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Outline of Supplementary Material. In Section 7, we provide a connection between the proposed
method and semidefinite programming-based methods. In Section 8, additional simulation results are
provided. All technical proofs are presented in Section 9 - Section 14. Finally, the computational
issues of semidefinite programming are discussed in Section 15.

7 Connection to Semidefinite Programming

For completeness, in this section, we provide discussions on semidefinite programming (SDP)
method [34, 18, 40], which is usually well suited to solve regularization problems. It may relax
the non-convex problem to a convex problem and can result in faster convergence. There exist a
few literature on solving the eigenvector estimation problems via SDP. For example, [35, 36] study
properties of SDP estimators in the SPCA setting. [9] proposes an efficient SDP method for estimating
sparse canonical coefficients.

For SGEP, instead of directly penalizing the eigenvector, we can also recast the original problem into
a semidefinite programming problem. We write X = u;u}. Then uf Au; is equal to tr(AX). For
estimation, we consider the following SDP problem,

P2) mi —tr(AX X
(P2) min r(AX) + pa(X),

st.  |BY2XBY?||, <1, |BY?XBY?|, <. (17)
Here px(X) = >, ;pa(X[i, j]) and r is taken to be 1. In the literature, the convex constraint

Cran = {X | |BY2XB'Y?||]y < 1,||BY2X B/2||, < r} is also known as a Fantope [8, 35]. Under
this relaxed problem, we also provide the corresponding estimation error bound.

Theorem 7 Suppose A and B satisfy A = BU;AM\U{ B+ Ag. Let X be the optimizer of (P2). Then,

as long as A > \/ISI\ || B2 BY2|[(|[Blloc + [|Bllac) | B = Blloo + |4 = Alloo + | ABloe +

€approx> then we have the following result.

|S[A
Ar

where Uy is the matrix of top r eigenvector for (A, B) and satisfies U" BU, = I; ), is the r-th largest

2 R A
approz — MAXXeCs,, tI‘(AX) -

IX —wul | r < C(B) (18)

singular value; C(B) is some constant depending on B and e

MAX X eC ;|| X [0 <|S)2 tT(AX).

In particular, if A and B are matrices with bounded entries and A and B are the corresponding sample
version, then we know || A — A s < 1"7% and || B — B|s < 10,% hold with high probability.
Term eqpproq is the price we need to pay since py puts the light penalization compared to usual ¢4

norm especially when Bis singular. When A admits a low rank structure and ([1, B ) admits a nearly
sparse leading vector, we have the following corollary.
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Corollary 1 Suppose we have two bounded matrices A and B satisfy A= BUAMULB. Let A B
be the empirical estimates of A and B and eqpprop < C||A — Al|so- Then it holds that

[SA

|X —wuf | < CB),

(19)
aslong as A > C)\q 10%.

In Corollary 1, we only require A > C'\; 10% instead of A > C'A\1/|S] k’% (There is an extra

+/|S| in Theorem 7). This is because Theorem 7 considers the worst case when noise terms cannot
be cancelled out.

The detailed estimation procedure of (P2) is provided in Section 15. Although the SDP method
is stable and can find the global optimal very well, it suffers from high computational burden and
expensive storage cost. The numerical comparison between the semidefinite programming methods
and the proposed NC-SGEP method is given in the main context. It shows that our method is
competitive compared with SDP-type methods in terms of estimation error.

8 Additional Numerical Experiments

We present the additional simulation results to show the non-convex regularized estimator enjoys
merits of sparsity and stability under various settings.

Sparse CCA Let X, and ¥, be two p; by p; matrices. Both of them take the form as
2 1
1 2 1
. i . We take X, = O.9Emu1u?2y and unit vector u; only has two non-
1 2 1
1 2
zero entries. We set n = 100 and let p = 2p; vary from 50 — 400. We compare the performance of
proposed estimator with Truncated Rayleigh Flow Method (Rifle, [30]), truncated version of Gener-
alized Eigenvector via Linear System Solver (GenELin, [11]). For fair comparison, we randomly
choose the starting values. The estimation errors are reported in Table 3. Additionally, we also report
the probability of successfully finding the global solution for each method in Table 3. The results
show that our method has better performance in estimating the leading eigenvector. In addition,
NC-SGEP is more easily to find the optimal solution and is thus more stable and accurate.

Table 3: Estimation accuracy for sparse canonical correlation analysis. "Err": ||X — uy || with
standard error in parenthesis. "Opt": the percentage of finding global optimum. Each setting is
replicated for 100 times.

» 100 200 300 400
NC-SGEP | 0.116(0.127) 0.137(0.153) 0.128 (0.118) 0.241 (0.288)
Err Rifle 0.203 (0.121)  0.368 (0.256)  0.542 (0.278)  0.662 (0.240)
GenELin | 0.222 (0.127) 0.485(0.333) 0.466 (0.325) 0.719 (0.278)

NC-SGEP 96 % 94 % 93 % 82 %
Opt Rifle 94 % 67 % 40 % 24 %
GenELin 96 % 60 % 54 % 30 %

Sparse FDA Given two classes, the data from the first class follows N (u1, I,) and the data from
the second class follows N (u9, I,). The mean vector p; satisfies p1[j] = 1for j = 1,...,4 and
u1lj] = 0 for j > 4; uo satisfies uz[j] = —1for j = 1,...,4 and us[j] = 0 for j > 4. We sample
100 data points from each class and split them into test sets and training sets into two equal half.
Thus, n = Nyprein, = 100 and nyes; = 100. We let p vary from 50 to 250 and let sparsity level vary
from 10 to 50 for methods, NC-SGEP, Rifle and GenELin. Due to the penalization, our method does
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Table 4: Classification accuracy for sparse Fisher’s discriminant analysis problem.

