
Under review as a conference paper at ICLR 2024

LEARNING OPTIMAL CONTRACTS:
HOW TO EXPLOIT SMALL ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

We study principal-agent problems in which a principal commits to an outcome-
dependent payment scheme—called contract—in order to induce an agent to
take a costly, unobservable action leading to favorable outcomes. We consider
a generalization of the classical (single-round) version of the problem in which
the principal interacts with the agent by committing to contracts over multiple
rounds. The principal has no information about the agent, and they have to learn an
optimal contract by only observing the outcome realized at each round. We focus
on settings in which the size of the agent’s action space is small. We design an
algorithm that learns an approximately-optimal contract with high probability in a
number of rounds polynomial in the size of the outcome space, when the number
of actions is constant. Our algorithm solves an open problem by Zhu et al. (2022).
Moreover, it can also be employed to provide a Õ(T 4/5) regret bound in the related
online learning setting in which the principal aims at maximizing their cumulative
utility, considerably improving previously-known regret bounds.

1 INTRODUCTION

The computational aspects of hidden-action principal-agent problems have recently received a
growing attention in algorithmic game theory (Dütting et al., 2019; Alon et al., 2021; Guruganesh
et al., 2021; Dutting et al., 2021; Dütting et al., 2022; Castiglioni et al., 2022a;b; 2023). Such
problems model the interaction between a principal and an agent, where the latter takes a costly
action inducing some externalities on the former. In the hidden-action model, the principal cannot
observe the agent’s action, but only an outcome that is stochastically obtained as an effect of such an
action and determines a reward for the principal. The goal of the principal is to incentivize the agent
to take an action leading to favorable outcomes. This is accomplished by committing to a contract,
which is a payment scheme defining a payment from the principal to the agent for every outcome.

Nowadays, thanks to the flourishing of digital economies, principal-agent problems find applications
in a terrific number of real-world scenarios, such as, e.g., crowdsourcing platforms (Ho et al., 2014),
blockchain-based smart contracts (Cong & He, 2019), and healthcare (Bastani et al., 2016). Most of
the works on principal-agent problems focus on the classical model in which the principal knows
everything about the agent, including the costs and the probability distributions over outcomes
associated with agent’s actions. Surprisingly, the study of settings in which the principal does not
know all the agent’s features and has to learn them from experience has been neglected by almost all
the previous works, with the exception of (Ho et al., 2014; Zhu et al., 2022; Cohen et al., 2022).

In this paper, we consider a generalization of the classical hidden-action principal-agent problem
in which the principal repeatedly interacts with the agent over multiple rounds. At each round, the
principal commits to a contract, the agent plays an action, and this results in an outcome that is
observed by the principal. The principal has no prior information about the agent’s actions. Thus,
they have to learn an optimal contract by only observing the outcome realized at each round. Our
goal is to design algorithms which prescribe the principal a contract to commit to at each round,
in order to learn an “approximately-optimal” contract with high probability by using the minimum
possible number of rounds. This can be seen as the problem of establishing the sample complexity of
learning optimal contracts in hidden-action principal-agent settings.

Ho et al. (2014) were the first to consider the problem of learning optimal contracts, though they
focus on instances with a very specific structure, as the more recent work by Cohen et al. (2022).

1

Under review as a conference paper at ICLR 2024

Recently, Zhu et al. (2022) addressed the problem of learning optimal contracts in general principal-
agent settings. They provide an algorithm whose cumulative regret with respect to playing an optimal
contract is upper bounded by Õ(

√
m · T 1−1/(2m+1)), with an (almost-matching) lower bound of

Ω(T 1−1/(m+2)), where m is the number of outcomes and T the number of rounds. The result
of Zhu et al. (2022) is very unpleasant when m is large, since in such a case the regret grows almost
linearly in T . Moreover, in the instances used in their lower bound, the number of agent’s actions is
exponential in m, leaving as an open problem establishing whether better guarantees can be obtained
when the action space is small (see also the discussion in (Zhu et al., 2022)).

Original contributions We provide an algorithm that finds an “approximately-optimal” contract
with high probability, requiring a number of rounds that grows polynomially in the size of the
problem instance (including the number of outcomes m) when the number of agent’s actions is a
constant. The algorithm can be easily exploited to achieve cumulative regret (with respect to an
optimal contract) upper bounded by Õ(mn · T 4/5), which polynomially depends on the instance
size when the number of agent’s actions n is constant. This solves the open problem recently stated
by Zhu et al. (2022). Our algorithm works by “approximately identifying” a covering of contracts
into best-response regions, each one representing a set of contracts in which a given agent’s action is
a best response. The algorithm does so by progressively refining upper and lower bounds for such
regions, until they coincide. One of the main challenges faced by our algorithm is that, after each
round, the principal only observes an outcome stochastically determined by the agent’s best response,
rather than observing the action itself. This makes impossible identifying the action played by the
agent. Our algorithm overcomes such an issue by working with meta-actions, which group together
agent’s actions associated with “similar” distributions over outcomes. Such meta-actions need to be
“discovered” online by the algorithm, which thus has to update the set of meta-actions on the basis
of the observed feedbacks. As a result, our algorithm has to adopt a trial-and-error approach which
re-starts the covering procedure each time a new agent’s meta-action is discovered.

Relation to repeated Stackelberg games Our work is related to the problem of learning an optimal
commitment in repeated Stackelberg games (Letchford et al., 2009; Peng et al., 2019). However,
differently from Stackelberg games, in principal-agent problems the principal cannot observe the
action undertaken by the agent. This prevents us from relying on existing techniques (see, e.g., Peng
et al. (2019)) which identify the hyperplanes defining the best-response regions of the follower. As a
consequence, we have to work with meta-actions that only “approximate” the set of actions and we
can only compute “approximate” separating hyperplanes. Such approximations are made effective by
the particular structure of principal-agent problems in which an approximately incentive compatible
contract can be turned into an incentive compatible one by just suffering a small loss (see, e.g.,
(Dutting et al., 2021; Zhu et al., 2022)). This is not the case for Stackelberg games.

2 PRELIMINARIES ON HIDDEN-ACTION PRINCIPAL-AGENT PROBLEMS

An instance of the hidden-action principal-agent problem is characterized by a tuple (A,Ω), where
A is a finite set of n := |A| actions available to the agent, while Ω is a finite set of m := |Ω| possible
outcomes. Each agent’s action a ∈ A determines a probability distribution Fa ∈ ∆Ω over outcomes,
and it results in a cost ca ∈ [0, 1] for the agent.1 We denote by Fa,ω the probability with which action
a results in outcome ω ∈ Ω, as prescribed by Fa. Thus, it must be the case that

∑
ω∈Ω Fa,ω = 1 for

all a ∈ A. Each outcome ω ∈ Ω is characterized by a reward rω ∈ [0, 1] for the principal. Thus,
when the agent selects action a ∈ A, the principal’s expected reward is

∑
ω∈Ω Fa,ωrω .

The principal commits to an outcome-dependent payment scheme with the goal of steering the agent
towards desirable actions. Such a payment scheme is called contract and it is encoded by a vector
p ∈ Rm

+ defining a payment pω ≥ 0 from the principal to the agent for each possible outcome
ω ∈ Ω.2 Given a contract p ∈ Rm

+ , the agent plays a best-response action that is: (i) incentive
compatible (IC), i.e., it maximizes their expected utility; and (ii) individually rational (IR), i.e., it
has non-negative expected utility. We assume w.l.o.g. that there always exists an action a ∈ A with

1Given a finite set X , we denote by ∆X the set of all the probability distributions over the elements of X .
2As it is customary in contract theory (Carroll, 2015), in this work we assume that the agent has limited

liability, meaning that the payments can only be from the principal to the agent, and not viceversa.

