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A PROOFS

A.1 PROOF OF LEMMA 1

Proof: Similar to lemma 5.1 of Srinivas et al. (2009), with probability at least 1�1/2�, 8x 2 D̃, 8t �
1, 8g 2 {f} [ {Ck}k2K,

|g(x)� µg,t�1(x)|  �1/2
t �g,t�1(x)

Note that we also take the union bound on g 2 {f} [ {Ck}k2K.

First, by definition SC,t ,
TK

k SCk,t, we have 8t  T,x 2 SC,t, 8k 2 K

P
h
Ck(x) � LCBCk,t(x) = µCk,t�1(x)� �1/2

t �Ck,t�1(x) > 0
i
� 1� 1/2�

meaning with probability at 1� �, x lies in the feasible region. At the same time, we have, 8t  T

P [UCBf,t(x
⇤) � f(x⇤) � f(x) � LCBf,t(x) | Ck(x) > 0, 8k 2 K] � 1� 1/2�

Given the mutual independency between the objective f and the constraints Ck, and by the definition
of the threshold LCBf,t,max(x), we have 8t  T , when 9x 2 SC,t,

P [UCBf,t(x
⇤) > LCBf,t,max] � (1� 1/2�)2 � 1� �

Note when SC,t = ;, LCBf,t,max(x) = �1, we have P [UCBf,t(x⇤) > LCBf,t,max(x)] = 1.

In summary, we’ve shown that with probability at least 1� �, x⇤ 2 X̂f,t.

Next, by the definition of x⇤ = argmaxx2X f(x) s.t. Ck(x⇤) > ✏C we have 8t  T, 8k 2 K

P
h
UCBCk,t(x

⇤) = µCk,t�1(x
⇤) + �1/2

t �Ck,t�1(x
⇤) � Ck(x⇤) > 0

i
� 1� 1/2�

meaning with probability at least 1� 1/2�, x⇤ 2 X̂Ck,t. And in general, we have 8t  T, 8k 2 K

P
h
x⇤ 2 X̂t

i
� 1� �

⇤

A.2 PROOF OF THEOREM 1

The following lemmas show that the maximum of the acquisition functions equation 5 and 6 are both
bounded after sufficient evaluations.

Lemma A.1 Under the conditions assumed in Theorem 1, let ↵t = maxg2G ↵g,t(xg,t) as in Algo-
rithm 1, with �t = 2 log(2|D̃X̂t

|⇡t/�) that is non-increasing, after at most T � �T c�TC1

✏2 iterations,
↵T  ✏ Here C1 = 8/ log(1 + ��2).

Proof: We first unify the notation in the acquisition functions.
8T � t � 1, 8g 2 {Ck}k2K, when D̃X̂t

\ Ug,t 6= ;,

max
x2D̃X̂t

\Ug,t

UCBg,t(x)� LCBg,,t(x) = 2�1/2
g,t �g,t�1(xg,t)  ↵t (8)

8T � t � 1, 8g 2 {Ck}k2K, when D̃X̂t
\ UCk,t = ;, let

max
x2D̃X̂t

\Ug,t

UCBg,t(x)� LCBg,t(x) = 2�1/2
g,t �g,t�1(xg,t) = 0  ↵t (9)

8T � t � 1, g = f

max
x2D̃X̂t

UCBf,t(x)� LCBf,t,max  UCBf,t(xg,t)� LCBf,t(xg,t) (10)

= 2�1/2
g,t �g,t�1(xg,t) (11)

 ↵t (12)
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By lemma 5.4 of Srinivas et al. (2009), with �t = 2 log(2(K + 1)|D̃X̂t
|⇡t/�), 8g 2 {f} [ Ckk2K

and 8xt 2 D̃X̂t
, we have

PT
t=1(2�

1/2
t �g,t�1, (xt))2  C1�T �g,T . By definition of ↵t , we have

the following

TX

t=1

↵2
t 

TX

t=1

X

g2G
(↵g,t(xg,t))

2

=
TX

t=1

X

g2G
(2�1/2

g,t �g,t�1(xg,t))
2


X

g2G
C1�T �g,T

= C1�T c�T

The last line holds due to the defination in equation 7. By Cauchy-Schwaz, we have