D 50 100 150 200 250
NC-SGEP | 0.973 (0.013) 0976 (0.016) 0971 (0.016) 0.974 (0.014) 0.972 (0.018)
sn = 10 Rifle 0.963 (0.019)  0.959 (0.027) 0.958 (0.020)  0.954 (0.023)  0.953 (0.020)
GenELin | 0.962 (0.020) 0.961 (0.241) 0.959 (0.205) 0.960 (0.020)  0.959 (0.020)
NC-SGEP | 0.969 (0.016) 0.972 (0.019) 0.970 (0.013) 0.971 (0.019) 0.975 (0.016)
S$n = 20 Rifle 0.942 (0.027)  0.940 (0.030)  0.930 (0.028)  0.935 (0.029)  0.932 (0.029)
GenELin | 0.941(0.026) 0.937 (0.024) 0.927 (0.024) 0.928 (0.032)  0.931 (0.026)
NC-SGEP | 0.959 (0.024) 0.946 (0.028) 0.951 (0.027) 0.954 (0.025) 0.958 (0.027)
$n = 50 Rifle 0.910 (0.036) 0.867 (0.037)  0.860 (0.048)  0.869 (0.041)  0.859 (0.037)
GenELin | 0.907 (0.039) 0.850 (0.034) 0.839 (0.041) 0.846 (0.047) 0.848 (0.041)

not over-select the features. Thus the proposed method is better and more stable compare with other
existing methods in this task.

9 Proofs of Upper and Lower Perturbation Bounds

Proof of Lemma 2 Let U =

where 01 = =

u; uj
diag(As, ..., Ap).
Now let

where |e| < 1 is a parameter. Let the eigenpairs of (

[fll,ll27 PN

u,], A = diag(A1, Az, . ..

UYAU = A, UTBU =1,

. Denote Uy = [U1,us], Uz = [ug,...

E=BU,[25]UTB

where p1 > o, a, 5 € R. Denote ﬁl =

and

In other words, the eigenpairs of (A, B) are (11, 1), (2, 02), (A3, us), . ..

On one hand, using (21) and G; =

On the other hand, using [ ! | is the leading eigenvector of < [’\; ;z] , [_16 71

get

AU, =

= BU; |

= BU, diag(pu1, p

AU, =

[G1, 0] =
(A+E)U, [L7

2l
=B+ ]

(A+ E)U,
= BUA, =

1
ul Bu;

1]
]dl
)

= AU,

F=-F
)\1 €
€ )\2 —

Up [} 1]. It follows that

=80 [ 5] a Y]

(B + F)UsA,

, by calculations, we have

)

al

diag(p1, p2)
M1,M2)

= BUyAs.

2

VIIEu[? + [[Fui]? < V2e|| B|.

?For simplicity, we may use || - || instead of || - |2 in the proof.

AL +1
Al — A2

16

e+ O(e).

, Ap) be such that

7()‘p7up)-

(20)

, Uy, A = diag(A1, A2) and Ay =

21

e ) be (11, [L])s (p2, [7]),

(22)

] ), by calculations, we

(23)



Using (20), we have

@] < |01 ][V/1+ a2 < [|B72|[|BUL V1 + a2 < ||B~%|\/1 + a2 (24)

Denote Us = [ug, ..., u,] and Az = diag(As, ..., A,). By calculations, we have
. - a) 1 _1 - UfBa, || ® @ © o
fsinO(ur, )| @ ((UF B U By > A0 PR el ol
i [l Bl= [l Bl (1+a)k
(25

where (a) uses (20) and (5), (b) uses (20), (c) uses (24).
Now using (22), (23) and (25), we get

1 M +1
— €
VE AL = A2

A1+ 1) cos ¢ cos ¢ \/HEulH2 + ||Fuy|?
V25| B| sin(¢1 — ¢2)

1o > | +O(e).

(26)

|Si1’10(1117 ﬁ1)| Z

Simple calculations give rise to

(14 A1) cos 1 = V2sin(gs + 1) = 1,
cospa 1 S 1 1

= > .
Omin(B) Tmin(B) V1+ )‘% B Umin(B)\/l + /\% - \/||AH2 +[|B||?

Substituting them into (26), we get

(OF3

sin(¢1 — ¢2) Ol

| sin@(ul, ﬁ1)| Z
The conclusion follows immediately.

Proof of Theorem 1 In this proof, we use [x] to denote the subvector of x with entries in set & and
Xk is the submatrix of X with both row and column indices in /. Let X be a superset of S with

IK| = ¢ < s + k, denote the eigenpairs of (A, B) and (A, Bic) by (pu1,w1), . . ., (jue, wy), and
(11, 1), .- ., (Jte, We), respectively, and puq > -+ > g, iy > -+ > fip. We consider case = ) and
# () in order.

Case = () Insuch case, K = 7. Consider (Ax, Bx) and (Ax, By ). Obviously, [u]ic and [x,]xc

are leading eigenvectors of (Ax, Bx) and (A, B ), respectively. Without loss of generality, let
|[ui|| = 1. By Assumption A1), we have

VIIEclcl? + [ Felulcl? < VI Exl? + [ Fil? < eck
Then it follows that

o - VBl F TPl _ coc o

K K
By Lemma 1, we have

Cux &

_Lurdk 28
sin(¢1 — ¢2) 29

| sin 0([uy]ic, [x4]x)| <

V2 AP +IBx|?)

