336

produces the best results for trajectory optimization. Our optimized DStudent performs similarly337

to the pre-programmed D1p
Demo, which has access to full state information of the environment. By338

utilizing our chosen downstream LfD method, we can successfully complete tasks with a variety of339

demonstrations and achieve superior performance compared to both DStudent and DTeacher. Expert340

state matching negatively impacts the performance of DMfD. Lastly, we found that GAIfO trained341

on our DStudent outperforms GAIfO trained on the DTeacher, and the difficulty of the environment342

significantly influences the performance of GAIfO and GPIL.343

4.5 Limitations344

MAIL requires object states in demonstrations and during simulation training, however full state345

information is not needed at deployment time. It has been tested on the pick-place action space.346

While it works for high-frequency actions (Appendix A.2.7), it will likely be difficult to optimize347

actions to create the student dataset for high-dimensional actions. The state-visitation distribution348

of demonstration trajectories must overlap with that of the student agent; this overlap must con-349

tain the equilibrium states of the demonstration. For example, a one-gripper agent cannot reach a350

demonstration state where two objects are moving simultaneously, but it can reach a state where351

both objects are stable at their goal locations (equilibrium). MAIL cannot work when the student352

robot is unable to reach the goal or intermediate states in the demonstration. For example, in trying353

to open a flimsy bag with two handles, both end-effectors may simultaneously be needed to keep354

the bag open. MAIL builds a separate policy for each student robot morphology. Subsequent work355

could learn a single policy conditioned on the desired morphology - another way to think about a356

base model for generalized LfD.357

5 Conclusion358

We presented MAIL, a framework that enables LfD across morphologies. Our framework enables359

policy learning for a robot with m end-effectors from teachers with n end-effectors. This enables360

teachers to record demonstrations in the setting of their own morphology, and vastly expands the set361

of demonstrations to learn from. We show an improvement of up to 24% over SOTA baselines and362

discuss other baselines that are unable to handle a large mismatch between teacher and student. Our363

experiments are on challenging household cloth manipulation tasks performed by a robot with one364

end-effector based on bimanual demonstrations. We showed that our policy can be deployed zero-365

shot on a real Franka Panda robot, and generalizes across cloths of varying size, color, material,366

thickness, and robustness to cloth rotation and translation. We further showed LfD generalizability367

to any transfer from n-to-m end-effectors, with multiple rigid objects. We believe that this is an im-368

portant step towards allowing LfD to train a robot to learn from any robot demonstrations, regardless369

of robot morphology, expert knowledge, or the medium of demonstration.370
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A Appendix525

A.1 Tasks526

Here we give more details about the tasks, including the performance functions, teacher dataset, and527

sample images. Fig. 6 shows images all of simulation environments used for SOTA comparisons and528

generalizability, with one end-effector. In each environment, the end-effectors are pickers (white529

spheres).530

1. CLOTH FOLD: Fold a square cloth in half, along a specified line. The performance metric531

is the distance of the cloth particles left of the folding line, to those on the right of the532

folding line. A fully folded cloth should have these two halves virtually overlap. Teacher533

demonstrations are from an agent with two pickers (i.e., DTeacher = D2p
Demo); we solve534

the task on a student agent with one picker. Task variations are in cloth rotation.535

536

2. DRY CLOTH: Pick up a square cloth from the ground and hang it on a plank to dry, variant537

of [46]. The performance metric is the number of cloth particles (in simulation) on either538

side of the plank and above the ground. Teacher demonstrations are from an agent with539

two pickers (i.e., DTeacher = D2p
Demo); we solve the task on a student agent with one540

picker. Task variations are in cloth rotations and translations with respect to the plank.541

542

3. THREE BOXES: A simple 2D environment where three boxes of different sizes are ran-543

domly placed and need to be moved to designated goal locations. Teacher demonstrations544

are from an agent with three pickers (i.e., DTeacher = D3p
Demo); we solve the task on student545

agents with one picker and two pickers. Performance is measured by the distance of each546

object from its goal location. This task is used to illustrate the generalizability of MAIL547

with various n-to-m end-effector transfers, and is not used in the SOTA comparisons.548

A.2 Ablations549

A.2.1 Ablate the method for creating optimized dataset DStudent550

We answer the question: how do different methods perform in creating optimized dataset DStudent?551