2

Under review as a conference paper at ICLR 2024

ca = 0. Such an assumption ensures that there is an action providing the agent with positive utility.
This guarantees that any IC action is also IR and allows us to focus w.l.o.g. on IC only.

Whenever the principal commits to p ∈ Rm
+ , the agent’s expected utility by playing an action a ∈ A

is equal to
∑

ω∈Ω Fa,ωpω − ca, where the first term is the expected payment from the principal to the
agent when selecting action a. Then, the set A(p) ⊆ A of agent’s best-response actions in a given con-
tract p ∈ Rm

+ is formally defined as follows: A(p) :=
{
a ∈ A | argmaxa∈A

∑
ω∈Ω Fa,ωpω − ca

}
.

Given an action a ∈ A, we denote with Pa ⊆ Rm
+ the best-response set of action a, which

is the set of all contracts that induce action a as agent’s best response. Formally: Pa :={
p ∈ Rm

+ |
∑

ω∈Ω Fa,ωpω − ca ≥
∑

ω∈Ω Fa′,ωpω − ca′ ∀a′ ∈ A
}
.

As it is customary in the literature (see, e.g., (Dütting et al., 2019)), we assume that the agent breaks
ties in favor of the principal when having multiple best responses available. We let a⋆(p) ∈ A(p)
be the action played by the agent in a given p ∈ Rm

+ , which is an action a ∈ A(p) maximizing the
principal’s expected utility

∑
ω∈Ω Fa,ω (rω − pω). For ease of notation, we introduce the function

u : Rm
+ → R to encode the principal’s expected utility as a function of p; formally, u is defined so

that u(p) =
∑

ω∈Ω Fa⋆(p),ω (rω − pω) for every p ∈ Rm
+ .

In the classical (single-round) hidden-action principal-agent problem, the goal of the principal is find
a p ∈ Rm

+ , so as to maximize the expected utility u(p).3 By letting OPT := maxp∈Rm
+
u(p), we say

that a contract p ∈ Rm
+ is optimal if u(p) = OPT. Moreover, given an additive approximation error

ρ > 0, we say that p is ρ-optimal whenever u(p) ≥ OPT− ρ.

3 LEARNING OPTIMAL CONTRACTS

We study settings in which the principal and the agent interact over multiple rounds, with each round
involving a repetition of the same instance of hidden-action principal-agent problem. The principal
has no knowledge about the agent, and their goal is to learn an optimal contract. At each round, the
principal-agent interaction goes as follows: (i) The principal commits to a contract p ∈ Rm

+ . (ii) The
agent plays a⋆(p), which is not observed by the principal. (iii) The principal observes the outcome
ω ∼ Fa⋆(p) realized by the agent’s action. The principal only knows the set Ω of possible outcomes
and their associated rewards rω, while they do not know anything about agent’s actions A, their
associated distributions Fa, and their costs ca.

The goal is to design algorithms for the principal that prescribe how to select contracts in order to
learn an optimal contract. Ideally, we would like an algorithm that, given an additive approximation
error ρ > 0 and a probability δ ∈ (0, 1), is guaranteed to identify a ρ-optimal contract with probability
at least 1− δ by using the minimum possible number of rounds.4 The number of rounds required by
such an algorithm can be seen as the sample complexity of learning optimal contracts in hidden-action
principal-agent problems (see (Zhu et al., 2022)).

The following theorem shows that the goal defined above is too demanding.

Theorem 1. For any number N ∈ N, there is no algorithm that is guaranteed to find a κ-optimal
contract with probability greater than or equal to 1− δ by using less than N rounds, where κ, δ > 0
are some absolute constants.

Theorem 1 follows by observing that there exist instances in which an approximately-optimal contract
may prescribe a large payment on an outcome. Thus, for any algorithm and number of rounds
N , the payments up to round N may not be large enough to learn such an approximately-optimal
contract. To circumvent Theorem 1, in the rest of the paper we focus on designing algorithms for
the problem introduced in the following Definition 1. Such a problem relaxes the one introduced
above by asking to find a contract whose seller’s expected utility is “approximately” close to that of a
utility-maximizing contract among those with bounded payments.

Definition 1 (Learning an optimal bounded contract). The problem of learning an optimal bounded
contract reads as follows: Given a bound B ≥ 1 on payments, an additive approximation error ρ > 0,

3The single-round version of the problem can be solved in polynomial time with an LP (Dutting et al., 2021).
4Such a learning goal can be seen as instantiating the PAC-learning framework into principal-agent settings.

3

Under review as a conference paper at ICLR 2024

and a probability δ ∈ (0, 1), find a contract p ∈ [0, B]m such that the following holds:

P
{
u(p) ≥ max

p′∈[0,B]m
u(p′)− ρ

}
≥ 1− δ.

Let us remark that the problem introduced in Definition 1 does not substantially hinder the generality
of the problem of learning an optimal contract. Indeed, since a contract achieving principal’s expected
utility OPT can be found by means of linear programming (Dutting et al., 2021), it is always the
case that an optimal contract uses payments which can be bounded above in terms of the number
of bits required to represent the probability distributions over outcomes. Moreover, all the previous
works that study the sample complexity of learning optimal contracts focus on settings with bounded
payments; see, e.g., (Zhu et al., 2022). The latter only considers contracts in [0, 1]m, while we address
the more general case in which the payments are bounded above by a given B ≥ 1.

4 THE DISCOVER-AND-COVER ALGORITHM

In this section, we provide an algorithm for the problem introduced in Definition 1, which we call
Discover-and-Cover algorithm (Algorithm 1). Our main result (Theorem 2) is an upper bound
on the number of rounds required by the algorithm, which we show to grow polynomially in the size
of the problem instance when the number of agent’s actions n is constant.

The core idea behind Algorithm 1 is to learn an optimal bounded contract p ∈ [0, B]m by “ap-
proximately” identifying the best-response regions Pa. Notice that, since at the end of each round
the principal only observes the outcome realized by the agent’s action, rather than the action itself,
identifying such best-response regions exactly is not possible. Moreover, the principal does not even
know the set of actions available to the agent, which makes the task even more challenging.

Algorithm 1Discover-and-Cover
Require: ρ ∈ (0, 1), δ ∈ (0, 1), B ≥ 1
1: Set ϵ, α, q, and η as in Appendix C.1
2: P ← {p ∈ Rm

+ | ∥p∥1 ≤ mB}
3: D ← ∅, F ← ∅
4: do
5: {Ld}d∈D ← Try-Cover()
6: while {Ld}d∈D = ∅
7: return Find-Contract({Ld}d∈D)

Algorithm 1 builds a set D of meta-actions, where each
meta-action d ∈ D identifies a set A(d) ⊆ A of one or
more (unknown) agent’s actions. A meta-action groups
together “similar” actions, in the sense that they induce
similar distributions over outcomes. The algorithm incre-
mentally discovers new elements ofD by trying to cover a
suitably-defined set P of contracts (see Line 2) by means
of approximate best-response regions Ld, one for each
d ∈ D. In particular, Ld is a suitably-defined polytope
that “approximately describes” the union of all the best-
response regions Pa of actions a ∈ A(d) associated with
d. Each time D is updated, the algorithm calls the Try-Cover procedure (Algorithm 3), whose
aim is to cover P with approximate best-response regions. Try-Cover works by iteratively finding
hyperplanes that separate such regions, by “testing” suitable contracts through the Action-Oracle
procedure (Algorithm 2). Given a contract p ∈ P , Action-Oracle checks whether it is possible
to safely map the agent’s best response a⋆(p) to an already-discovered meta-action d ∈ D or not. In
the latter case, Action-Oracle refines the set D by either adding a new meta-action or merging a
group of meta-actions if their associated actions can be considered as “similar”. Whenever the set D
changes, Try-Cover is terminated (returning ∅). The algorithm continues trying to cover P until
a satisfactory cover is found. Finally, such a cover is used to compute a contract p ∈ [0, B]m to be
returned, by means of the procedure Find-Contract (Algorithm 4).