C

where C,, x = , tan ¢Z2 is the second largest eigenvalue of (g)c, E,C) Combining

(27) and (28), we have

ev/2([[Ax|? + ||{9/cH2).
Ck sin(¢r — ¢2)

|sinf(uy, x.)| = |sin 0([u1]x, [x]x)| <

Case # () First, similar to Case = (), we have

. . e/ 2(][ Ac|? + | Bc[?)
| sin 6([uy]xc, w1)| < o sin(dr — @)

. (29)
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Second, without loss of generality, let ||x.|| = 1. Taking [x.]x as an approximate eigenvector of
(A, Br), we are able to give upper bound for | sin 6([x.]xc, @1 )| as follows. Let

r = Ax[x.Jx — pBr[xx, (30)
it is easy to see that
[x.]kr = 0. @31
Now let
~ G ~ oG
_ T T _ _ P
Direct calculations give
~ -~ (a) ~ O r ~ DT
A E * :A * - - *B * — T 5 — Px B *
(Ak + E)[x.Jx = Axlx:x iz 7 K[ + 7 1552 P ( K[X]K+1+p3)
Qe (B + F)x.)x, (33)

where (a) and (c) use (31) and (32) (b) uses (30). In other words, (p., [X.]x) is an eigenpair of
(Ax, Bc) = (Ax + E, Bx + F). Next, we show that (p,, [x,]xc) is the leading eigenpair.

Using (31), we know that {H’;—H, [X.] zc} is orthonormal, then it follows that

Gl =il [

Using (30), by calculations, we have

Az e sbls 1=l ° | B
7| = = ||~ ~ = §éc.  (35)
Il = H[z‘k nxds — pBigxds A %7 — peB o)X g *

e le H[x*]’wtn]TH = Il (34)

Now using (32), (34) and (35), we get

1Bz + 1 Fle = IS _ 96 (36)
VItp? 1402
. 5
Since arctan p, > arctan us + arctan € 4 arctan i we have
)
arctan p, > arctan fis + arctan ——— > arctan [is. 37
P fl2 N flo (37
i.e., (p«, [X«]x) is the leading eigenpair of (E;C, E,C) Then using Lemma 1 and (36), we get
V201 A2 + | Bic|?) 6
| sin O([x4]1c, w1)] < (38)
b sin(de — b))V
where ¢ = c(g;c, E;c) Recall the following fact [25].
Let (A, B), (A, B) be two symmetric matrix pairs, then it holds
e(A, B) — (A, B)| < /1A~ A3 +1|B - BI3
Thus we have
A~ ~ fa = a (SE
o — e > —\/ | B2+ |12 @ - =X,
V14 p2
where (a) uses (36). Substituting it into (38), we get
V2O A + | Be?) 5
(39

|sin9([X*]K7w1)| S m 5 bln (b* (52)
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Finally, by calculations, we get

|sinf(uy, x.)| = |sin0([u1]x, [X«]x)|
< |sin@([ui]x, w1)| + | sin O([x]ic, W1)],

528
1+ p2’

where (b) uses (36). Combining them with (29) and (39), we arrive at the conclusion.

= ) _ [ - ~
\/2(\|A;c||2 +1Bkll?) < 2\/||A,<2 + 1Bl +

10 Characterization of Penalty Function

By a closer look at family P, it is not hard to see that any function py € P, satisfies the following
properties:

1 p, is locally equivalent to L1 norm around 0;
2 py is increasing and satisfies the uni-variate triangle inequality;

3 pa(z) is a constant function when z is large enough.

We first show the local equivalence between py and L1 norm. For each py € P,, it holds that there
exist constants ¢y, co and dg := co (constants may depend on p)) such that

cips (z) < AN%z? for all z; (40)
MNa? < eopi () for |z| < 8. (41)
For particular penalty function, we can easily obtain c1, co and dy:
SCAD: ¢; = 1; ¢co = 1 with §p = A.
MCP: ¢; = 1; ¢co = 4 with 50 = al.

Proof of (40) and (41). First, (40) is obvious. This is because
x x
pa(z) = / pa(t)dt < / Adt = Az
0 0

for any positive x. As a results, we can easily take c; = 1. Next we prove (41),

palz) = /Omp;\(t)dt > /Of(/\ — kt)dt = Az — ng > \r — %x = %)\x
for any 0 < x < A/k. Thus, we can take co = 4 and 6y = A/k.
Next we show that py () satisfies univariate triangle inequality, i.e.,
pa(z +y) < pa(x) +pa(y) (42)

holds for any z,y € R.

Proof of (42) First notice that |z + y| < |z| + |y|. Thus px(z + y) < pa(|z| + |y|). So it suffices to
show that px(|2[ + [y]) < pa(z]) + pa(lyl) = pa(e) + pa(y).

By integration, we have that

lz|+|yl
p,\(t)dt

pa(lz] + ly[)

|| lyl

’

pa(t)dt + py(t)dt

palz]) +palyl)
= pa(@) +pa(y),

where we use the monotonicity of p, () and symmetry of p ().