We ablate the optimizer used to create DStudent from the demonstrations, labeled ABL1 in Fig. 7,552

and compare the following methods, given state inputs from DTeacher.553

• Random: A trivial random guesser, that serves as a lower benchmark.554

• SAC: An RL algorithm that tries to reach the goal states of the demonstrations.555

• Covariant Matrix Adaption Evolution Strategy (CMA-ES): An evolutionary strategy that556

samples optimization parameters from a multi-variate Gaussian, and updates the mean and557

covariance at each iteration.558

• Cross-Entropy Method (CEM, ours): A well-known gradient-free optimizer, where we559

assume a Gaussian distribution for optimization parameters.560

We did not use gradient-based trajectory optimizers since the contact-rich simulation will give rise561

to discontinuous dynamics and noisy gradients. As shown in Table 1a, SAC is unable to improve562

upon the random baseline, likely because of the very large state-space of our environment (> 15000563

states for> 5000 cloth particles) and error accumulations from the imprecision of learned dynamics564

model. Trajectory optimizers achieve the highest performance, and we chose CEM as the best565

optimizer based on the performance of the optimized trajectory.566

A.2.2 Ablate the dynamics model567

We answer the question: what is the best architecture to learn the task dynamics? We ablate the568

learned dynamics model Tψ , labeled ABL2 in Fig. 7. The environment state is the state from569
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Figure 6: Environments used in our experiments, with one end-effector. The end-effectors are
pickers (white spheres). In CLOTH FOLD (left) the robot has to fold the cloth (orange and pink)
along an edge (inspired by the SoftGym [45] two-picker cloth fold task). In DRY CLOTH (middle)
the robot has to hang the cloth (orange and pink) on the drying rack (brown plank). In THREE
BOXES (right), the robot has to move three rigid boxes in a 2D environment.

Random 
Actions  

 end-effectorsm

Learned Spatio-temporal 

Dynamics Model

Teacher Demos  
 end-effectorsn

Optimized 
Demos  

 end-effectorsm

LfD Method

Indirect Trajectory 
Optimization

ABL 1ABL 2

ABL 3,4

ABL 5

Figure 7: Ablations to MAIL components.

DTeacher i.e., positions of cloth particles. This is a structured but large state space since the cloth is570

discretized into > 5000 particles.571

Table 1b shows the performance of trajectories achieved by using the dynamics models. We see that572

CNN-LSTM models work better than models that contain only CNNs, graph networks (GNS), or573

LSTMs. We hypothesize that this is the case since we need to capture the spatial structure of cloth574

and capture a temporal element across the whole trajectory since particle velocity is not captured in575

the state. Further, a 1D CNN works better because the cloth state can be simply represented as a 2D576

vector (N × 3 which represents the xyz for N particles). This is easier to learn with than the 3D577

state vector fed into 2D CNNs.578

GNS performs poorly also due to the reasons of error accumulation from large displacements, dis-579

cussed in Sec. 4.2. Our learned dynamics model Tψ was significantly faster than the simulator.580

We tested it on a simple training run of SAC [5], without parallelization. Our learned dynamics581

gave 162 fps, about 50x faster than the 3.4 fps with the simulator. The accuracy was tolerable for582

trajectory optimization, as shown in Fig. 8.583

A.2.3 Compare performance of optimized dataset D1p
Optim584

We answer the question: how good is DStudent compared to the recorded demonstrations? This585

ablation gauges the performance of the optimized dataset that we used as the student dataset for586
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Tψ Tψ SimulatorSimulator

Figure 8: Predictions of the learned spatio-temporal dynamics model Tψ and the FleX simu-
lator. Predictions are made for the same state and action, shown for both cloth tasks. The learned
model supports optimization approximately 50x faster than the simulator, albeit at the cost of accu-
racy.

LfD, DStudent = D1p
Optim. We compare this to other relevant datasets to solve the task, as shown587

in Table 1c. It is labeled ABL3 in Fig. 7. The two-picker demonstrations D2p
Demo are recorded588

for an agent with two pickers as end-effectors. This is used as the teacher demonstrations in our589

experiment DTeacher = D2p
Demo. The one-picker demonstrations D1p

Demo are recorded for an agent590

with one picker as an end-effector. This is to contrast against the optimized demonstrations in the591

same morphology, D1p
Optim. The random action trajectories are with a one-picker agent, added as592

a lower performance benchmark. They are the same random trajectories used to train the spatio-593

temporal dynamics model Tψ . Naturally, the teacher dataset is the best, as it is trivial to do this task594

with two pickers. The one-picker dataset has about the same performance as the optimized dataset595

