
A Appendix525

A.1 Tasks526

Here we give more details about the tasks, including the performance functions, teacher dataset, and527

sample images. Fig. 6 shows images all of simulation environments used for SOTA comparisons and528

generalizability, with one end-effector. In each environment, the end-effectors are pickers (white529

spheres).530

1. CLOTH FOLD: Fold a square cloth in half, along a specified line. The performance metric531

is the distance of the cloth particles left of the folding line, to those on the right of the532

folding line. A fully folded cloth should have these two halves virtually overlap. Teacher533

demonstrations are from an agent with two pickers (i.e., DTeacher = D
2p
Demo); we solve534

the task on a student agent with one picker. Task variations are in cloth rotation.535

536

2. DRY CLOTH: Pick up a square cloth from the ground and hang it on a plank to dry, variant537

of [46]. The performance metric is the number of cloth particles (in simulation) on either538

side of the plank and above the ground. Teacher demonstrations are from an agent with539

two pickers (i.e., DTeacher = D
2p
Demo); we solve the task on a student agent with one540

picker. Task variations are in cloth rotations and translations with respect to the plank.541

542

3. THREE BOXES: A simple 2D environment where three boxes of different sizes are ran-543

domly placed and need to be moved to designated goal locations. Teacher demonstrations544

are from an agent with three pickers (i.e., DTeacher = D
3p
Demo); we solve the task on student545

agents with one picker and two pickers. Performance is measured by the distance of each546

object from its goal location. This task is used to illustrate the generalizability of MAIL547

with various n-to-m end-effector transfers, and is not used in the SOTA comparisons.548

A.2 Ablations549

A.2.1 Ablate the method for creating optimized dataset DStudent550

We answer the question: how do different methods perform in creating optimized dataset DStudent?551

We ablate the optimizer used to create DStudent from the demonstrations, labeled ABL1 in Fig. 7,552

and compare the following methods, given state inputs from DTeacher.553

• Random: A trivial random guesser, that serves as a lower benchmark.554

• SAC: An RL algorithm that tries to reach the goal states of the demonstrations.555

• Covariant Matrix Adaption Evolution Strategy (CMA-ES): An evolutionary strategy that556

samples optimization parameters from a multi-variate Gaussian, and updates the mean and557

covariance at each iteration.558

• Cross-Entropy Method (CEM, ours): A well-known gradient-free optimizer, where we559

assume a Gaussian distribution for optimization parameters.560

We did not use gradient-based trajectory optimizers since the contact-rich simulation will give rise561

to discontinuous dynamics and noisy gradients. As shown in Table 1a, SAC is unable to improve562

upon the random baseline, likely because of the very large state-space of our environment (> 15000563

states for > 5000 cloth particles) and error accumulations from the imprecision of learned dynamics564

model. Trajectory optimizers achieve the highest performance, and we chose CEM as the best565

optimizer based on the performance of the optimized trajectory.566

A.2.2 Ablate the dynamics model567

We answer the question: what is the best architecture to learn the task dynamics? We ablate the568

learned dynamics model T , labeled ABL2 in Fig. 7. The environment state is the state from569
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Figure 6: Environments used in our experiments, with one end-effector. The end-effectors are
pickers (white spheres). In CLOTH FOLD (left) the robot has to fold the cloth (orange and pink)
along an edge (inspired by the SoftGym [45] two-picker cloth fold task). In DRY CLOTH (middle)
the robot has to hang the cloth (orange and pink) on the drying rack (brown plank). In THREE
BOXES (right), the robot has to move three rigid boxes in a 2D environment.
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Figure 7: Ablations to MAIL components.

DTeacher i.e., positions of cloth particles. This is a structured but large state space since the cloth is570

discretized into > 5000 particles.571

Table 1b shows the performance of trajectories achieved by using the dynamics models. We see that572

CNN-LSTM models work better than models that contain only CNNs, graph networks (GNS), or573

LSTMs. We hypothesize that this is the case since we need to capture the spatial structure of cloth574

and capture a temporal element across the whole trajectory since particle velocity is not captured in575

the state. Further, a 1D CNN works better because the cloth state can be simply represented as a 2D576

vector (N ⇥ 3 which represents the xyz for N particles). This is easier to learn with than the 3D577

state vector fed into 2D CNNs.578

GNS performs poorly also due to the reasons of error accumulation from large displacements, dis-579

cussed in Sec. 4.2. Our learned dynamics model T was significantly faster than the simulator.580

We tested it on a simple training run of SAC [5], without parallelization. Our learned dynamics581

gave 162 fps, about 50x faster than the 3.4 fps with the simulator. The accuracy was tolerable for582

trajectory optimization, as shown in Fig. 8.583

A.2.3 Compare performance of optimized dataset D
1p
Optim584

We answer the question: how good is DStudent compared to the recorded demonstrations? This585

ablation gauges the performance of the optimized dataset that we used as the student dataset for586
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Figure 8: Predictions of the learned spatio-temporal dynamics model T and the FleX simu-
lator. Predictions are made for the same state and action, shown for both cloth tasks. The learned
model supports optimization approximately 50x faster than the simulator, albeit at the cost of accu-
racy.