In the rest of this section, we describe the details of all the procedures used by Algorithm 1. In
particular, Section 4.1 is concerned with Action-Oracle, Section 4.2 with Try-Cover, and
Section 4.3 with Find-Contract. Finally, Section 4.4 concludes the analysis of Algorithm 1 by
putting everything together so as to prove the guarantees of the algorithm.

4.1 ACTION-ORACLE

Given a contract p ∈ P as input, the Action-Oracle procedure (Algorithm 2) determines whether
it is possible to safely map the agent’s best response a⋆(p) to some meta-action d ∈ D. If this is the
case, then the procedure returns such a meta-action. Otherwise, the procedure has to properly refine
the set D of meta-actions, as we describe in the rest of this subsection.

4

Under review as a conference paper at ICLR 2024

In the first phase (Lines 1–6), Algorithm 2 prescribes the principal to commit to the contract p ∈ P
given as input for q ∈ N consecutive rounds (see Appendix C.1 for the definition of q). This is done
to build an empirical distribution F̃ ∈ ∆Ω that estimates the (true) distribution over outcomes Fa⋆(p)

induced by the agent’s best response a⋆(p). In the second phase (Lines 7–21), such an empirical
distribution is compared with those previously computed, in order to decide whether a⋆(p) can be
safely mapped to some d ∈ D or not. To perform such a comparison, all the empirical distributions
computed by the algorithm are stored in a dictionary F (initialized in Line 3 of Algorithm 1), where
F [d] contains all the F̃ ∈ ∆Ω associated with d ∈ D.

The first phase of Algorithm 2 ensures that ∥F̃−Fa⋆(p)∥∞ ≤ ϵ holds with sufficiently high probability.
For ease of presentation, we introduce a clean event that allows us to factor out from our analysis
the “with high probability” statements. In Section 4.4, we will show that such an event holds with
sufficiently high probability given how the value of q is chosen.
Definition 2 (Clean event). Given any ϵ > 0, we let Eϵ be the event in which Algorithm 2 always
computes some F̃ ∈ ∆Ω such that ∥F̃ − Fa⋆(p)∥∞ ≤ ϵ, where p ∈ P is the input to the algorithm.

Algorithm 2 Action-Oracle
Require: p ∈ P
1: Iω ← 0 for all ω ∈ Ω ▷ Phase 1: Estimate
2: for τ = 1, . . . , q do
3: Commit to p and observe ω ∈ Ω
4: Iω ← Iω + 1
5: end for
6: Build F̃ ∈ ∆Ω : F̃ω = Iω/q ∀ω ∈ Ω
7: D⋄ ← ∅ ▷ Phase 2: Compare
8: for d ∈ D do
9: if ∃F ∈ F [d] : ∥F − F̃∥∞ ≤ 2ϵ then

10: D⋄ ← D⋄ ∪ {d}
11: end if
12: end for
13: if |D⋄| = 1 then
14: F [d]← F [d] ∪ {F̃}▷ unique d ∈ D⋄

15: return d
16: end if
17: D ← (D \ D⋄) ∪ {d⋄} ▷ d⋄ is new
18: F [d⋄]←

⋃
d∈D⋄ F [d] ∪ {F̃}

19: Let F̃d⋄ be equal to F̃
20: Clear F [d] for all d ∈ D⋄

21: return ⊥

In the second phase, Algorithm 2 searches for all the
d ∈ D such that F [d] contains at least one empirical
distribution which is “sufficiently close” to the F̃ that
has just been computed by the algorithm. Formally, the
algorithm looks for all the meta-actions d ∈ D such
that ∥F − F̃∥∞ ≤ 2ϵ for at least one F ∈ F [d]. Then,
three cases are possible: (i) If the algorithm finds a
unique d ∈ D with such a property (case |D⋄| = 1),
then d is returned since a⋆(p) can be safely mapped
to d. (ii) If the algorithm does not find any d ∈ D
with such a property (case D⋄ = ∅), then a new meta-
action d⋄ is added to D. (iii) If the algorithm finds
more than one d ∈ D with such a property (|D⋄| >
1), then all the meta-actions in D⋄ are merged into a
single (new) meta-action d⋄. In Algorithm 2, the last
two cases above are jointly managed by Lines 17–21,
and in both cases the algorithm returns the special value
⊥. This alerts the calling procedure that the set D has
changed, and, thus, the Try-Cover procedure needs
to be re-started. Notice that Algorithm 2 also takes care
of properly updating the dictionary F , which is done in
Lines 14 and 20. Moreover, whenever Algorithm 2 adds
a new meta-action d⋄ into D, this is also associated with
a particular empirical distribution F̃d⋄ , which is set to be equal to F̃ (Line 19). We remark that the
symbols F̃d for d ∈ D have only been introduced for ease of exposition, and they do not reference
actual variables declared in the algorithm. Operationally, one can replace each appearance of F̃d in
the algorithms with any fixed empirical distribution contained in the dictionary entry F [d].
The first crucial property that Algorithm 2 guarantees is that only “similar” agent’s best-response
actions are mapped to the same meta-action. In order to formally state such a property, we first need
to introduce the definition of set of agent’s actions associated with a meta-action in D.
Definition 3 (Associated actions). Given a set D of meta-actions and a dictionary F of empirical
distributions computed by means of Algorithm 2, we let A : D → 2A be a function such that A(d)
represents the set of actions associated with the meta-action d ∈ D, defined as follows:

A(d) =
{
a ∈ A | ∥F̃d − Fa∥∞≤ 5ϵn ∧ ∃p ∈ P : a = a⋆(p)

}
.

The set A(d) encompasses all the agent’s actions a ∈ A whose distributions over outcomes Fa are
“similar” to the empirical distribution F̃d associated with the meta-action d ∈ D, where the entity
of the similarity is defined in a suitable way depending on ϵ and the number of agent’s actions n.
Moreover, notice that the set A(d) only contains agent’s actions that can be induced as best response
for at least one contract p ∈ P . This is needed in order to simplify the analysis of the algorithm. Let

5

Under review as a conference paper at ICLR 2024

us also remark that an agent’s action may be associated with more than one meta-action. Equipped
with Definition 3, the property introduced above can be formally stated as follows:
Lemma 1. Given a set D of meta-actions and a dictionary F of empirical distributions computed by
means of Algorithm 2, under the event Eϵ, if Algorithm 2 returns a meta-action d ∈ D for a contract
p ∈ P given as input, then it holds that a⋆(p) ∈ A(d).

Lemma 1 follows from the observation that, under the event Eϵ, the empirical distributions computed
by Algorithm 2 are “close” to the true ones, and, thus, the distributions over outcomes of all the
actions associated with d are sufficiently “close” to each other. A non-trivial part of the proof of
Lemma 1 is to show that Algorithm 2 does not put in the same entry F [d] empirical distributions that
form a “chain” growing arbitrarily in terms of ∥·∥∞ norm, but instead the length of such “chains” is
always bounded by 5ϵn. The second crucial property is made formal by the following lemma:
Lemma 2. Under the event Eϵ, Algorithm 2 returns ⊥ at most 2n times.

Intuitively, Lemma 2 follows from the fact that Algorithm 2 increases the cardinality of the set D by
one only when ∥F − F̃∥∞ > 2ϵ for all F ∈ F [d] and d ∈ D. In such a case, under the event Eϵ the
agent’s best response is an action that has never been played before. Thus, the cardinality of D can be
increased at most n times. Moreover, in the worst case the cardinality of D is reduced by one for n
times, resulting in 2n being the maximum number of times Algorithm 2 returns ⊥. In the following,
we formally introduce the definition of cost of a meta-action.
Definition 4 (Cost of a meta-action). Given a set D of meta-actions and a dictionary F of empirical
distributions computed by means of Algorithm 2, we let c : D → [0, 1] be a function such that c(d)
represents the cost of meta-action d ∈ D, defined as c(d) = mina∈A(d) ca.