D1p
Optim, both of which are suboptimal, as it is not trivial to manipulate cloth with one hand. This596

is the kind of task we wish to unlock with this work: tasks that are easy to do for teachers in one597

morphology but difficult to program or record demonstrations for in the student’s morphology. Note598

that D1p
Optim has been optimized on the fast but inaccurate learned dynamics model, which is one599

reason for the reduced performance. This is why the downstream LfD method uses the simulator, as600

accuracy is very important in the final policy.601

A.2.4 Ablate modality of demonstrations602

We answer the question: how well does the downstream LfD method handle different kinds of603

demonstrations? This ablates the composition of the student dataset fed into LfD, and is labeled604

ABL4 in Fig. 7. We compare the following datasets for DStudent, using the notation for datasets605

explained in Sec. 3.1:606

• Demonstrations in one-picker morphology, D1p
Demo: These are non-trivial to create and are607

thus not as performant, discussed above. Creating these is increasingly difficult as the task608

becomes more challenging.609

• Optimized demos, D1p
Optim: This is optimized from the two-picker teacher demonstrations610

(DTeacher = D2p
Demo), which are easy to collect as the task is trivial with two pickers.611

• 50% D1p
Demo and 50% D1p

Optim: A mix of trajectories from the two cases above. This is an612

example of handling multiple demonstrators with different morphologies.613
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Method 25th% µ ± σ median 75th%

Random 0.000 0.003±0.088 0.000 0.000

SAC 0.000 0.000±0.006 0.000 0.000

CMA-ES 0.104 0.270±0.258 0.286 0.489

CEM 0.351 0.502±0.242 0.501 0.702

(a) Ablation on the method chosen for creating demonstrations.

Method 25th% µ ± σ median 75th%

GNS -0.182 0.002±0.223 -0.042 0.149

2D CNN, LSTM 0.157 0.376±0.305 0.382 0.602

No CNN, LSTM 0.327 0.465±0.213 0.463 0.595

1D CNN, No LSTM 0.202 0.407±0.237 0.387 0.587

1D CNN, LSTM (ours) 0.351 0.502±0.242 0.501 0.702

(b) Ablation on the dynamics network architecture.

Dataset 25th% µ ± σ median 75th%

DRandom 0.000 0.003±0.088 0.000 0.000

D1p
Demo 0.344 0.484±0.169 0.446 0.641

D2p
Demo 0.696 0.744±0.068 0.724 0.785

D1p
Optim 0.351 0.502±0.242 0.501 0.702

(c) Compare the performance of the optimized dataset.

Table 1: Ablation results for MAIL

Fig. 9 illustrates that all three variants achieve similar final performance. This demonstrates that the614

downstream LfD method is capable of solving the task with a variety of suboptimal demonstrations.615

This could be from one dataset of demonstrations, or even a combination of datasets obtained from616

a heterogeneous set of teachers.617

An interesting observation here is that by comparing Fig. 9 and Table 1c, we see that the final618

policy is better than the suboptimal demonstrations by a considerable margin, and also slightly im-619

proves upon the performance of the teacher demonstrations. This improvement comes from the LfD620

method’s ability to effectively utilize demonstrations and generalize across task variations. This re-621

sult, combined with the ablation that we need demonstrations in Sec. 4.2, shows that our downstream622

LfD method is well adapted to work with suboptimal demonstrations to solve a task.623

A.2.5 Ablate Reference State Initialization in DMfD624

We answer the question: how does the use of demonstration state matching affect the downstream625

LfD? An improvement we made over the original DMfD algorithm is to disable matching with626

expert states, known as RSI-IR, first proposed in [42]. We justify this improvement in this ablation,627

labeled ABL5 in Fig. 7.628

As shown in Fig. 10, removing RSI and IR has a net positive effect throughout training, and around629