1
B
=
3.
=
QL
~
+
T
8
+
=
=
S
=
QU
5N

o
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11 Proof for Estimation Bounds

Difference between eigenvalues. We first give the bound between Xz and )\;. By Theorem 3.2
in [25], we know that

[tan~' (X;) — tan~' (\;)] < sin™ (Cr1 g7 (43)
with e = /|| E||3 + || F||3. Thus, we get

- 1 =< 44

Ai — A = (1 + tan (9))s1n (C(A,B))’ (44)

where 6; is some angle between tan~*(\;) and tan=1(\;).

Difference between eigenvectors. The bound of sin 6(1;, u;) can be obtained from Theorem 2.1
in [28]. We know that

V2(/[[A% + B2 /[ B3 + IIFquz

sinf(u;, u;)| < (45)
|sin 6 < (A, B)c(A, B) d;
where ¢; is the min;;{d.(X;, A;)} with chord distance d.(z, y) defined as Tt
Therefore, the bound between u; and u;:
[u —wl; = (@ —w)" (W —w)
= 2—cosf(us,uy)
< 2 —cos 9(u1,u1) < 2sin? f(ag,uy). (46)
Difference between the re-scaled eigenvectors. We recall the re-scaled vector u;, =

u; (uf Buy) /2 and define the corresponding perturbed version w; = 1 (uf By )~'/2 We can

bound the difference between u; and 11; as follows.
Jurs — 1l
|uy(uf Buy)~ Y2 — @y (uy Buy) 2|, (47)

(uy Buy)~ 1/2(“13“1) 1/2H1’—1(iv11§l~11)1/2 —ﬁ1(ulTBu1)1/2||2

< (ufBw) V2 B) 2 (luy — |2 (u] Buy)'/?
|ﬁ1T§u1 —ug Bul\ |u1T§u1 —uf Bu |
(@f Buy)'/2 + (uf Buy)V/2  (uf Buy)/2 + (ulTBul)l/Q)
< (uf Buy) V2 (@ Buy) V2 (g — @fo(u] Buy) 2
20 Bl — wis BBl
(af Buy)'/? + (uf Bup)Y/2 * (uf Bup)'/? + (uf Buy)/?
< Ci(B)|[uy — w2 + Co(B)|IB - Bll2, (48)
where
C1(B) = (uf Buy) ™2 (i Bity) 2 (ul By /24— 2Bl
(af Buy)'/2 + (uf Bup)'/2
and
Ca(B) = (uf Buy) ™2 By) "2/ ((uf Buy)'/2 + (uf Buy)'/?).
Remark: C1(B) =1if B=B = I.
Characterization of ti; By recalling the definition of i; that
u; = arg max foix; subject to x'Bx = 1. 49)

x€R?, [|x[lo<sn
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Next, we show that S C supp(1;). We prove this via using contradiction method.
Denote /5 := 11; A; and denote js := MAX, ey supp(x) =S, xT Bx=1 xT Ax. By the definition of 1,

we have p > ps. Denote S, := supp(11;). Then by the perturbation results, we have that

p < Ai(Su) + O(|E[Su, Sulllz + F[Su, Sulll2), (50)
where A1 (S,,) is the leading eigenvalue of matrix pair (A[S,, Su], B[Sy, Su]). We also have
ps > M + O(IELS, S]] + FIS, S]]»). 51)

By Condition that \; > A(S,) when S ¢ S, and the fact | E[S, S]||2 + F[S, S]|l2 + || E[Su, Sulll2 +
F[S.,Su]|l2 < 1, thus p < ps. This contradicts with the definition of 11;. Hence we conclude that
S C supp(y).

Proof of Theorem 3 Similar to the notations in the previous section, we define the truncated vector
Ug such that g [S] = 0 [S] and Gx[—S] = 0 and let G_x = Gy — Gx. We also define some
constants by := maxy:|i|l,<s, | Bxll2 and by := maxy| x|, <s, (Bx) ™| which are related to
underlying matrix B.

We first construct an auxiliary vector @, such that
A = A A = A
. . u; Bug + 2u;-Bu_
u, = alg, a = \/ K2 7K K K. (52)

We can similarly verify that

a'Ba, = ukBug+20kBa g
< afBu; <1.
We also know that
loslle = [0a[=Sull2 < V2" sin 0, w).
Additionally, we can also compute that
u'Aa, = wAa; —éTa_g

= p—&tg, (53)

~ ~T ~ ~ ~
where € := Aﬁ_K—FgAB—QﬁTe%% Bug and €45 = Aug — pBug.
Kk Buk

For € 4 5, we know that

|EasSulll = ||A[Su, 0k — pBISy, Jak]|2
= [JA[Su, Tk — A[Su, |2 + [|AB[Su, Tt — pB[Su, k]l
< (| As,ll2 + Al Bs, ll2) [k — @l
< 2pbiby %81 — wy o
Therefore,
IESulllz = |A[Su,:J0_k + €ap[Su] — QMBﬁKHQ
Uy Blug
< s, llalla- k2 + EaB[Sulllz + 2(b1b2)/? [ Eap[Su]l2
< (14214 2(bibe)V2)) pbrba iy — w2

C1(b1,ba) |y — uy |2, (54
which is O(e). Therefore, together with (53), we have

a'da, = p-la g
> 5= Oy, b)Y ? iy — uy 2
> §— Chbr,bo)|[ir — w3 (55)

21



with C4(by, ba) := (1 + 2(1 + 2(byba)/2)) pby bs.