Then, by Holder’s inequality, we can prove that the two following lemmas hold:
Lemma 3. Given a set D of meta-actions and a dictionary F of empirical distributions computed
by means of Algorithm 2, under the event Eϵ, for every meta-action d ∈ D and associated action
a ∈ A(d) it holds that |c(d)− ca| ≤ 4Bϵmn.

Lemma 4. Given a set D of meta-actions and a dictionary F of empirical distributions computed by
means of Algorithm 2, under the event Eϵ, for every meta-action d ∈ D, associated action a ∈ A(d),
and contract p ∈ P it holds |

∑
ω∈Ω F̃d,ω pω − c(d)−

∑
ω∈Ω Fa,ω pω + ca| ≤ 9Bϵmn.

4.2 TRY-COVER

In this section, we present key component of Algorithm 1, which is the Try-Cover procedure
(Algorithm 3). It builds a cover {Ld}d∈D of P made of approximate best-response regions for the
meta-actions in the current set D. The approximate best-response region Ld for a meta-action d ∈ D
must be such that: (i) all the best-response regions Pa of actions a ∈ A(d) associated with d are
contained in Ld; and (ii) for every contract in Ld there must be an action a ∈ A(d) that is induced as
an “approximate best response” by that contract. Notice that working with approximate best-response
regions is unavoidable since the algorithm has only access to estimates of the (true) distributions over
outcomes induced by agent’s actions.

The core idea of the algorithm is to progressively build two polytopes Ud and Ld—called, respectively,
upper bound and lower bound—for each meta-action d ∈ D. During the execution, the upper bound
Ud is continuously shrunk in such a way that a suitable approximate best-response region for d is
guaranteed to be contained in Ud, while the lower bound Ld is progressively expanded so that it is
contained in such a region. The algorithm may terminate in two different ways. The first one is when
Ld = Ud for every d ∈ D. In such a case, the lower bounds {Ld}d∈D constitutes a cover of P made
of suitable approximate best-response regions for the meta-actions in D, and, thus, it is returned
by the algorithm. The second way of terminating occurs any time a call to the Action-Oracle
procedure is not able to safely map the agent’s best response under the contract given as input to a
meta-action (i.e., Action-Oracle returns ⊥). In such a case, the algorithm gives back control to
Algorithm 1 by returning ∅, and the latter in turn re-starts the Try-Cover procedure from scratch
since the last call to Action-Oracle has updated D. This happens in Lines 5, 14, and 22.

The ultimate goal of Algorithm 3 is to reach termination with Ld = Ud for every d ∈ D. Intuitively,
the algorithm tries to “close the gap” between the lower boundLd and the upper bound Ud for each d ∈

6

Under review as a conference paper at ICLR 2024

D by discovering suitable approximate halfspaces whose intersections define the desired approximate
best-response regions. Such halfspaces are found in Line 21 by means of the Find-HS procedure
(Algorithm 6), whose description and analysis is deferred to Appendix B. Intuitively, such a procedure
searches for an hyperplane that defines a suitable approximate halfspace by performing a binary
search (with parameter η) on the line connecting two given contracts, by calling Action-Oracle
on the contract representing the middle point of the line at each iteration.

Algorithm 3 Try-Cover
1: Ld ← ∅, Ud ← P for all d ∈ D
2: Dd ← {d} for all d ∈ D
3: H̃ij ← ∅, ∆c̃ij ← 0 for all di, dj ∈ D
4: d← Action-Oracle(p) ▷ For any p
5: if d = ⊥ then return ∅
6: Ld ← {p}, C ← {d}
7: while C ≠ ∅ do
8: Take any di ∈ C
9: while Ldi ̸= Udi do

10: Vdi ← V (Udi) ▷ Vertexes of Udi
11: do
12: Take any p ∈ Vdi

13: dj ← Action-Oracle(p)
14: if dj = ⊥ then return ∅
15: if Ldj = ∅ then
16: Ldj ← {p}, C ← C∪{dj}
17: end if
18: if dj ∈ Ddi then
19: Ldi ← co(Ldi , p)
20: else
21: (H̃, dk) � Find-HS(di, p)
22: if dk = ⊥ then return ∅
23: H̃ik ← H̃
24: Udi ← Udi ∩ H̃ik

25: Ddi ← Ddi ∪ {dk}
26: end if
27: Vdi ← Vdi \ {p}
28: while Vdi ̸= ∅ ∧ dj ∈ Ddi

29: end while
30: C ← C \ {di}
31: end while
32: return {Ld}d∈D

The halfspaces that define the approximate best-response
regions computed by Algorithm 3 intuitively identify
areas of P in which one meta-action is “supposedly
better” than another one. In particular, Algorithm 3 uses
the variable H̃ij to store the approximate halfspace in
which di ∈ D is “supposedly better” than dj ∈ D, in
the sense that, for every contract in such a halfspace,
each action associated with di provides (approximately)
higher utility to the agent than all the actions associated
with dj . Then, the approximate best-response region
for di ∈ D is built by intersecting a suitably-defined
group of H̃ij , for some dj ∈ D with j ̸= i. In order
to ease the construction of the approximate halfspaces
in the Find-HS procedure, Algorithm 3 also keeps
some variables ∆c̃ij , which represent estimates of the
difference between the costs c(di) and c(dj) of di and
dj , respectively. These are needed to easily compute the
intercept values of the hyperplanes defining H̃ij .

Next, we describe the procedure used by Algorithm 3
to reach the desired termination. In the following,
for clarity of exposition, we omit all the cases in
which the algorithm ends prematurely after a call to
Action-Oracle. Algorithm 3 works by tracking all
the d ∈ D that still need to be processed, i.e., those
such that Ld ̸= Ud, into a set C. At the beginning of
the algorithm (Lines 1–6), all the variables are properly
initialized. In particular, all the upper bounds are initial-
ized to the set P , while all the lower bounds are set to ∅.
The set C is initialized to contain a d ∈ D obtained by
calling Action-Oracle for any contract p ∈ P , with
the lower bound Ld being updated to the singleton {p}.
Moreover, Algorithm 3 also maintains some subsets Dd ⊆ D of meta-actions, one for each d ∈ D.
For any di ∈ D, the set Ddi is updated so as to contain all the dj ∈ D such that the halfspace H̃ij has
already been computed. Each set Dd is initialized to be equal to {d}, as this is useful to simplify the
pseudocode of the algorithm. The main loop of the algorithm (Line 7) iterates over the meta-actions
in C until such a set becomes empty. For every di ∈ C, the algorithm tries to “close the gap” between
the lower bound Ldi

and the upper bound Udi
by using the loop in Line 9 In particular, the algorithm

does so by iterating over all the vertices V (Udi
) of the polytope defining the upper bound Udi

(see
Line 10). For every p ∈ V (Udi

), the algorithm first calls Action-Oracle with p as input. Then:

• If the returned dj belongs to Ddi
, then the algorithm takes the convex hull between the current

lower bound Ldi
and p as a new lower bound for di. This may happen when either dj = di (recall

that di ∈ Ddi
by construction) or dj ̸= di. Intuitively, in the former case the lower bound can

be “safely expanded” to match the upper bound at the currently-considered vertex p, while in the
latter case such “matching” the upper bound may introduce additional errors in the definition of
Ldi

. Nevertheless, such an operation is done in both cases, since this not hinders the guarantees
of the algorithm, as we formally show in Lemma 6. Notice that handling the case dj ̸= di as in
Algorithm 3 is crucial to avoid that multiple versions of the approximate halfspace H̃ij are created
during the execution of the algorithm.