10% on the final policy performance. This means that matching expert states exactly via imitation630

reward does not help, even during the initial stages of training when the policy is randomly initial-631

ized. We believe this is because RSI helps when there are hard-to-reach intermediate states that the632

policy cannot reach during the initial stages of training. This is true for dynamic or long-horizon633

tasks, such as karate chops and roundhouse kicks. However, our tasks are quasi-static, and also have634

a short horizon of 3 for the cloth tasks. In other words, removing this technique allows the policy to635
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Figure 9: Ablation on the modality of demon-
strations on LfD performance. Similar per-
formance shows that MAIL can learn from a
wide variety of demonstrations, or even a mix-
ture of them, without loss in performance. See
Sec. A.2.4.
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Figure 10: Ablation on the effect of reference
state initialization (RSI) and imitation reward
(IR) on LfD performance. RSI is not helpful
here because our tasks are not as dynamic or long
horizon as DeepMimic [42]. See Sec. A.2.5.

freely explore the state space while the demonstrations can still guide the RL policy learning via the636

advantage-weighted loss from DMfD.637

A.2.6 Ablate the effect of cross-morphology on SOTA638

We answer the question: how do established LfD baselines perform across morphologies? We639

studied the effect of why baselines such as GAIfO and GPIL performed so poorly on our tasks.640

In our experiments, we noticed a number of factors (such as variations in the task, diversity of641

demonstrations, etc.). This ablation studies the effect of cross-morphology in the demonstrations,642

where we compare the performance of GAIfO, when provided demonstrations from the teacher643

dataset DTeacher and student dataset DStudent.644

As we can see in Table 2, there is a 36% performance improvement when using the (suboptimal)645

student dataset. Obviously, since the demonstration actions are not available to learn from, the pri-646

mary difference that the agent sees during training is the richness of demonstration states. Thus,647

improvement is because of the demonstration states seen in the student dataset. Since the student648

morphology has only one picker, any demonstration for the task (DryCloth) includes multiple inter-649

mediate states of the cloth in various conditions of being partially hung for drying. By contrast, the650

teacher requires fewer pick-place steps to complete the task, and thus there are fewer intermediate651

states in the demonstrations.652

A.2.7 Ablate the effect of environment difficulty on LfD baselines653

We answer the question: how do established LfD baselines perform across environments? Given654

the subpar performance of the LfD baselines GAIfO and GPIL on our SOTA environments, we655

ablated the effect of environment difficulty. We took the easy cloth environment (CLOTH FOLD)656

and used an easier variant of it, CLOTH FOLD DIAGONAL PINNED [41]. In this variant, the agent657

has to perform an easier fold, but one corner of the cloth is pinned to prevent sliding. Moreover, the658

desired fold is across the diagonal of the cloth, which can be done by manipulating only one corner659

of the cloth. We used the state-based observations, and the action space is the small-displacement660

action space, where the agent outputs incremental picker displacements instead of pick-and-place661

locations. This action space is similar to those seen in the experiments of GNS, GAIfO and GPIL,662

where they worked with rigid objects in simulation. This is an easy version of our CLOTH FOLD663

environment. We can see in Table 3 that the same baselines are able to perform significantly better664

in this environment. Hence, we believe manipulating with long-horizon pick-place actions, with an665
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image observation, makes it challenging for the baselines to work in challenging cloth environments666

described in Sec. 4.1.667

Method 25th% µ ± σ median 75th%

DTeacher -0.198 -0.055±0.183 -0.043 0.078

DStudent 0.199 0.363±0.245 0.409 0.528

Table 2: Ablation of GAIfO on the effect of cross-morphology. We compare the normalized perfor-
mance, measured at the end of the task.

Method 25th% µ ± σ median 75th%

GPIL 0.356 0.427±0.162 0.487 0.553

GAIfO 0.115 0.374±0.267 0.471 0.592

Table 3: Measuring performance on the easy cloth task, CLOTH FOLD DIAGONAL PINNED. We
compare the normalized performance, measured at the end of the task.

A.3 List of environments we tried for LfD baseline ablations668

Two LfD baselines, GAIfO and GPIL, seemed to perform quite poorly, although we expected better669

performance. In an effort to understand why these fail, we performed a host of studies with different670

varieties of easier environments, to isolate the properties of the environment that make it the most671

challenging to succeed. A list of the different task variants we tried are given below. The ones672

with the most striking difference in performance are described in further detail in Sec. A.2.6 and673

Sec. A.2.7.674

1. Used the easier CLOTH FOLD environment instead of DRY CLOTH.675

2. Used state-based environments instead of image-based environments.676

3. Reduced the number of variations of the task distribution V .677

4. Used the small-displacement action-space that is used in GNS and GAIfO experiments,678

instead of the large-displacement pick-place action spaces.679

5. Removed the effect of cross-morphology, by providing demonstrations in the students mor-680

phology.681

A.4 Hyperparameter choices for MAIL682

In this section, Table 4 shows the hyperparameters chosen for training the inverse dynamics model683