1

T
(

TX

t=1

↵t)
2  C1�T c�T

By the monotonocity assumed in Assumption 3, the defination of Ug,t, 8g 2 {Ck}k2K, and the
defination of X̂t, for 81  t1 < t2  T , 8g 2 {Ck}k2K, we have that Ug,t2 ✓ Ug,t1 and X̂t2 ✓ X̂t1 .
Meaning the search space is shrinking for all constraints and the objective. Together with the
monotonocity of UCB and LCB, for 81  t1 < t2  T , we have ↵t2  ↵t1 , and therefore

↵T  1

T

TX

t=1

↵t 
r

C1�T c�T
T

As a result, after at most T � �T c�TC1

✏2 iterations, we have ↵T  ✏.

⇤
With Lemma A.1, we could first prove that after adequately T rounds of evaluations such that
✏  mink2K ✏k is sufficiently small, with certain probability, x⇤ 2 SC,T . Then LCBf,t,max 6= �1,
and therefore the width of [maxx2D̃X̂t

LCBf,T (x),maxx2D̃X̂t

UCBf,T (x)], which is a the high
confidence interval of f⇤, is bounded by ✏.

Proof: We first prove that after at most T � �T c�TC1

✏2 iterations, P
h
x⇤ 2 D̃X̂t

\ SC,T

i
� 1� 1/2�.

Given equation 8 and 9 and Lemma A.1, we have 8g 2 Ckk2K, t � T

max
x2D̃X̂t

\Ug,t

UCBg,t(x)� LCBg,t(x)  ✏  min
k2K

✏k

According to the definition of Ug,t, 8x 2 D̃X̂t
\ Ug,t, 8g 2 Ckk2K

UCBg,t(x)  min
k2K

✏k + LCBg,t(x)  min
k2K

✏k

According to Assumption 2, and Lemma 1, we have 8k 2 K

P
h
UCBCk,T (x

⇤) � Ck(x⇤) > ✏k � maxx2D̃X̂t
\UCk,t

UCBCk,T (x)
i
� 1� 1/2�

Hence 8t � T

P
h
x⇤ 2 D̃X̂t

\ SC,t = D̃X̂t
\ X̂C,t\ [k2K UCk,t

i
� 1� 1/2�

As a result
P [LCBf,t,max 6= �1] � 1� 1/2�
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Next, we prove the upper bound for the width of high-confidence interval of f⇤. Given that
LCBf,t,max 6= �1, we have

max
x2D̃X̂t

UCBf,T (x)� max
x2D̃X̂t

LCBf,T (x)  max
x2D̃X̂t

UCBT (x)� LCBf,T,max

 2�1/2
f,T �f,T�1(xf,T )

 ↵T

 ✏

Combining it with the fact that

P
"
max

x2D̃X̂t

LCBf,T (x)  max
x2D̃X̂t

f(x) = f⇤  UCBf,T (x
⇤)  max

x2D̃X̂t

UCBf,T (x)

#
� 1� 1/2�

we attain the final result that after T � �T c�TC1

✏2 iterations,

P [|CIf⇤,t|  ✏, f⇤ 2 CIf⇤,t | t � T ] � 1� �

⇤

B DECOUPLED SETTING

In the main paper, we assume both objective f and the constraints {Ck}k2K are revealed upon
querying an input point. The setting is regarded as a coupling of the objective and constraints,
to differentiate from the decoupled setting, where the objective and constraints may be evaluated
independently. In the decoupled setting, acquisition functions need to explicitly tradeoff the evaluation
of the different aspects and in addition to helping to pick the candidate xt 2 X, suggest gt 2
{f} [ {Ck}k2K for evaluation each time. This typically requires different acquisition from coupled
setting (Gelbart et al., 2014). However, we will that our acquisition function and COBALT require
minimum adaptation to the decoupled setting while bearing a similar performance guarantee.

B.1 ALGORITHM FOR DECOUPLED SETTING

When taking the gt  argmaxg2G ↵g,t(xg,t) in Algorithm 1, we explicitly choose the aspect that
matters most at a certain iteration. Naturally, we could adapt COBALT to the decoupled setting
by querying xg,t on this unknown function gt 2 G ✓ {f} [ {Ck}k2K at iteration t. The modified
algorithm is shown below.