• If the returned dj does not belong to Ddi
, the algorithm calls the Find-HS procedure to find

a new approximate halfspace. Whenever the procedure is successful, it returns an approximate

7

Under review as a conference paper at ICLR 2024

halfspace H̃ that identifies an area of P in which di is “supposedly better” than another meta-action
dk ∈ D \ Ddi

, which is returned by the Find-HS procedure as well. Then, the returned halfspace
H̃ is copied into the variable H̃ik (Line 23), and the upper bound Udi is intersected with the latter
(Line 24). Moreover, dk is added to Ddi

(Line 25), in order to record that the halfspace H̃ik has
been found. After that, the loop over vertexes is re-started, as the upper bound has been updated.

Whenever the loop in Line 9 terminates, Ldi
= Udi

for the current meta-action di, and, thus, di
is removed from C. Moreover, if a call to Action-Oracle returns a meta-action dj ∈ D such
that dj /∈ C and Ldj

= ∅, then dj is added to C and Ldj
is set to {p}, where p ∈ P is the contract

given to Action-Oracle (see Lines 15–16). This ensures that all the meta-actions are eventually
considered. Next, we prove two crucial properties which are satisfied by Algorithm 3 whenever it
returns {Ld}d∈D. The first one is formally stated in the following lemma:
Lemma 5. Under the event Eϵ, when Algorithm 3 returns {Ld}d∈D, it holds that

⋃
d∈D Ld = P .

Intuitively, Lemma 5 states that Algorithm 3 terminates with a correct cover of P , and it follows from
the fact that, at the end of the algorithm,

⋃
d∈D Ud = P and Ld = Ud for every d ∈ D. The second

crucial lemma states the following:
Lemma 6. Under the event Eϵ, when Algorithm 3 returns {Ld}d∈D, for every meta-action d ∈ D,
contract p ∈ Ld and action a′ ∈ A(d), there exists a γ that polynomially depends on m, n, ϵ, and B
such that: ∑

ω∈Ω

Fa′,ω pω − ca′ ≥
∑
ω∈Ω

Fa,ω pω − ca − γ ∀a ∈ A.

Lemma 6 states that {Ld}d∈D defines a cover of P made of suitable approximate best-response
regions for the meta-actions in D. Indeed, for every meta-action d ∈ D and contract p ∈ Ld, playing
any a ∈ A(d) associated with d is an “approximate best response” for the agent, in the sense that
the agent’s utility only decreases by a small amount with respect to playing the (true) best response
a⋆(p). Finally, the following lemma bounds the number of rounds required by Algorithm 3.

Lemma 7. Under event Eϵ, Algorithm 3 requires at most O
(
n2q

(
log (Bm/η) +

(
m+n+1

m

)))
rounds.

Lemma 7 follows from the observation that the main cost, in terms of number of rounds, incurred
by Algorithm 3 is to check all the vertexes of the upper bounds Ud. The number of such vertexes
can be bound by

(
n+m+1

m

)
, thanks to the fact that the set P being covered by Algorithm 3 has m+ 1

vertexes. Notice that, using P instead of [0, B]m is necessary, since the latter has a number vertexes
which is exponential in m. Nevertheless, Algorithm 1 returns a contract p ∈ [0, B]m by means of the
Find-Contract procedure, which we are going to describe in the following subsection.

4.3 FIND-CONTRACT

The Find-Contract procedure (Algorithm 4) finds a contract p ∈ [0, B]m that approximately
maximizes the principal’s expected utility over [0, B]m by using the cover {Ld}d∈D of P made by
approximate best-response regions given as input (obtained by running Try-Cover).

Algorithm 4 Find-Contract
Require: {Ld}d∈D
1: while d ∈ D do
2: p⋆d � argmax

p∈[0,B]m∩Ld

∑
ω∈Ω F̃d,ω (rω − pω)

3: end while
4: d⋆ ← argmax

d∈D

∑
ω∈Ω F̃d,ω(rω − p⋆d,ω)

5: p⋆ ← p⋆d⋆
6: pω ← (1−

√
ϵ)p⋆ω +

√
ϵrω for all ω ∈ Ω

7: return p

First, for every d ∈ D, Algorithm 4 computes p⋆d
which maximizes an empirical estimate of the princi-
pal’s expected utility over the polytope Ld ∩ [0, B]m.
This is done in Line 2 by solving a linear program
with constraints defined by the hyperplanes identify-
ing Ld∩ [0, B]m and objective function defined by the
principal’s expected utility when outcomes are gener-
ated by F̃d. Then, Algorithm 4 takes the best contract
(according to the empirical distributions F̃d) among
all the p⋆d, which is the contract p⋆ defined in Line 5,
and it returns a suitable convex combination of such
a contract and a vector whose components are defined
by principal’s rewards (see Line 6). The following lemma formally proves the guarantees provided
by Algorithm 4:
Lemma 8. Under the event Eϵ, if {Ld}d∈D is a cover of P computed by Try-Cover, Algorithm 4
returns a contract p ∈ [0, B]m such that u(p) ≥ maxp′∈[0,B]m u(p′)− ρ.

8

Under review as a conference paper at ICLR 2024

The main challenge in proving Lemma 8 is that, for the contract p⋆ computed in Line 5, the agent’s
best response may not be associated with any meta-action in D, namely a⋆(p⋆) ̸∈ A(d) for every
d ∈ D. Nevertheless, by means of Lemma 6, we can show that a⋆(p⋆) is an approximate best response
to p⋆. Moreover, the algorithm returns the contract defined in Line 6, i.e., a convex combination of p⋆
and the principal’s reward vector. Intuitively, paying the agent based on the principal’s rewards aligns
the agent’s interests with those of the principal. This converts the approximate incentive compatibility
of a⋆(p⋆) for the contract p⋆ into a loss in terms of principal’s expected utility.

4.4 PUTTING IT ALL TOGETHER

We conclude the section by putting all the results related to the procedures involved in Algorithm 1
together, in order to derive the guarantees of the algorithm.

First, by Lemma 2 the number of calls to the Try-Cover procedure is at most 2n. Moreover, by
Lemma 7 and by definition of q and η, the number of rounds required by each call to Try-Cover is
at most Õ(mn · I · 1/ρ4 log(1/δ)) under the event Eϵ, where I is a term that depends polynomially in
m, n, and B. Finally, by Lemma 8 the contract returned by Algorithm 1—the result of a call to the
Find-Contract procedure—has expected utility at most ρ less than the best contact in [0, B]m,
while the probability of the clean event Eϵ can be bounded below by means of a concentration
argument. All the observations above allow us to state the following main result.
Theorem 2. Given ρ ∈ (0, 1), δ ∈ (0, 1), and B ≥ 1 as inputs, with probability at least 1− δ the
Discover-and-Cover algorithm (Algorithm 1) is guaranteed to return a contract p ∈ [0, B]m

such that u(p) ≥ maxp′∈[0,B]m u(p′)− ρ in at most Õ(mn · I · 1/ρ4 log(1/δ)) rounds, where I is a
term that depends polynomially in m, n, and B.

Theorem 2 requires a number of rounds which is polynomial in the instance size when the number of
agent’s actions is constant.

5 CONNECTION WITH ONLINE LEARNING IN PRINCIPAL-AGENT PROBLEMS

In this section, we show that our Discover-and-Cover algorithm can be exploited to derive a
no-regret algorithm for the related online learning setting in which the principal aims at maximizing
their cumulative utility. In such a setting, the principal and the agent interact repeatedly over a given
number of rounds T , as described in Section 3.