Tψ . Table 5 shows the details of CEM hyperparameter choices. Table 6 shows the hyperparameters684

for our chosen LfD method (DMfD).685

Parameter Description

CNN 4 layers, 32 channels, 3x3 kernel, leaky ReLU activation.
stride = 2 for the first layer, stride = 1 for subsequent layers

LSTM One layer
Hidden size = 32

Other Parameters Learning rate α =1e-5
Batch size = 128

Table 4: Hyper-parameters for training the forward dynamics model.
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Planning
Horizon

Number of
optimization iterations

Number of env
interactions

1 1 2 21,000
2 2 2 15,000
3 2 2 21,000
4 2 2 31,000
5 2 2 34,000
6 2 10 21,000
7 2 1 21,000
8 2 1 15,000
9 2 1 32,000
10 3 2 21,000
11 3 10 21,000
12 4 2 21,000
13 4 10 21,000

Table 5: CEM hyper-parameters tested for tuning the trajectory optimization. We conducted ten
rollouts for each parameter set and used the set with the highest average normalized performance
on the teacher demonstrations. Population size is determined by the number of environment inter-
actions. The number of elites for each CEM iteration is 10% of population size.

Parameter Description

State encoding Fully connected network (FCN)
2 hidden layers of 1024, ReLU activation

Image encoding
32x32 RGB input, with random crops.
CNN: 4 layers, 32 channels, stride 1, 3x3 kernel, leaky ReLU activation
FCN: 1 layer of 1024 neurons, tanh activation

Actor Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Critic Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Other parameters

Discount factor: γ = 0.9
Entropy loss weight: wE = 0.1
Entropy regularizer coefficient: α = 0.5
Batch size = 256
Replay buffer size = 600,000
RSI-IR probability = 0 (disabled)

Table 6: Hyper-parameters used in the LfD method (DMfD).

A.5 Performance metrics for real-world cloth experiments686

In this section, we explain the metrics for measuring performance of the cloth, to explain the687

sim2real results discussed in Fig. 4.2688

For CLOTH FOLD task, we measure performance at time t by the number of pixels of the top color689

pixtop,t and bottom color pixbot,t of the flattened cloth, compared to the maximum number of pixels,690

pixmax (Fig. 11).691

For DRY CLOTH task, it is challenging to measure pixels on the sides and top of the plank. Moreover,692

we could be double counting pixels if they are visible in both side and top views. Hence, we measure693

the cloth to determine whether the length of the cloth on top of the plank is equal to or greater than694

the side of the square cloth. We call this the spread metric.695

The policies achieve ∼ 80% performance, which is about the average performance of our method in696

simulation, for both tasks. However, since these performance metrics are different in the simulation697

and real world, we cannot quantify the sim2real gap through these numbers.698
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Figure 11: Performance function for CLOTH FOLD on the real robot. At time t, we measure
the fraction of pixels visible to the maximum number of pixels visible ftop = pixtop,t/pixmax and
fbot = pixbot,t/pixmax. Performance for the top of the cloth should be 1 when it is not visible,
p(top) = 1 − ftop. Performance for the bottom of the cloth should be 1 when it is exactly half-
folded on top of the top side, p(bot) = min [2 (1− fbot) , 2fbot]. Final performance is an average
of both metrics, p(st) = p(top) + p(bottom)/2. Note that the cloth is flattened at the start, thus
pixmax = pixtop,0.

20


	Introduction
	Related Work
	Formulation and Approach
	Preliminaries
	Learned Spatio-temporal Dynamics Model
	Indirect Trajectory Optimization
	Learning from the Optimized Dataset

	Experiments
	Tasks
	SOTA comparisons
	Generalizability
	Ablation studies
	Limitations

	Conclusion
	Appendix
	Tasks
	Ablations
	Ablate the method for creating optimized dataset DStudent 
	Ablate the dynamics model
	Compare performance of optimized dataset DOptim1p
	Ablate modality of demonstrations
	Ablate Reference State Initialization in DMfD
	Ablate the effect of cross-morphology on SOTA
	Ablate the effect of environment difficulty on LfD baselines

	List of environments we tried for LfD baseline ablations
	Hyperparameter choices for MAIL
	Performance metrics for real-world cloth experiments