B.2 THOERETICAL GUARANTEE AND PROOF

We first denote the maximum mutual information gain after T rounds of evaluations as

e�T =
X

g2{f}[{Ck}k2K

�g,Tg (13)

Where Tg denotes the number of evaluations for g 2 {f} [ {Ck}k2K before T . Therefore we have

T =
X

g2{f}[{Ck}k2K

Tg

Then we have the following guarantee for the performane of COBALT-Decoupled.

Theorem 2 The width of the resulting confidence interval of the global optimum f⇤ = f(x⇤)
is upper bounded. That is, under the same assumptions in Theorem 1, with �t = 2 log(2(K +
1)|D̃X̂t

|⇡t/�) that is constant, and acquisition function in Algorithm 2, 9✏  mink2K ✏k, after
at most T � �T e�TC1

✏2 iterations, we have P [|CIf⇤,t|  ✏, f⇤ 2 CIf⇤,t | t � T ] � 1 � � Here
C1 = 8/ log(1 + ��2) .
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Algorithm 2 COnstrained BO with Adaptive active Learning of decoupled unknown constraints
(COBALT-Decoupled)

1: Input:Search space X, initial observation D0, horizon T ;
2: for t = 1 to T do

3: Update the posteriors of GPf,t and GPCk,t according to equation 1 and 2
4: Identify ROIs X̂t, and undecided sets UCk,t

5: for k 2 K do

6: if UCk,t 6= ; then

7: Candidate for active learning of each constraints:
xCk,t  argmaxx2UCk,t

↵Ck,t(x) as in equation 6
8: G  G [ Ck,t
9: Candidate for optimizing the objective:

xf,t  argmaxx2X̂f,t
↵f,t(x) as in equation 5

10: G  G [ f
11: Maximize the acquisition values from different aspects:

gt  argmaxg2G ↵g,t(xg,t)
12: Pick the candidate to evaluate: xt  xg,t

13: Update the observation set with the candidate and corresponding new observations on gt
Dt  Dt�1 [ {(xt, yg,t)}

The proof is similar to Appendix A, as the major difference is replacing the upper bound in Lemma A.1
to

↵T 
1

T

TX

t=1

↵t 
r

C1�T e�T
T

Proof: We omit the shared part of the proof. Here is the critical difference.
TX

t=1

↵2
t =

TX

t=1

↵2
g,t(xg,t)

=
TX

t=1

(2�1/2
g,t �g,t�1(xg,t))

2


X

g2G
C1�T �g,Tg

= C1�T e�T
⇤

C REWARD FUNCTION

C.1 REWARD CHOICE 1: PRODUCT OF REWARD AND FEASIBILITY

The definition of reward plays an important role in online machine learning performance analysis. In
the CBO setting, one possible definition of constrained reward derived from the constraint nature
is r(x) = f(x)

Q
k Ck(x)>hk

when assuming the f(x) > 0. Considering both the aleatoric and
epistemic uncertainty on the constraints, we could transform the problem into finding the maximizer

argmax
x2X

r(x) = argmax
x2X

f(x)
Y

k

P [YCk(x) > hk]

Here YCk(x) denotes the observation of the constraint Ck at x.

The problem with this product reward, on one hand, is that it is likely to incur a Pareto front if we
regard the problem as a multi-objective optimization where the objectives are composed of f(x) and
P [YCk(x) > hk]. The multi-objective nature and resulting Pareto front indicate that the optimization
could be more challenging to converge than the single-objective unconstrained BO problem, though
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the unique global optimum is not always expected there either. More critically, is that when the
feasibility of reaching a certain threshold, we prefer to focus on optimizing the objective value rather
than the product for the following reasons.

Firstly, the marginal gain on improving feasibility by increasing the value of the constraint function
drops after the feasibility reaches 0.5 if assuming it follows a Gaussian. Especially in the tail region,
improving the feasibility and then the product of feasibility and objective value by optimizing the
constraint function is prohibitively difficult.