We know that x can be represented as ;101 + ... + dy, Us,,, where [Q1, ..., Uy, | = [ﬁl, coy g, ]
(UTBU)~1/2 are the eigenvectors for (Ag, , Bs, ) corresponding to eigenvalues Ay, ..., A, . By the
optimality of X and the fact that ﬁ;FB u, < 1, it must hold that

—xT A% + pa(%) <~} Al + pa(iy). (56)

This gives us that

=Y
)
>
»
3
A

—ar Aa, + py (@)
(1— )(>\1 >\2) < e askllz + palty),

70&1)\1

where we use the fact that \; = p-

Notice that )\1 > A —¢€ and Ay < )\2(143 ,Bs,) + € < Ay + e Itleads to A= Ag > (A — A2)/2.
Therefore, a7 > 1 — ;2 {[[¢"a x|l + pa(@,)}. In other words, a7 > 1 — O(|S|A?). This
implies that

%X — a2
< fx =yl o - wgsfe
< bl/Q(\/(l_d1)2+d§+...7d§+||fl1—uls||2)
< 1/2 \/2 [(1+an) + [[Gr — ugsll2)

= O(V/ISIN). (57)

Thus the estimator is consistent.
By the condition that min{u, [j] : j € S} > +/|S|A, it implies that
PA(2) = pa(urs) = [S|pa(vA), (58)

since u15[S] > +/|S|A element-wisely. In addition, we observe that py(1Q,) is no greater than
|S|pa(yA) since @, has at most |S| non-zero elements. By these facts, we can improve the error
bound of ||X — uy,||2. Again, by the definition of X, we have

—XTA% + pa(%) <~} Ad, + pa(@,). (59)

It gives us that

—041)\1 —a? s,

AT 7oA
—u, A,

(1—041)()\1 X)) <€Akl

iS\Q ||ET4_ x||2. This implies that

IN

Therefore, &3 > 1 — 3

% — g2
<z =gz + ||t — ugsl|e
< bl/2 1—a1 )2+ a2 + ..., a2 + [|fy — ugsl2
= 1/2,/ \/MJrHul—ulsHQ
< OO (4201 + 2(b1b2)1/2)brba/ (At — Aa) + biba + (bib2) /)63 |y — w2 + 3/ B — B2,

where the last inequality uses (48) by treating 117 as ;. (This is valid since supp(u;) C supp(i1)
and 0] By = 1.) This concludes the error bound.
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Proof of Theorem 4 Next, we show that X satisfies the oracle property. We abuse the notation of
ux and u_g by letting U be the vector such that Uk [S] = X[S] and U [S] = 0, where S is the
support of u;. Let u_j = X — Ug. Define €45 := AUy — A\ Bug.

Consider a candidate solution Uy = ol g, where coefficient o will be determined later. We aim to
find a U such that

g Aty > XTAR—|[i_kl2- O(e) (60)
and

g A, < 1. (61)

2U% Bi_ g

We consider to take a? = 1 + . Then we can compute that

4T Biig
ﬁgBﬁo = OéQﬁ};BﬁK
L BU K\ 1~
= (1+ ‘AI; ~— U Bug
uy Bug
= UpBlg +2uxBi_g
< X'Bx<1.
We can also compute that
ﬁOTAﬁo = Oz2ﬁ’[I;AﬁK

QQ()\BGK —|-/6\AB)TGK
= QQAGE{BGK + az/e\EBﬁK
)\ﬁ;r(BﬁK + /\G}EBG_K + Ozzg:gBﬁK
IaT ~T ~ IaT o ~T ~
= (ANugB+e p)uk + (AugB +€4p)u-k
T~ T~ 2T ~
—€uxpUK — €xpU_K + « €EapUK
= xTAX - GTKAG_K — E\EBGK — %\EBG—K + (XQ/E\EBﬁK

TRe T i - 0L BU_k ¢ -

= XTAX — UTKAU_K — €£BU—K + %6331]]{
uy Bug

= xTAx —Tu_g.

~ T = ~
/\._ —~ ~ € uK —~
Here ¢ := Au_x +€ap —26§B§ﬁ Bug.
xBuk

For €45, we know that
[all = |4k — X\ Bk
|[Aux — Au; + A\ Bu; — A\ Bug||2
= ||Aug — Auyll2 + ||\ Bu; — M\ Bugkl|2
(IAll2 + Al Bll2)[[dx — a2

IN

We can further bound ||Ux — 12 by |[Ux —X||2 + [|X — w1, ||2 + ||u1, — U1 |2 which is O(e). Thus,

T ~ %\EBGK SN
H?”Q = ||A117K+€AB—2#BUKH2
/\T ~
uy Bug

< JAlllG-k 2 + [Easlle + 21 B2 Gk l2l[€as]l2
< [ All2l-kllz + (1 + 21B2l1B7 [l2)[[€a5]l2. (62)

which is O(e). Therefore, vector U satisfies both (60) and (61).
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Observe that

—xTAZ + pA(R)
> —T Ao - CVeli_xla +pa(®)

—tiy Atig — CV/e[| Tk |2 + pa(To) + pa(Ti_k) (63)
> —tg At — CVe|[u_gll2 + pa(Tio) + eA[G-x |1 (64)
>~ Aty + pa(fo), (65)

where (63) uses the fact that py (Up[S]) = pa(X[S]); (64) uses the local equivalence between py and
L1 norm; (65) holds when A >> +/e. The strict equality holds as long as U_ x = 0. In other words, X
should have the same support as u;. This completes the proof.

Proof of Theorem 5 By Theorem 4, we know that the support of x is exactly equal to S. In addition,
by Theorem 3, we know that the estimator is consistent. It implies that py(X) = px(u;). Therefore,

X is equal to arg miny..[—sj—o xT Ax subject to xTBx < 1. In other words, %[S] is the leading
eigenvector of submatrix pair (1215, BS). By applying Theorem 1, we conclude the proof.

