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In this supplementary file, we presentmore details and experimental
results that are not included in our main paper due to the 8-page
limitation. The outline is as follows:

• Sec. A: Implementation details of our approach.
• Sec. B: More analysis on the correlations between attack
intensity and JS-Distance.

• Sec. C: More qualitative comparison of our AdvDSS and
existing IQA methods for evaluating adversarial examples.

• Sec. D: More details and results of the experiments on gen-
erating adversarial examples using AEQA.

A. IMPLEMENTATION DETAILS
Ourmethod is implementedwith Python on anNVIDIA RTX 3060Ti.
In order to measure the attack intensity of adversarial examples, we
use the backbone model i.e., Inception v3 network pre-trained on
ImageNet, which produces the adversarial examples for AdvDB to
generate the logits distribution of adversarial examples and clean
images. Note that the AEQA cannot assist in the evaluation of a
single adversarial example whose source model is unknown but in
the evaluation of an adversarial attack technique.

B. THE CORRELATIONS BETWEEN ATTACK
INTENSITY AND JS-DISTANCE
In AEQA, we consider perceptual quality and attack intensity as
two crucial factors for evaluating the overall quality of adversarial
examples and adopt AdvDSS and JS-Distance two quantify these
two factors. We have proven the positive correlations between Ad-
vDSS and the perceptual quality of adversarial examples in the
main paper, here we further prove the efficacy of JS-Distance in
evaluating the attack intensity of adversarial examples. Specifically,
we compute the average JS-Distance between the logits distribution
of benign images and adversarial examples with different attack
settings and present the results in Figure 1. We can see that as the
perturbation gets stronger, i.e., larger 𝜖 and iterative steps, can
lead to an increase of JS-Distance between the generated adver-
sarial examples and benign images, which indicates that a larger
JS-Distance between the adversarial example and its corresponding
benign image denotes a stronger attack intensity.

C. MORE VISUALIZATION COMPARISON OF
COMPARED METHODS
We present more visualizations of the scatter plots of MOS versus
different IQA methods in Figure 2, where we can see that the points
obtained by ILNIQE, MUSIQ, CW-SSIM and PI resides in a certain
region, indicating that these threemetrics cannot accurately capture
the adversarial distortions. The points of LPIPS, LPIPS-VGG, FISM
are distributed better, but still do not well fit the curve. Among all
the methods, the points obtained by our proposed AdvDSS are more
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Figure 1: The JS-Distance between the logits distribution of
benign images and adversarial exampleswith different attack
settings.
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Figure 2: Scatter plots of different IQA methods versus MOS
for all the adversarial examples from our AdvDB.

tightly distributed on the fitted curve, indicating a better correlation
with MOS.

D. GENERATING ADVERSARIAL EXAMPLES
USING AEQA
D.1 Generation
To optimize an adversarial example with AEQA, we set the AEQA
as the objective and use L-BFGS algorithm to directly generate an
adversarial example from a clean image with high AEQA score. We
also use the Inc V3 pre-trained on ImageNet as the target model
and also the backbone to compute JS-Distance. We set the iteration
step as 20 during optimization.

D.2 Qualitative comparison
The generated adversarial examples are shown in Figure 3. The first
column denotes the clean images and the second to sixth columns
denote the adversarial examples produced by different methods. As
we can see, directly optimizing AEQA can have a visual-pleasant
result compared to the adversarial examples produced by other
methods. As mentioned in our paper, the superior results contribute
to the optimization of both attack intensity and perceptual quality,
which also indicate that the proposed AEQA can well evaluate the
adversarial example quality.
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Figure 3: Adversarial example generation using different methods. (a) The benign images. (b)-(f) Adversarial examples produced
by FGSM, PGD, BIM, MIM, and AEQA, respectively.


