
Under review as a conference paper at ICLR 2023

A MODELS AND HYPERPARAMETERS

A.1 DISCRETE AUTOENCODER

Our discrete autoencoder is based on the implementation of VQGAN (Esser et al., 2021). We removed
the discriminator, essentially turning the VQGAN into a vanilla VQVAE (Van Den Oord et al., 2017)
with an additional perceptual loss (Johnson et al., 2016; Larsen et al., 2016).

Table 2: Encoder / Decoder hyperparameters. We list the hyperparameters for the encoder, the same
ones apply for the decoder.

Hyperparameter Value

Frame dimensions (h, w) 64× 64
Layers 4
Residual blocks per layer 2
Channels in convolutions 64
Self-attention layers at resolution 8 / 16

Table 3: Embedding table hyperparameters.

Hyperparameter Value

Vocabulary size (N) 512
Tokens per frame (K) 16
Token embedding dimension (d) 512

Note that during experience collection in the real environment, frames still go through the autoencoder
to keep the input distribution of the policy unchanged. See Algorithm 1 for details.

A.2 TRANSFORMER

Our autoregressive Transformer is based on the implementation of minGPT (Karpathy, 2020). It
takes as input a sequence of L(K + 1) tokens and embeds it into a L(K + 1)×D tensor using an
A×D embedding table for actions, and a N ×D embedding table for frames tokens. This tensor
is forwarded through M Transformer blocks. We use GPT2-like blocks (Radford et al., 2019), i.e.
each block consists of a self-attention module with layer normalization of the input, wrapped with a
residual connection, followed by a per-position multi-layer perceptron with layer normalization of
the input, wrapped with another residual connection.

Table 4: Transformer hyperparameters

Hyperparameter Value

Timesteps (L) 20
Embedding dimension (D) 256
Layers (M) 10
Attention heads 4
Weight decay 0.01
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1

15

Under review as a conference paper at ICLR 2023

A.3 ACTOR-CRITIC

The weights of the actor and critic are shared except for the last layer. The actor-critic takes as input
a 64× 64× 3 frame, and forwards it through a convolutional block followed by an LSTM cell (Mnih
et al., 2016; Hochreiter & Schmidhuber, 1997; Gers et al., 2000). The convolutional block consists of
the same layer repeated four times: a 3x3 convolution with stride 1 and padding 1, a ReLU activation,
and 2x2 max-pooling with stride 2. The dimension of the LSTM hidden state is 512. Before starting
the imagination procedure from a given frame, we burn-in (Kapturowski et al., 2019) the 20 previous
frames to initialize the hidden state.

Table 5: Training loop & Shared hyperparameters

Hyperparameter Value

Epochs 600
Collection epochs 500
Environment steps per epoch 200
Collection epsilon-greedy 0.01
Eval sampling temperature 0.5
Start autoencoder after epochs 5
Start transformer after epochs 25
Start actor-critic after epochs 50
Autoencoder batch size 256
Transformer batch size 64
Actor-critic batch size 64

Training steps per epoch 1000
Learning rate 1e-4
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Max gradient norm 10.0

16

Under review as a conference paper at ICLR 2023

B ACTOR-CRITIC LEARNING OBJECTIVES

We follow Dreamer (Hafner et al., 2020; 2021) in using the generic λ-return, that balances
bias and variance, as the regression target for the value network. Given an imagined trajectory
(x̂0, a0, r̂0, d̂0, . . . , x̂H−1, aH−1, r̂H−1, d̂H−1, x̂H), the λ-return can be defined recursively as fol-
lows:

Λt =

{
r̂t + γ(1− d̂t)

[
(1− λ)V (x̂t+1) + λΛt+1

]
if t < H

V (x̂H) if t = H
(4)

The value network V is trained to minimize LV , the expected squared difference with λ-returns over
imagined trajectories.

LV = Eπ

[H−1∑
t=0

(
V (x̂t)− sg(Λt)

)2]
(5)

Here, sg(·) denotes the gradient stopping operation, meaning that the target is a constant in the
gradient-based optimization, as classically established in the literature (Mnih et al., 2015; Hessel
et al., 2018; Hafner et al., 2020).

As large amounts of trajectories are generated in the imagination MDP, we can use a straightforward
reinforcement learning objective for the policy, such as REINFORCE (Sutton & Barto, 2018). To
reduce the variance of REINFORCE gradients, we use the value V (x̂t) as a baseline (Sutton & Barto,
2018). We also add a weighted entropy maximization objective to maintain a sufficient exploration.
The actor is trained to minimize the following REINFORCE objective over imagined trajectories:

Lπ = −Eπ

[H−1∑
t=0

log(π(at|x̂≤t)) sg(Λt − V (x̂t)) + ηH(π(at|x̂≤t))
]

(6)

Table 6: RL training hyperparameters

Hyperparameter Value

Imagination horizon (H) 20
γ 0.995
λ 0.95
η 0.001

C OPTIMALITY GAP

0.56 0.64 0.72
SimPLe

CURL
DrQ
SPR

IRIS (ours)
Optimality Gap

Human Normalized Score

Figure 8: Optimality gap. The amount by which the algorithm fails to reach a human-level score
(Agarwal et al., 2021), lower is better.