12 Proof of Results in Section 7

The following lemma from [35] characterizes the curvature of objective function.

Lemma 3 Suppose matrix A has the following spectral decomposition Uy AU + Us AyUY with
Uy € O(p,r) and Uy € O(p,p — r). (Here O(p, d) is the space of p by d orthonormal matrices.)
Let ¢ := min; A1[j, j] — max; As[j, j]. Then it holds that

1
(AT (WUT ~ X)) > LoUT - X (66)
where X is any matrix satisfying || X||2 < 1 and || X ||« < 7.

Proof of Theorem 7 We first define a few more auxiliary quantities, U, = Uy(UFBUy)~Y/2,
X =U,Uf. and Ay = (UF BU,)Y2A, (UF BU;)'/2. Next we give the upper bound for || U1 — Uy |2,
|X — X2 and ||A; — Ay]|2. Specifically, we have
1Ty = Uill: = [U:(UFBU) 2 = Uiz
< Nl (UFBU)Y? = T)o||(U BUL) 22
< C|U1|2/UF BUy = I|)2||(UF BUL) 2|2,

X - X[l = ||[?1UlTjU1U1T|| )
= [|Uill2|Ur = Uill2 + |U1][2]|Ur = Utlfz,
and
A1 — Adlla = [(UFBUL)Y2A (U BUL)Y? = Ad 2

(U BUL)Y? = I||a[| Ay (U BU)Y 2|12 + [[Aa|l2||(UF BUL)Y? — I

<
< CUUFBUN)Y? |2 + D)||A1||2|[(UL BUL) — 1|2

We construct A = BU; A;UT B. Then the infinity norm || A — AJ| can be bounded by
A= Ao < A= Alloo + |4 = All
|BUIAUY B — BUIAUY Blloo + [|[A = Al|o
(B~ BT Bllow + [ BUMUT (B — Bl + A~ Al
MIBT2IBY2(1([1Blloo + [1Blloc) VISIIB = Blloo + |14 = All, (67)

INIA
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where the last inequality uses | BU; A UL (B —B)|loo < M [|B~ 2| BY2]|| Blloo/IS]| B = Bllso
depending on the fact that | U A, U7 B[:, 5]|| are bounded for each j. This is because that || U B||s <
| BY/2||. Thus ||(Uf B)ej||2 < || B/?||||le;||2, where e; is an one-hot vector with jth entry being 1.
Additionally, it is easy to see that A; is bounded by \; and ||U;||; is bounded by || B~'/2|5. Thus
|U1 A UL B, §]||2 is bounded for each j.

By the optimality of X, we have
tr(AX) — pa(X) > tr(AX) — pa(X).
Let A = X — X and make the rearrangement. The above equation can be written as
—tr(A, A) < pa(X) = pa(X +A) +tr((A - A)A). (68)
Define the support set 7 =S X S € [p] x [p]. For the first term of (68),

PAX) =pA(X +A) = pA(X[T]) = pA(X[T] + A[T]) = pA(A[T*])
< pA(A[T]) = pA(A[TT).

For the second term of (68), we have tr((A — A)A) < ||A — Al|so||Al1. Putting together, we have
—tr(4, A) < pA(A[T]) = pA(A[T]) + | A = Alloo]| Al (69)

By the local equivalence between py and A|x

, we have
—tr(4, A) < A|A[To]llh — el MA[TE + [ A — Al | Al (70)
where To = T U Tiarge With Tiarge = {(4, ) : |A[d, j]| > vA}. We can observe that
|Tiarge| < C|SP?, (71)
for some constant C'. This fact will be proved later.
Next, by Lemma 3, observe that
—tr(4,A) = tr(4, X —X)
= tr(gUlAlUFE,UlUIF*X)
_ w(BVRU A UTEY2, B0, 0T B — BU2R B2
> ZBPAB;
Ar = ~
> IBEABYE. (72)

The last inequality holds since A and X are close. The right hand side of (70) is bounded by
2¢2 M| A[To]|lx which is further bounded by 2¢3|S|A||A[7o]|| 7. By these facts, we have that

A | BY2ABY?|1% < 8eal SINA[To] | - (73)

Additionally, (70) further gives the cone constraint.
IA[TG I < 4ea/er[[A[To] - (74)

Following the proof technique in the compress sensing [4], define the index set 71 C ([p] x [p]\70)
which correspond to the entries with the largest absolute values in A. Similarly, we define 7 (k > 2)
sequentially such that 7y is the set of indices corresponding to ¢ largest absolute values in A outside
U< Ti- By triangle inequality, we have

|BY2ABY?|p > ||BYV2A[To1|BY2||p — > IBYV2A[T]BY?|
k>2

Ohin (250 + O ATor] | P = 0500 (t) D IIAITH] -

E>2

v
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In above, we use the following quantities

T T
B uBu | p u Bu
k) = — in(K) = — 75
Pmaa () 1= S o T Pmin £) luloSkuro T 7
which are known as the restricted eigenvalues for positive definite matrix B.
By the definition of 7} and cone constraint, we have
M NATIE < VED AT
k>2 k>2
1
< —= > AL
Vi k>1
< (4e2)/(VEer) | A[To) Iy
< (4Ce)/(VieD|SIIATon] - (76)
Hence, | B'/2AB'/2| | is lower bounded by x||A[To1]|| with
K= Opin(ClS| + 1) — (4Cc2|S))/(Vicr) dma (1) a7

Here & is a strictly positive constant when perturbation error € is small enough. Together with (70),
we have

S|A
ATl < 052 s)
Together with (76), we have
SIA
I1Allr < ClAT]lr < 15 79)

by choosing large ¢ and adjusting the constant C.