Secondly, in most real-world scenarios except for certain applications that focus on feasibility
(where the feasibility should be treated as another objective and make it in nature a multi-objective
optimization), the actual marginal gain, in general, increases the feasibility decay faster than the
increase of objective value. (e.g., when choosing between doubling the feasibility from 0.25 to 0.5
or doubling the objective drop from 25 to 50, we probably favor the former as 0.25, meaning it is
unlikely to happen. However, when choosing between increasing feasibility from .8 to .9 or increasing
the objective drop from 80 to 90, there would be no such clear preference.) Then, the user would
possibly favor the gain on the objective function after the feasibility reaches a certain level. Therefore,
we propose the following reward for constrained optimization tasks according to this insight.

C.2 REWARD CHOICE 2: OBJECTIVE FUNCTION AFTER THE FEASIBILITY REACHING CERTAIN
THRESHOLD

Instead of defining the reward as the product of the objective value and feasibility, we have to look
into the probabilistic constraints and distinguish the epistemic uncertainty and aleatoric uncertainty.
First, when assuming the observation on the constraints are noise-free, namely YCk(x) = Ck(x), we
could simply use the indicator function µk for each constraint to turn the feasibility function into an
indicator function.

r(x) =

⇢
f(x) if I(Ck(x) > hk) 8k 2 K
�inf o.w

(14)

Next, if the observation on the constraints is perturbed with a known Gaussian noise, namely
YCk(x) ⇠ N (Ck(x),�), we could deal with the aleatoric uncertainty with a user-specific confidence
level for each constraint µk 2 (0, 1), 8k 2 K. Then we could turn I(YCk(x) > hk) into probabilistic
constraints following the definiation proposed by Gelbart et al. (2014) and

P [YCk(x) > hk] � µk

to explicitly deal with the aleatoric uncertainty. With the percentage point function (PPF), we
could transform the probabilistic constraints into a deterministic constraint I(Ck(x) > ĥk) with
ĥk = PPF(hk,�, µk), meaning ĥ is the µk percent point of a Gaussian distribution with hk and � as
its mean and standard deviation. Hence, we could unify the form of rewards of noise-free and noisy
observation on the constraints with the user-specified confidence levels. For simplicity and without
loss of generalization, we stick to the definition in equation 3 and let all hk = 0.

Throughout the rest of the paper, we want to efficiently locate the global maximizer

x⇤ = argmax
x2X,8k2K,Ck(x)>0

f(x)

Equivalently, we seek to achieve the performance guarantee in terms of simple regret at certain time t,

Rt := r(x⇤)� max
x2{x1,x2,...xt}

r(x)

with a certain probability guarantee. Formally, given a certain confidence level � and constant ✏, we
want to guarantee that after using up certain budget T dependent on � and ✏, we could achieve a high
probability upper bound of the simple regret on the identified area X̂ which is the subset of X.

P (max
x2X̂

RT (x) � ✏)  1� �
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D DATASET

Here we offer a more detailed discussion over the construction of the six CBO tasks studied in
section 6.

D.1 SYNTHETIC TASKS

We study two synthetic CBO tasks constructed from conventional BO benchmark tasks. Here we rely
on the implementation contained in BoTorch’s (Balandat et al., 2020) test function module.

Rastrigin-1D-1C The Rastrigin function is a non-convex function used as a performance test
problem for optimization algorithms. It was first proposed by Rastrigin (1974) and used as a popular
benchmark dataset (Pohlheim). It is constructed to be highly multimodal with local optima being
regularly distributed to trap optimization algorithms. Concretely, we negate the 1D Rastrigin function
and try to find its maximum: f(x) = �10d �

Pd
i=1 (x

2
i � 10 cos(2⇡xi)), d = 1. The range of x

is [�5, 5], and we construct the constraint to be c(x) = |x+ 0.7|1/2. When setting the threshold asp
2, we essentially excludes the global optimum from the feasible area. The constraint enforces the

optimization algorithm to explore feasibility rather than allowing algorithms to improve the reward
by merely optimizing the objective. Then the feasible region takes up approximately 60% of the
search space. This one-dimensional task is designed to illustrate the necessity of adaptively trade-off
learning of constraints and optimization of the objective.

We also vary the threshold to control the portion of the feasible region to study the robustness of
COBALT. Figure 3 shows the distribution of the objective function and feasible regions.