Algorithm 5 No-regret algorithm

Require: δ ∈ (0, 1), B ≥ 1
1: Set ρ as in proof of Theorem 3
2: for t = 1, . . . , T do
3: if Algorithm 1 not terminated yet then
4: pt ← p ∈ P prescribed by Alg. 1
5: else
6: pt ← p ∈ [0, B]m returned by Alg. 1
7: end if
8: end for

At each t = 1, . . . , T , the principal commits to
a contract pt ∈ Rm

+ , the agent plays a best re-
sponse a⋆(pt), and the principal observes the re-
alized outcome ωt ∼ Fa⋆(pt) with reward rωt .
Then, the performance in terms of cumulative ex-
pected utility by employing the contracts {pt}Tt=1
is measured by the cumulative (Stackelberg) regret
RT := T · maxp∈[0,B]m u(p) − E

[∑T
t=1 u(p

t)
]
,

where the expectation is over the randomness of the
environment. As shown in Section 4, Algorithm 1
learns an approximately-optimal bounded contract with high probability by using the number of
rounds prescribed by Theorem 2. Thus, by exploiting Algorithm 1, it is possible to design an explore-
then-commit algorithm ensuring sublinear regret RT with high probability, as detailed in Algorithm 5.

Theorem 3. Given α ∈ (0, 1), Algorithm 5 achieves RT ≤ Õ
(
mn · I · log(1/δ) · T 4/5

)
with

probability at least 1− δ, where I is a term that depends polynomially on m, n, and B.

We notice that, even for a small number of outcomes m (i.e., any m ≥ 3), our algorithm achieves
better regret guarantees than those of Zhu et al. (2022) in terms of the dependency on the number of
rounds T . Specifically, Zhu et al. (2022) provide a Õ(T 1−1/(2m+1)) regret bound, which exhibits a
very unpleasant dependency on the number of outcomes m at the exponent of T . Conversely, our
algorithm always achieves a Õ(T 4/5) dependency on T , when the number of agent’s actions n is
small. This solves a problem left open in the very recent paper by Zhu et al. (2022).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tal Alon, Paul Dütting, and Inbal Talgam-Cohen. Contracts with private cost per unit-of-effort. In
Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 52–69, 2021.

Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg equilibria
in general-sum games. Advances in Neural Information Processing Systems, 34:25799–25811,
2021.

Hamsa Bastani, Mohsen Bayati, Mark Braverman, Ramki Gummadi, and Ramesh Johari. Analysis
of medicare pay-for-performance contracts. Available at SSRN 2839143, 2016.

Gabriel Carroll. Robustness and linear contracts. American Economic Review, 105(2):536–563,
2015.

Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Bayesian agency: Linear versus tractable
contracts. Artificial Intelligence, 307:103684, 2022a.

Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Designing menus of contracts efficiently:
the power of randomization. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pp. 705–735, 2022b.

Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Multi-agent contract design: How to
commission multiple agents with individual outcomes. In Proceedings of the 24th ACM Conference
on Economics and Computation, pp. 412–448, 2023.

Alon Cohen, Argyrios Deligkas, and Moran Koren. Learning approximately optimal contracts. In
Algorithmic Game Theory: 15th International Symposium, SAGT 2022, Colchester, UK, September
12–15, 2022, Proceedings, pp. 331–346. Springer, 2022.

Lin William Cong and Zhiguo He. Blockchain disruption and smart contracts. The Review of
Financial Studies, 32(5):1754–1797, 2019.

Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. Simple versus optimal contracts. In
Proceedings of the 2019 ACM Conference on Economics and Computation, pp. 369–387, 2019.

Paul Dutting, Tim Roughgarden, and Inbal Talgam-Cohen. The complexity of contracts. SIAM
Journal on Computing, 50(1):211–254, 2021.

Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim. Combinatorial contracts. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 815–826.
IEEE, 2022.

Guru Guruganesh, Jon Schneider, and Joshua R Wang. Contracts under moral hazard and adverse
selection. In Proceedings of the 22nd ACM Conference on Economics and Computation, pp.
563–582, 2021.

Chien-Ju Ho, Aleksandrs Slivkins, and Jennifer Wortman Vaughan. Adaptive contract design for
crowdsourcing markets: Bandit algorithms for repeated principal-agent problems. In Proceedings
of the Fifteenth ACM Conference on Economics and Computation, EC ’14, pp. 359–376, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325653. doi:
10.1145/2600057.2602880.

Niklas T. Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Yagiz Savas, and Ufuk Topcu. No-regret
learning in dynamic stackelberg games. ArXiv, abs/2202.04786, 2022. URL https://api.
semanticscholar.org/CorpusID:246706089.

Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating the optimal
strategy to commit to. In Algorithmic Game Theory: Second International Symposium, SAGT
2009, Paphos, Cyprus, October 18-20, 2009. Proceedings 2, pp. 250–262. Springer, 2009.

Binghui Peng, Weiran Shen, Pingzhong Tang, and Song Zuo. Learning optimal strategies to commit
to. In AAAI Conference on Artificial Intelligence, volume 33, pp. 2149–2156, 2019.

Banghua Zhu, Stephen Bates, Zhuoran Yang, Yixin Wang, Jiantao Jiao, and Michael I Jordan. The
sample complexity of online contract design. arXiv preprint arXiv:2211.05732, 2022.

10

https://api.semanticscholar.org/CorpusID:246706089
https://api.semanticscholar.org/CorpusID:246706089

Under review as a conference paper at ICLR 2024

APPENDIX

The appendixes are organized as follows:

• Appendix A provides a detailed discussion of the previous works most related to ours.

• Appendix B provides all the details about the Find-HS procedure which is employed
by the Discover-and-Cover algorithm, including all the technical lemmas (and their
proofs) related to such a procedure.

• Appendix C provides all the details about the Discover-and-Cover algorithm that are
omitted from the main body of the paper, including the definitions of the parameters required
by the algorithm and the proofs of all the results related to it.

• Appendix D provides all the other proofs omitted from the main body of the paper.

A RELATED WORKS

In this section, we survey all the previous works that are most related to ours. Among the works
addressing principal-agent problems, we only discuss those focusing on learning aspects. Notice that
there are several works studying computational properties of principal-agent problems which are not
concerned with learning aspects, such as, e.g., (Dütting et al., 2019; Alon et al., 2021; Guruganesh
et al., 2021; Dutting et al., 2021; Dütting et al., 2022; Castiglioni et al., 2022a;b; 2023).

Learning in principal-agent problems The work that is most related to ours is (Zhu et al., 2022),
which investigate a setting very similar to ours, though from an online learning perspective (see
also our Section 5). Zhu et al. (2022) study general hidden-action principal-agent problem instances
in which the principal faces multiple agent’s types. They provide a regret bound of the order of
Õ(
√
m ·T 1−1/(2m+1)) when the principal is restricted to contracts in [0, 1]m, where m is the number

of outcomes. They also show that their regret bound can be improved to Õ(T 1−1/(m+2)) by making
additional structural assumptions on the problem instances, including the first-order stochastic
dominance (FOSD) condition. Moreover, Zhu et al. (2022) provide an (almost-matching) lower
bound of Ω(T 1−1/(m+2)) that holds even with a single agent’s type, thus showing that the dependence
on the number of outcomes m at the exponent of T is necessary in their setting. Notice that the regret
bound by Zhu et al. (2022) is “close” to a linear dependence on T , even when m is very small. In
contrast, in Section 5 we show how our algorithm can be exploited to achieve a regret bound whose
dependence on T is of the order of Õ(T 4/5) (independent of m), when the number of agent’s actions
n is constant. Another work that is closely related to ours is the one by Ho et al. (2014), who focus
on designing a no-regret algorithm for a particular repeated principal-agent problem. However, their
approach relies heavily on stringent structural assumptions, such as the FOSD condition. Finally,
Cohen et al. (2022) study a repeated principal-agent interaction with a risk-averse agent, providing a
no-regret algorithm that relies on the FOSD condition too.