Now we go back to show the fact that |7g| is bounded by C|S|?. We consider the following two
situations.

1. When B is not singular, then || B~!|| are bounded by some constant c;. Therefore, by (69) and
(72), we have

Ar 1 N T 3
1o, 18I < GISPYA® = pA(AIT]) + 14 ~ All<l|All

Since py () > ||A — Al|o |2| when |z| > v\, then we have

Ar 1 ~ o
1 IAITOIE < SISPyA* + 1A = Alloo | AT -
Cp
Notice that each element of |A[7]| is at least yA. Then éf‘TTbHA[%]H% — 1A = A|| s IA[TS]]]1 is

lower bounded by |75| - v2\? times some constant. Then we must have 7| - 72A? < 1[S|2yA2. It
implies that | Tj4rge| < C|S|?. Sois |To).

2. When B is singular, by using condition that e,ppr0r < A, We have
. 1
PAX) < €ppron + 5CISIPA™. (80)

Thus we know there are at most C|S|? entries in | X | are larger than y\. It indicates | Tjarge| < C|S|.
Therefore, we have proved (71).

Byproduct: space perturbation We know o, 1(X) = 0 and
o(X) 2 o(UUT) - |X = Xl ~ [UTT ~ UUT 2.

Thus O’()? ) is lower bounded by some positive constant. By Wedin sinf theorem, we then have
2|X -~ X|r
UT()?) - UT+I(X)
by adjusting the constant C. Here Px is the projection matrix on the column space spanned by X.

< CO|X - X||r, (81)

1P, — Po,llr = 1Py, — Po,llF <

26



13 Proofs of Propositions 1 and 2

We provide the proofs of Propositions 1 and 2 in this section.

Proposition 1 Let ¥ be the projection of y on to the ellipsoid {x | xT Bx = 1}. Then ¥ has the
following form

y=0BB+1)"y,
where 3 is a scalar which is the solution to the equation 1 = j (d ééfg]l))z where y = UTy;
B =UDU" and D = diag(dy,...,d,).

Proof of Proposition 1 Since ¥ is the projection of y is onto the ellipsoid, then we must have that
Yy — Yy is orthogonal to the tangent space of ellipsoid at y. By straightforward calculation, we know
the normal direction of the tangent space at y is By. Thus, we must have that

y -y x By.
In other words,
y = (BB+1)y
holds for some constant /3. Notice that ¥ is on the surface of the ellipsoid. Then

y ' (BB+1)"'B(BB+1)"y
= y'UBD+1)"'D(BD+ 1) Uy,

1

where B has eigen-decomposition B = UDU™'. Therefore, we have
d;(y[4])?
1= Z i (Y15]) ’
7 (ﬂdj + 1)2
with y = UT'y. This concludes the proof.

Proposition 2 The limiting point returned by (16) is the stationary point of sub-problem (15).

Proof of Proposition 2 Notice that the objective

arg min gllx — 293+ (v (x — 21) —x" Ax (82)
can be rewritten as
. n
arg  min_ §Hx — 202 4+ (y)T(x —20) — v X),x (83)

where XTX), = Aand V = {v : |v|| < || Xnx|}. If % is the solution to (82), then (X, V) is the
solution to (83) where v = X %. Therefore, we only need to solve (83). We iteratively optimize
with respect to v and x and get the following update rule,

t4+1
20 _ y® - X}?Ufnfl)

plt+1) ,
" n
xS = (BT Bs, + 1) bETI[S,),
v = x (D), (84)

By simplification, we then obtain (16). This concludes the proof.
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14 Convergence of NC-SGEP

Recall our optimization problem,

auin —xTAx +pa(e) £y (x - 2) + 3 lx 23
+ool{x" Bx > 1} + co1{||x|o > sn}, (85)
we can write our Lagrangian function £(x,2,y) as
Lix,2,y) = g(x) + h(z) +y" (x = 2) + ] [x — 2|, (86)
where g(x) = —xT Ax is a L-Lipschitz smooth function over domain D = {x : x : ||x]o <

sn;xT Bx = 1} for some constant L, and h(z) = p(z) is a non-smooth function with a convex

domain. Here constant L can be bounded by norm ||( B[S, S])~'/2A[S, S](BIS, S])~'/?||; for any
subset S with |S| < s,,.

Furthermore, we know that both g(x) + % [|x||* and h(x) + %2 ||x||? are strongly convex for a large
constant kg. By the initial condition, we have that y0 =0,x% =29 and supp(xo) = §; contains
the true support set. By solving x', we can see that supp(x') = supp(x?) = supp(z(?)). Then, z'
is again a sparse solution with supp(u;) C supp(z') C supp(z”). By repeating this procedure, we
know that supp(S;) = supp(S;—1) = supp(S1). Thus in the following, we only need to work on the

restricted space {x : xT Bx = 1,x[—8;] = 0}. Then it becomes fixed-support ADMM algorithm
without worrying about the changing support issue.