LfD, DStudent = D
1p
Optim. We compare this to other relevant datasets to solve the task, as shown587

in Table 1c. It is labeled ABL3 in Fig. 7. The two-picker demonstrations D
2p
Demo are recorded588

for an agent with two pickers as end-effectors. This is used as the teacher demonstrations in our589

experiment DTeacher = D
2p
Demo. The one-picker demonstrations D

1p
Demo are recorded for an agent590

with one picker as an end-effector. This is to contrast against the optimized demonstrations in the591

same morphology, D
1p
Optim. The random action trajectories are with a one-picker agent, added as592

a lower performance benchmark. They are the same random trajectories used to train the spatio-593

temporal dynamics model T . Naturally, the teacher dataset is the best, as it is trivial to do this task594

with two pickers. The one-picker dataset has about the same performance as the optimized dataset595

D
1p
Optim, both of which are suboptimal, as it is not trivial to manipulate cloth with one hand. This596

is the kind of task we wish to unlock with this work: tasks that are easy to do for teachers in one597

morphology but difficult to program or record demonstrations for in the student’s morphology. Note598

that D
1p
Optim has been optimized on the fast but inaccurate learned dynamics model, which is one599

reason for the reduced performance. This is why the downstream LfD method uses the simulator, as600

accuracy is very important in the final policy.601

A.2.4 Ablate modality of demonstrations602

We answer the question: how well does the downstream LfD method handle different kinds of603

demonstrations? This ablates the composition of the student dataset fed into LfD, and is labeled604

ABL4 in Fig. 7. We compare the following datasets for DStudent, using the notation for datasets605

explained in Sec. 3.1:606

• Demonstrations in one-picker morphology, D
1p
Demo: These are non-trivial to create and are607

thus not as performant, discussed above. Creating these is increasingly difficult as the task608

becomes more challenging.609

• Optimized demos, D
1p
Optim: This is optimized from the two-picker teacher demonstrations610

(DTeacher = D
2p
Demo), which are easy to collect as the task is trivial with two pickers.611

• 50% D
1p
Demo and 50% D

1p
Optim: A mix of trajectories from the two cases above. This is an612

example of handling multiple demonstrators with different morphologies.613
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Method 25th% µ ± � median 75th%

Random 0.000 0.003±0.088 0.000 0.000

SAC 0.000 0.000±0.006 0.000 0.000

CMA-ES 0.104 0.270±0.258 0.286 0.489

CEM 0.351 0.502±0.242 0.501 0.702

(a) Ablation on the method chosen for creating demonstrations.

Method 25th% µ ± � median 75th%

GNS -0.182 0.002±0.223 -0.042 0.149

2D CNN, LSTM 0.157 0.376±0.305 0.382 0.602

No CNN, LSTM 0.327 0.465±0.213 0.463 0.595

1D CNN, No LSTM 0.202 0.407±0.237 0.387 0.587

1D CNN, LSTM (ours) 0.351 0.502±0.242 0.501 0.702

(b) Ablation on the dynamics network architecture.

Dataset 25th% µ ± � median 75th%

DRandom 0.000 0.003±0.088 0.000 0.000

D1p
Demo

0.344 0.484±0.169 0.446 0.641

D2p
Demo

0.696 0.744±0.068 0.724 0.785

D1p
Optim

0.351 0.502±0.242 0.501 0.702

(c) Compare the performance of the optimized dataset.