Learning in Stackelberg games The learning problem faced in this paper is closely related to
the problem of learning an optimal strategy to commit to in Stackelberg games, where the leader
repeatedly interacts with a follower by observing the follower’s best-response action at each iteration.
Letchford et al. (2009) propose an algorithm for the problem requiring the leader to randomly sample
a set of available strategies in order to determine agent’s best-response regions. The performances of
such an algorithm depend on the volume of the smallest best-response region, and this considerably
limits its generality. Peng et al. (2019) build upon the work by Letchford et al. (2009) by proposing
an algorithm with more robust performances, being them independent of the volume of the smallest
best-response region. The algorithm proposed in this paper borrows some ideas from that of Peng et al.
(2019). However, it requires considerable additional machinery to circumvent the challenge posed by
the fact that the principal does not observe agent’s best-response actions, but only outcomes randomly
sampled according to them. Other related works in the Stackelberg setting are (Bai et al., 2021),
which proposes a model where both the leader and the follower learn through repeated interaction,
and (Lauffer et al., 2022), which considers a scenario where the follower’s utility is unknown to the
leader, but it can be linearly parametrized.

11

Under review as a conference paper at ICLR 2024

Assumptions relaxed compared to Stackelberg games In our work, we relax several limiting
assumptions made in repeated Stackelber games (see, as example, (Letchford et al., 2009; Peng
et al., 2019)) to learn an optimal commitment. Specifically, in repeated Stackelberg games either the
best response regions have at least a constant volume or they are empty. Thanks to Lemma 8, we
effectively address this limitation, showing that even when an optimal contract belongs to a zero-
measured best-response region, we can still compute an approximately optimal solution. Furthermore,
in Stackelberg games it is assumed that in cases where there are multiple best responses for the
follower, any of them can be arbitrarily chosen. In contrast, we assume that the agent always breaks
ties in favor of the leader as it is customary in the Stackelberg literature. Finally, our approach does
not require the knowledge of the number of actions of the agent, differently from previously proposed
algorithms.

B DETAILS ABOUT THE FIND-HS PROCEDURE

In this section, we describe in details the Find-HS procedure (Algorithm 6). The procedure takes as
inputs a meta-action di ∈ D and a contract p ∈ P , and it tries to find one of the approximate halfspaces
defining a suitable approximate best-response region for the meta-action di. It may terminate either
with a pair (H̃, dk) such that H̃ is an approximate halfspace in which di is “supposedly better” than
the meta-action dk ∈ D or with a pair (∅,⊥), whenever a call to Action-Oracle returned⊥. Let
us recall that, for ease of presentation, we assume that Algorithm 6 has access to all the variables
declared in the Try-Cover procedure (Algorithm 3), namely Ld, Ud, Dd, H̃ij , and ∆c̃ij .

Algorithm 6 Find-HS
Require: di, p

1: p1 ← any contract in Ldi

2: p2 ← p
3: dj ← Action-Oracle(p1)
4: dk ← Action-Oracle(p2)
5: y ← 18Bϵmn2 + 2nη

√
m

6: while ∥p1 − p2∥2 > η do
7: p′ω ← (p1ω + p2ω)/2 for all ω ∈ Ω ▷ Middle point of the current line segment
8: d← Action-Oracle(p′)
9: if d = ⊥ then return (∅,⊥) ▷ Force termination of Try-Cover

10: if Ld = ∅ then ▷ Add d to to-be-processed meta-actions in Try-Cover
11: Ld ← {p′}, C ← C ∪ {d}
12: end if
13: if d ∈ Ddi then
14: p1ω ← p′ω for all ω ∈ Ω
15: dj ← d
16: else
17: p2ω ← p′ω for all ω ∈ Ω
18: dk ← d
19: end if
20: end while
21: p′ω ← (p1ω + p2ω)/2 for all ω ∈ Ω

22: if dj = di then ▷ The approximate halfspace H̃ik is the first one for Ldi

23: ∆c̃ik ←
∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω

24: else ▷ The approximate halfspace H̃ij has already been computed

25: ∆c̃ik ← ∆c̃ij +
∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω

26: end if
27: H̃ :=

{
p ∈ Rm

+ |
∑
ω∈Ω

(
F̃di,ω − F̃dk,ω

)
pω ≥ ∆c̃ik − y

}
28: return (H̃, dk)

12

Under review as a conference paper at ICLR 2024

Algorithm 6 works by performing a binary search on the line segment connecting p with any contract
in the (current) lower bound Ldi

of di (computed by the Try-Cover procedure). At each iteration
of the search, by letting p1, p2 ∈ P be the two extremes of the (current) line segment, the algorithm
calls the Action-Oracle procedure on the contract p′ ∈ P defined as the middle point of the
segment. Then, if the procedure returns a meta-action d ∈ D that belongs to Ddi

(meaning that the
approximate halfspace H̃ij has already been computed), the algorithm sets p1 to p′, while it sets p2
to p′ otherwise. The binary search terminates when the length of the line segment is below a suitable
threshold η ≥ 0.

After the search has terminated, the algorithm computes an approximate halfspace. First, the
algorithm computes the estimate ∆c̃ik of the cost difference between the meta-actions di and dk,
where the latter is the last meta-action returned by Action-Oracle that does not belong to the
set Ddi

. Such an estimate is computed by using the two empirical distributions F̃dj
and F̃dk

that
the Action-Oracle procedure associated with the meta-actions dj ∈ Ddi

and dk, respectively.
In particular, ∆c̃ik is computed as the sum of ∆c̃ij—the estimate of the cost difference between
meta-actions di and dj that has been computed during a previous call to Algorithm 6—and an
estimate of the cost difference between the meta-actions dj and dk, which can be computed by using
the middle point of the line segment found by the binary search procedure (see Lines 23 and 25).
Then, the desired approximate halfspace is the one defined by the hyperplane passing through the
middle point p′ ∈ P of the line segment computed by the binary search with coefficients given by the
(m+ 1)-dimensional vector [F̃⊤

di
− F̃⊤

dk
,∆c̃ik − y] (see Line 27), where y ≥ 0 is a suitably-defined

value chosen so as to ensure that the approximate best-response regions satisfy the desired properties
(see Lemma 10).

Notice that Algorithm6 also needs some additional elements in order to ensure that the (calling)
Try-Cover procedure is properly working. In particular, any time the Action-Oracle proce-
dure returns ⊥, Algorithm 6 terminates with (∅,⊥) as a return value (Line 9). This is needed to
force the termination of the Try-Cover procedure (see Line 22 in Algorithm 3). Moreover, any
time the Action-Oracle procedure returns a meta-action d /∈ C such that Ld = ∅, Algorithm 6
adds such a meta-action to C and it initializes its lower bound to the singleton {p′}, where p′ is the
contract given as input to Action-Oracle (see Lines 10–11). This is needed to ensure that all the
meta-actions in D are eventually considered by the (calling) Try-Cover procedure.

Before proving the main properties of Algorithm6, we introduce the following useful definition:
Definition 5. Given y ≥ 0, a set of meta-actions D and a dictionary F of empirical distributions
computed by means of Algorithm 2, for every pair of meta-actions di, dj ∈ D, we let Hy

ij ⊆ P be the
set of contracts defined as follows:

Hy
ij :=

{
p ∈ P |

∑
ω∈Ω

F̃di,ωpω − c(di) ≥
∑
ω∈Ω

F̃dj ,ωpω − c(dj)− y

}
.

Furthermore, we let Hij := H0
ij .