We then can show that
[y =yl < Llx"™* = x"]. (87)
This is because, by the optimality of x'*!, we have
Vo(x'*) +y' +n(xt -z = 0.
By noticing the update formula that y*+! = y(®) 4+ n(x!+1 — zt+1), we get

Vgt = -y

Therefore,
[y =y = [IVg(x"*1) = Vg(x")|| < Llx"" — '],
and it leads to (87).
Next, we show that
1 1 1 L? o 1 2 7 1 2
LOH 2y ) = £(x 2 yY) < (= D =2 - Tatt -, s9)
n

where 7y is a positive constant which will be explained later.

We split the successive difference of Lagrangian function by
,C(XtJrl Zt+1 yt+1) _ L(Xt Zt yt)

The first term of (89) can be bounded by

ﬂ(Xt+1, zt—i—l7 yt—i-l) _ E(Xt+1, Zt+1, yt)

_ <yt+1 _ yt,Xt+1 _ Zt+1>
1

= ;Ily“rl -y'|?
LQ

< Tttt 2. (90)
n
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The second term of (89) can be bounded by
‘C(Xt+17 Zt+17 yt) - E(Xta Zt7 yt)
_ L(XtJrl, Zt+1, yt) o ,C(Xt, Zt+1, yt) + ﬁ(Xt, Zt+1, yt) o L(Xt, Zt, yt)

< <V,C(Xt+1, Zt+1,yt)7xt+1 o Xt> o %”XtJrl o Xt||2
(2 — ) — 2z — 2| o1
v v
< gl =X - Sl -2 (92)

where (91) holds since the £ is a y-strongly convex function of x; and x by assumption for some
constant 7. (This is true since we can take 7 large enough to make the lagrangian function strictly
convex. v may depend on 1) and v > 1 — L.) and (92) holds since that (VL (x!*!, z!+! yt) xi+1 —
xt) = 0 and (¢'*1 28! — 2!) < 0 by the optimality of x{ ™, x} and convexity of the domain. Here
£+1 is the subdifferential of £(x!,z,y") at z'*!. Summing (90) and (92), we get the desired result,
i.e., (88) holds.

Third, we show that £(x',z',y") is lower bounded by some constant f. By definition of
L(x!HL 2! yi*1) we have

E(Xt+17 Zt+1’ yt+1)

= h(2Y) + (g + (v X = 2 4 Dk gt

= h(@) + (g + (Vg ), 2 — ) 4 Dk 2 (93)
>zt +g(z) (94)
= f(z't) > f. 95)

Here, (93) uses the fact that y'*! = —Vg(x!*!) and (94) uses the Lipschitz continuity of g when
n > L. Lastly, (95) holds since f := miny h(x) + g(x) is the lower bound of the objective function.

Therefore, by above results, we know that £(x?, z!, y*) monotonically decreases and converges to
some limit. In fact, we can further show that

}i_r}r(l) |x' —z'|| — 0. (96)
Since we know that
L2
Z{@ = X —ztn?} <o ©7)

t=1
and both 7 — %2 and ~y are positive, then it immediately leads to that

li{n [x*t! —x!|| = 0 and li{n |zt — 2t — 0.

Since L||x!*! — xt|| > ||yt — y!||, it further gives
lim [y —y'|| = 0.
In addition, note that y'*! — y* = n(x!*! — z!*1), thus
li%n |x" —z'|| — 0,
this concludes the proof of (96).

Recall the definition that T'(¢) be the minimum ¢ such that ||x’ — zt|| < e. Therefore, for any
t€{1,...,T(e)}, we have ||x' — z*| > €. Hence, we know ||x'™! — x*|| > ne/L. Thus by (88), it

leads to
2

L ne
ﬁ(Xt+l,Zt+1,yt+1) _ ,C(Xt,zt,yt) S (; _ 7/2)f'
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Therefore, we arrive at
(L2 y") - f)

T < O Rmy — Ljmne

By taking v = n — L, we will have
(£(x°,2y%) — )
(n/(2L) = L/n — 3)ne’

T(e) <

This completes the proof.

15 Estimation Procedure for Semidefinite Programming

For computation, (P2) can be equivalently written as

min - —tr(AX) +pa(X) + ol{|[Y[l >} + ool {[[Y][2 > 1},
st.  BY?XBY?=Y. (98)
Then the corresponding augmented Lagrangian multiplier problem is
min - —tr(AX) +pa(X) +ool{|[Y[l >} + ool {[[Y][2 > 1},
+tx(27(B'?XB? —Y)) + J|B'*XB"* - Y|} (99)

The procedure for estimation of X via SDP can be summarized as follows. Based on (99), we aim to
solve X, Y and Z iteratively.
a. Update Y: Compute K® := X® 4 (4 4+ Z®)/n and symmetrize K& = 1(K® +
(KM)T). Do the projection Y (*+1) := Projc, . (K®).
b. Update X: Compute H®) := Y (®) — Z(®) /5 Solve the regular penalized linear regression

problem
x(t+) .= arg min [ Bpx — W3+ pa(x),

where x, h(*) ¢ RP” are the vectorized versions of X and H®, respectively. Bp :=
B2 ® B'/? is the outer product of two B/2s. Lastly, transfer x(**1) to the matrix form
to get X (1),

c. Update Z: Z(tHD = Z(®) 4 (X&) — y (1)),
According to Lemma 4.1 in [35], for an arbitrary matrix X, we can find that

p
Proje,. (X) =Y %(0)v;v], (100)
j=1

where X admits eigen-decomposition X = >-7_, Y5viv 1 ;(0) = min{max{~; — 0,0},1} and
is the solution to 3 7 v;(0) = r.
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