Table 1: Ablation results for MAIL

Fig. 9 illustrates that all three variants achieve similar final performance. This demonstrates that the614

downstream LfD method is capable of solving the task with a variety of suboptimal demonstrations.615

This could be from one dataset of demonstrations, or even a combination of datasets obtained from616

a heterogeneous set of teachers.617

An interesting observation here is that by comparing Fig. 9 and Table 1c, we see that the final618

policy is better than the suboptimal demonstrations by a considerable margin, and also slightly im-619

proves upon the performance of the teacher demonstrations. This improvement comes from the LfD620

method’s ability to effectively utilize demonstrations and generalize across task variations. This re-621

sult, combined with the ablation that we need demonstrations in Sec. 4.2, shows that our downstream622

LfD method is well adapted to work with suboptimal demonstrations to solve a task.623

A.2.5 Ablate Reference State Initialization in DMfD624

We answer the question: how does the use of demonstration state matching affect the downstream625

LfD? An improvement we made over the original DMfD algorithm is to disable matching with626

expert states, known as RSI-IR, first proposed in [42]. We justify this improvement in this ablation,627

labeled ABL5 in Fig. 7.628

As shown in Fig. 10, removing RSI and IR has a net positive effect throughout training, and around629

10% on the final policy performance. This means that matching expert states exactly via imitation630

reward does not help, even during the initial stages of training when the policy is randomly initial-631

ized. We believe this is because RSI helps when there are hard-to-reach intermediate states that the632

policy cannot reach during the initial stages of training. This is true for dynamic or long-horizon633

tasks, such as karate chops and roundhouse kicks. However, our tasks are quasi-static, and also have634

a short horizon of 3 for the cloth tasks. In other words, removing this technique allows the policy to635
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Figure 9: Ablation on the modality of demon-
strations on LfD performance. Similar per-
formance shows that MAIL can learn from a
wide variety of demonstrations, or even a mix-
ture of them, without loss in performance. See
Sec. A.2.4.
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Figure 10: Ablation on the effect of reference
state initialization (RSI) and imitation reward
(IR) on LfD performance. RSI is not helpful
here because our tasks are not as dynamic or long
horizon as DeepMimic [42]. See Sec. A.2.5.

freely explore the state space while the demonstrations can still guide the RL policy learning via the636

advantage-weighted loss from DMfD.637

A.2.6 Ablate the effect of cross-morphology on SOTA638

We answer the question: how do established LfD baselines perform across morphologies? We639

studied the effect of why baselines such as GAIfO and GPIL performed so poorly on our tasks.640

In our experiments, we noticed a number of factors (such as variations in the task, diversity of641

demonstrations, etc.). This ablation studies the effect of cross-morphology in the demonstrations,642

where we compare the performance of GAIfO, when provided demonstrations from the teacher643

dataset DTeacher and student dataset DStudent.644

As we can see in Table 2, there is a 36% performance improvement when using the (suboptimal)645

student dataset. Obviously, since the demonstration actions are not available to learn from, the pri-646

mary difference that the agent sees during training is the richness of demonstration states. Thus,647

improvement is because of the demonstration states seen in the student dataset. Since the student648

morphology has only one picker, any demonstration for the task (DryCloth) includes multiple inter-649

mediate states of the cloth in various conditions of being partially hung for drying. By contrast, the650

teacher requires fewer pick-place steps to complete the task, and thus there are fewer intermediate651

states in the demonstrations.652

A.2.7 Ablate the effect of environment difficulty on LfD baselines653

We answer the question: how do established LfD baselines perform across environments? Given654

the subpar performance of the LfD baselines GAIfO and GPIL on our SOTA environments, we655

ablated the effect of environment difficulty. We took the easy cloth environment (CLOTH FOLD)656

and used an easier variant of it, CLOTH FOLD DIAGONAL PINNED [41]. In this variant, the agent657

has to perform an easier fold, but one corner of the cloth is pinned to prevent sliding. Moreover, the658

desired fold is across the diagonal of the cloth, which can be done by manipulating only one corner659

of the cloth. We used the state-based observations, and the action space is the small-displacement660

action space, where the agent outputs incremental picker displacements instead of pick-and-place661

locations. This action space is similar to those seen in the experiments of GNS, GAIfO and GPIL,662

where they worked with rigid objects in simulation. This is an easy version of our CLOTH FOLD663

environment. We can see in Table 3 that the same baselines are able to perform significantly better664

in this environment. Hence, we believe manipulating with long-horizon pick-place actions, with an665
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image observation, makes it challenging for the baselines to work in challenging cloth environments666

described in Sec. 4.1.667

Method 25th% µ ± � median 75th%

DTeacher -0.198 -0.055±0.183 -0.043 0.078

DStudent 0.199 0.363±0.245 0.409 0.528

Table 2: Ablation of GAIfO on the effect of cross-morphology. We compare the normalized perfor-
mance, measured at the end of the task.

Method 25th% µ ± � median 75th%

GPIL 0.356 0.427±0.162 0.487 0.553

GAIfO 0.115 0.374±0.267 0.471 0.592

Table 3: Measuring performance on the easy cloth task, CLOTH FOLD DIAGONAL PINNED. We
compare the normalized performance, measured at the end of the task.