Ackley-5D-2C The Ackley function is also a popular benchmark for optimization algorithms.
Compared with the Rastrigin function, it is highly multimodal similarly, while the region near the
center is growingly steep. Same as what is done for Rastrigin, we negate the 5D Ackley function

and try to find its maximum: f(x) = 20 exp (�0.2
q
1/d

Pd
i x

2
i ) + exp (1/d

Pd
i cos(2⇡xi)) +

20 + exp(1), d = 5. The search space is restricted to [�5, 3]5. We construct two constraints
to enforce a feasible area approximately taking up 14% of the search space. The first constraint
(kx� 1k2 � 5.5)2 � 1 > 0 constructs two feasible regions with one in the center and the other close
to the boundary of the search space. The second constraint �kxk21+9 allows one hypercube feasible
region in the center.

D.2 REAL-WORLD TASKS

We study four real-world CBO tasks. The first three are extracted from Tanabe and Ishibuchi (2020),
which offers a broad selection of real-world multi-objective multi-constraints optimization tasks. The
fourth one is a 32-dimensional optimization task extracted from the UCI Machine Learning repository
(mis, 2019).

Vessel-4D-3C The pressure vessel design problem aims at optimizing the total cost of a cylindrical
pressure vessel. The four variables represent the thicknesses of the shell, the head of a pressure
vessel, the inner radius, and the length of the cylindrical section. The problem is originally studied
in Kannan and Kramer (1994), and we follow the formulation in RE2-4-3 in Tanabe and Ishibuchi
(2020). The feasible regions take up approximately 78% of the whole search space.

Spring-3D-6C The coil compression spring design problem aims to optimize the volume of spring
steel wire which is used to manufacture the spring (Lampinen and Zelinka, 1999) under static loading.
The three input variables denote the number of spring coils, the outside diameter of the spring, and
the spring wire diameter respectively. The constraints incorporate the mechanical characteristics of
the spring in real-world applications. We follow the formulation in RE2-3-5 in Tanabe and Ishibuchi
(2020). The feasible regions take up approximately 0.38% of the whole search space.

Car-7D-8C The car cab design problem includes seven input variables and eight constraints. The
problem is originally studied in Deb and Jain (2013). We follow the problem formulation in RE9-7-1
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in Tanabe and Ishibuchi (2020) and focus on the objective of minimizing the weight of the car while
meeting the European enhanced Vehicle-Safety Committee (EEVC) safety performance constraints.
The seven variables indicate the thickness of different parts of the car. The feasible feasible region
takes up approximately 13% of the whole search space.

Converter-32D-3C This UCI dataset we use consists of positions and absorbed power outputs of
wave energy converters (WECs) from the southern coast of Sydney. The applied converter model
is a fully submerged three-tether converter called CETO. 16 WECs 2D-coordinates are placed and
optimized in a size-constrained environment (mis, 2019). The input is therefore 32 dimensional. We
place three constraints on the tasks, including the absorbed power of the first two converters being
above a certain threshold 96000, and the general position being not too distant with the two-norm
below 2000. The feasible feasible region takes up approximately 27% of the whole search space.

E DISCUSSIONS

Here we offer additional discussion over the concerns on COBALT.

E.1 EMPTY ROI(S)

It is possible that X̂t could be empty at certain t when any intersection results in the empty set.
However, according to the assumptions in section 5 and Lemma 1, the properly chosen �f,t and �C,t
that does not result in over-aggressive filtering, the ROI is soundly defined. The algorithm is also
robust to empty UCk,t due to the domain where the acquisition functions defined in equation 6 and
equation 5 are maximized.

E.2 COMPARABILITY

Despite both the acquisition function for optimization of the objective and active learning are
confidence interval-based, it is possible they are not comparable. In practice, the objective and
constraints could be of different scales. With prior knowledge of the scaling difference, one can
choose to standardize the values, or equivalently, calibrate the acquisition function accordingly.

E.3 LIMITATIONS

The limitation of COBALT including (1) the insufficiency of identifying the ROIs due to the pointwise
comparison in current implementation; (2) the lack of discussion over correlated unknowns, which
are common in practice (e.g. two constraints are actually lower bound and upper bound of the
same value). We expect the following work could further improve the algorithms efficiency and
effectiveness accordingly.
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