17

Under review as a conference paper at ICLR 2023

D IRIS ALGORITHM

Algorithm 1: IRIS

Procedure training_loop():
for epochs do

collect_experience(steps_collect)
for steps_world_model do

update_world_model()

for steps_behavior do
update_behavior()

Procedure collect_experience(n):
x0 ← env.reset()
for t = 0 to n− 1 do

x̂t ← D(E(xt)) // forward frame through discrete autoencoder
Sample at ∼ π(at|x̂t)
xt+1, rt, dt ← env.step(at)
if dt = 1 then

xt+1 ← env.reset()

D ← D ∪ {xt, at, rt, dt}n−1
t=0

Procedure update_world_model():
Sample {xt, at, rt, dt}τ+L−1

t=τ ∼ D
Compute zt := E(xt) and x̂t := D(zt) for t = τ, . . . , τ + L− 1
Update E and D

Compute pG(ẑt+1, r̂t, d̂t | zτ , aτ , . . . , zt, at) for t = τ, . . . , τ + L− 1
Update G

Procedure update_behavior():
Sample x0 ∼ D
z0 ← E(x0)
x̂0 ← D(z0)
for t = 0 to H − 1 do

Sample at ∼ π(at|x̂t)

Sample ẑt+1, r̂t, d̂t ∼ pG(ẑt+1, r̂t, d̂t | z0, a0, . . . , ẑt, at)
x̂t+1 ← D(ẑt+1)

Compute V (x̂t) for t = 0, . . . ,H
Update π and V

18

Under review as a conference paper at ICLR 2023

E AUTOENCONDING FRAMES WITH VARYING AMOUNTS OF TOKENS

The length of the input sequence of G is determined by the number of tokens K used to encode a
single frame and the number of timesteps L in memory. Increasing the number of tokens per frame
results in better reconstructions, although it requires more compute and memory.

This tradeoff is particularly important in Atari games where enemies and players are moving in mazes
with rewards to collect. Due to the high number of possible configurations, the discrete autoencoder
struggles to properly encode frames with only K = 16 tokens. Indeed, sometimes the player, its
enemies, or rewards are not correctly reconstructed, which severely hinders agent performance.

In Figure 9, we show that when increasing the number of tokens per frame to 64, the discrete
autoencoder is perfectly capable of dealing with detailed environments such as Alien. However, this
increases the sequence length of G from 340 to 1300. Therefore, with more computational resources,
IRIS would most likely improve in these settings.

Figure 9: Tradeoff between the number of tokens per frame and reconstructions quality in Alien.
Each column displays a 64 × 64 frame from the real environment (top), its reconstruction with a
discrete encoding of 16 tokens (center), and its reconstruction with a discrete encoding of 64 tokens
(bottom). In Alien, the player is the dark blue character, and the enemies are the large colored sprites.
With 16 tokens per frame, the autoencoder often erases the player, switches colors, and misplaces
rewards. When increasing the amount of tokens, it properly reconstructs the frame.

19

Under review as a conference paper at ICLR 2023

F COMPUTATIONAL RESOURCES

For each Atari environment, we repeatedly trained IRIS with 5 different random seeds. We ran our
experiments with 8 Nvidia A100 40GB GPUs. With two Atari environments running on the same
GPU, training takes around 7 days, resulting in an average of 3.5 days per environment.

SimPLe (Kaiser et al., 2020), the only baseline that involves learning in imagination, trains for 3
weeks with a P100 GPU on a single environment. As for SPR (Schwarzer et al., 2021), the strongest
baseline without lookahead search, it trains notably fast in 4.6 hours with a P100 GPU.

Regarding baselines with lookahead search, MuZero (Schrittwieser et al., 2020) originally used 40
TPUs for 12 hours to train in a single Atari environment. Ye et al. (2021) train both EfficientZero and
their reimplementation of MuZero in 7 hours with 4 RTX 3090 GPUs. EfficientZero’s implementation
relies on a distributed infrastructure with CPU and GPU threads running in parallel, and a C++/Cython
implementation of MCTS. By contrast, IRIS and the baselines without lookahead search rely on
straightforward single GPU / single CPU implementations.

G EXPLORATION IN FREEWAY

The reward function in Freeway is sparse since the agent is only rewarded when it completely crosses
the road. In addition, bumping into cars will drag it down, preventing it from smoothly ascending the
highway. This poses an exploration problem for newly initialized agents because a random policy
will almost surely never obtain a non-zero reward with a 100k frames budget.

Figure 10: A game of Freeway. Cars will bump the player down, making it very unlikely to cross the
road and be rewarded for random policies.

The solution to this problem is actually straightforward and simply requires stretches of time when the
UP action is oversampled. Most Atari 100k baselines fix the issue with epsilon-greedy schedules and
argmax action selection, where at some point the network configuration will be such that the UP action
is heavily favored. In this work, we opted for the simpler strategy of having a fixed epsilon-greedy
parameter and sampling from the policy. However, we lowered the sampling temperature from 1 to
0.01 for Freeway, in order to avoid random walks that would not be conducive to learning in the early
stages of training. As a consequence, once it received its first few rewards through exploration, IRIS
was able to internalize the sparse reward function in its world model.

20

	Models and Hyperparameters
	Discrete autoencoder
	Transformer
	Actor-Critic

	Actor-critic learning objectives
	Optimality gap
	iris Algorithm
	Autoenconding frames with varying amounts of tokens
	Computational resources
	Exploration in Freeway