A.3 List of environments we tried for LfD baseline ablations668

Two LfD baselines, GAIfO and GPIL, seemed to perform quite poorly, although we expected better669

performance. In an effort to understand why these fail, we performed a host of studies with different670

varieties of easier environments, to isolate the properties of the environment that make it the most671

challenging to succeed. A list of the different task variants we tried are given below. The ones672

with the most striking difference in performance are described in further detail in Sec. A.2.6 and673

Sec. A.2.7.674

1. Used the easier CLOTH FOLD environment instead of DRY CLOTH.675

2. Used state-based environments instead of image-based environments.676

3. Reduced the number of variations of the task distribution V .677

4. Used the small-displacement action-space that is used in GNS and GAIfO experiments,678

instead of the large-displacement pick-place action spaces.679

5. Removed the effect of cross-morphology, by providing demonstrations in the students mor-680

phology.681

A.4 Hyperparameter choices for MAIL682

In this section, Table 4 shows the hyperparameters chosen for training the inverse dynamics model683

T . Table 5 shows the details of CEM hyperparameter choices. Table 6 shows the hyperparameters684

for our chosen LfD method (DMfD).685

Parameter Description

CNN 4 layers, 32 channels, 3x3 kernel, leaky ReLU activation.
stride = 2 for the first layer, stride = 1 for subsequent layers

LSTM One layer
Hidden size = 32

Other Parameters Learning rate ↵ =1e-5
Batch size = 128

Table 4: Hyper-parameters for training the forward dynamics model.
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Planning
Horizon

Number of
optimization iterations

Number of env
interactions

1 1 2 21,000
2 2 2 15,000
3 2 2 21,000
4 2 2 31,000
5 2 2 34,000
6 2 10 21,000
7 2 1 21,000
8 2 1 15,000
9 2 1 32,000
10 3 2 21,000
11 3 10 21,000
12 4 2 21,000
13 4 10 21,000

Table 5: CEM hyper-parameters tested for tuning the trajectory optimization. We conducted ten
rollouts for each parameter set and used the set with the highest average normalized performance
on the teacher demonstrations. Population size is determined by the number of environment inter-
actions. The number of elites for each CEM iteration is 10% of population size.

Parameter Description

State encoding Fully connected network (FCN)
2 hidden layers of 1024, ReLU activation

Image encoding
32x32 RGB input, with random crops.
CNN: 4 layers, 32 channels, stride 1, 3x3 kernel, leaky ReLU activation
FCN: 1 layer of 1024 neurons, tanh activation

Actor Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Critic Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Other parameters

Discount factor: � = 0.9
Entropy loss weight: wE = 0.1
Entropy regularizer coefficient: ↵ = 0.5
Batch size = 256
Replay buffer size = 600,000
RSI-IR probability = 0 (disabled)

Table 6: Hyper-parameters used in the LfD method (DMfD).

A.5 Performance metrics for real-world cloth experiments686

In this section, we explain the metrics for measuring performance of the cloth, to explain the687

sim2real results discussed in Fig. 4.2688

For CLOTH FOLD task, we measure performance at time t by the number of pixels of the top color689

pixtop,t and bottom color pixbot,t of the flattened cloth, compared to the maximum number of pixels,690

pixmax (Fig. 11).691

For DRY CLOTH task, it is challenging to measure pixels on the sides and top of the plank. Moreover,692

we could be double counting pixels if they are visible in both side and top views. Hence, we measure693

the cloth to determine whether the length of the cloth on top of the plank is equal to or greater than694

the side of the square cloth. We call this the spread metric.695

The policies achieve ⇠ 80% performance, which is about the average performance of our method in696

simulation, for both tasks. However, since these performance metrics are different in the simulation697

and real world, we cannot quantify the sim2real gap through these numbers.698
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Figure 11: Performance function for CLOTH FOLD on the real robot. At time t, we measure
the fraction of pixels visible to the maximum number of pixels visible ftop = pixtop,t/pixmax and
fbot = pixbot,t/pixmax. Performance for the top of the cloth should be 1 when it is not visible,
p(top) = 1 � ftop. Performance for the bottom of the cloth should be 1 when it is exactly half-
folded on top of the top side, p(bot) = min [2 (1 � fbot) , 2fbot]. Final performance is an average
of both metrics, p(st) = p(top) + p(bottom)/2. Note that the cloth is flattened at the start, thus
pixmax = pixtop,0.
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