Next, we prove some technical lemmas related to Algorithm 6. Lemma 9 provides a bound on the gap
between the cost difference ∆c̃ik estimated by Algorithm 6 and the “true” cost difference between the
meta-actions di and dk (see Defintion 4). Lemma 10 shows that the approximate halfspace computed
by the algorithm is always included in the halfspace introduced in Definition 5 for a suitably-defined
value of the parameter y ≥ 0. Finally, Lemma 11 provides a bound on the number of rounds required
by the algorithm in order to terminate.
Lemma 9. Under the event Eϵ, Algorithm 6 satisfies |∆c̃ik− c(di)+ c(dk)| ≤ 18Bϵmn2+2nη

√
m.

Proof. We start by proving that, during any execution of Algorithm 6, the following holds:∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − c(dj) + c(dk)

∣∣∣∣∣ ≤ 18Bϵmn+ 2η
√
m, (1)

where dj , dk ∈ D are the meta-actions resulting from the binary search procedure and p′ ∈ P is the
middle point point of the segment after the binary search stopped. In order to prove Equation 1, we
first let a1 := a⋆(p1) and a2 := a⋆(p2), where p1, p2 ∈ P are the two extremes of the line segment

13

Under review as a conference paper at ICLR 2024

resulting from the binary search procedure. By Lemma 1, under the event Eϵ, it holds that a1 ∈ A(dj)
and a2 ∈ A(dk) by definition. Moreover, we let p∗ ∈ P be the contract that belongs to the line
segment connecting p1 to p2 and such that the agent is indifferent between actions a1 and a2, i,e.,∑

ω∈Ω

(
Fa1,ω − Fa2,ω

)
p⋆ω = ca1 − ca2 .

Then, we can prove the following:∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − c(dj) + c(dk)

∣∣∣
=

∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − c(dj) + ca1 − ca1 + ca2 − ca2 + c(dk)

∣∣∣∣∣
≤

∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − ca1 + ca2

∣∣∣∣∣+ 8Bϵmn

=

∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω −

∑
ω∈Ω

(
Fa1,ω − Fa2,ω

)
p∗ω

∣∣∣∣∣+ 8Bϵmn

=

∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω p′ω + Fa1,ω p′ω − Fa1,ω p′ω − Fa1,ω p∗ω

)
+
∑
ω∈Ω

(
F̃dk,ω p′ω + Fa2,ω p′ω − Fa2,ω p′ω − Fa2,ω p∗ω

)∣∣∣∣∣+ 8Bϵmn

≤ ∥F̃dj
− Fa1∥∞∥p′∥1 + ∥F̃dk

− Fa2∥∞∥p′∥1 + (∥Fa1∥2 + ∥Fa2∥2) ∥p′ − p∗∥2 + 8Bϵmn

≤ 18Bϵmn+ 2η
√
m.

The first inequality above is a direct consequence of Lemma 3 and an application of the triangular
inequality, since a1 ∈ A(dj) and a2 ∈ A(dk) under the event Eϵ. The second inequality follows by
employing Holder’s inequality. The third inequality holds by employing Lemma 1 and Definition 3,
by observing that ∥p∥1 ≤ Bm and ∥Fa∥ ≤

√
m for all a ∈ A. Moreover, due to the definitions of

p′ and p∗, and given how the binary search performed by Algorithm 6 works, it is guaranteed that
∥p′ − p∗∥2 ≤ η.

Next, we prove that, after any call to Algorithm 6, the following holds:

|∆c̃ik − c(ci) + c(dk)| ≤ |Ddi
|
(
18Bϵmn+ 2η

√
m
)
,

where di, dk ∈ D are the meta-actions defined by the binary search procedure in Algorithm 6. We
prove the statement by induction on the calls to Algorithm 6 with the meta-action di as input. The
base case is the first time Algorithm 6 is called with di as input. In that case, the statement is
trivially satisfied by Equation 1 and the fact that Ddi

= {di}. Let us now consider a generic call to
Algorithm 6 with the meta-action di as input. Then, we can write the following:

|∆c̃ik − c(ci) + c(dk)| =

∣∣∣∣∣∆c̃ij +
∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − c(di) + c(dk)

∣∣∣∣∣
≤ |∆c̃ij − c(di) + c(dj)|+

∣∣∣∣∣∑
ω∈Ω

(
F̃dj ,ω − F̃dk,ω

)
p′ω − c(dj) + c(dk)

∣∣∣∣∣
≤ (|Ddi | − 1)

(
18Bϵmn+ 2η

√
m
)
+ 18Bϵmn+ 2η

√
m

= |Ddi
|
(
18Bϵmn+ 2η

√
m
)
,

where the first inequality holds by applying the triangular inequality and the second one by using the
inductive hypothesis.

14

Under review as a conference paper at ICLR 2024

Lemma 10. Let (H̃, dk) be the pair returned by Algorithm 6 when given as inputs Ldi
and p ∈ P

for some meta-action di ∈ D. Then, under the event Eϵ, it holds:

Hik ⊆ H̃ ⊆ Hy
ik,

with y = 18Bϵmn2 + 2nη
√
m.

Proof. We start by showing that Hik is a subset of H̃ik. Let p be a contract belonging to Hik, then
according to Definition 5 the following inequality holds:∑

ω∈Ω

F̃di,ωpω −
∑
ω∈Ω

F̃dk,ωpω ≥ ∆c̃ik − y,

with y = 18Bϵmn2 + 2nη
√
m as prescribed by Lemma 9. This shows that p ∈ H̃ik, according to

Definition 5. We now consider the case in which p ∈ H̃ik. Using the definition of H̃ik and Lemma 9,
we have: ∑

ω∈Ω

F̃di,ωpω −
∑
ω∈Ω

F̃dk,ωpω = ∆c̃ik ≥ c(di)− c(dk)− y,

showing that p ∈ Hy
ik with y = 18Bϵmn2 + 2nη

√
m.

Lemma 11. Under the event Eϵ, the number of rounds required by Algorithm 6 to terminate with an
approximate separating hyperplane is at most O (q log (Bm/η)).

Proof. The lemma can be proven by observing that the number of rounds required by the binary
search performed in Line 6 of Algorithm 6 is at most O(log(D/η)), where D represents the distance
over which the binary search is performed. In our case, we have D ≤

√
2Bm, which represents

the maximum distance between two contracts in P . Additionally, noticing that we invoke the
Action-Oracle algorithm at each iteration, the total number of rounds required by Find-HS is
O(q log(

√
2Bm
η)), as the number of rounds required by Action-Oracle is bounded by q.

C ADDITIONAL DETAILS ABOUT THE DISCOVER-AND-COVER ALGORITHM

In this section, we provide all the details about the Discover-and-Cover (Algorithm 1) algo-
rithm that are omitted from the main body of the paper. In particular:

• Appendix C.1 gives a summary of the definitions of the parameters required by Algorithm 1,
which are set as needed in the proofs provided in the rest of this section.

• Appendix C.2 provides the proofs of the lemmas related to the Action-Oracle proce-
dure.

• Appendix C.3 provides the proofs of the lemmas related to the Try-Cover procedure.
• Appendix C.4 provides the proofs of the lemmas related to the Find-Contract proce-

dure.
• Appendix C.5 provides the proof of the final result related to Algorithm 1 (Theorem 2).

C.1 DEFINITIONS OF THE PARAMETERS IN ALGORITHM 1

The parameters required by Algorithm 1 are defined as follows:

• ϵ :=
ρ2

322Bm2n2

• η :=
ϵ
√
mn

2

• α :=
δ

2n3
[
log
(

2Bm
η

)
+
(
m+n+1

m

)]
• q :=

⌈
1

2ϵ2
log

(
2m

α

)⌉

15

Under review as a conference paper at ICLR 2024

C.2 PROOFS OF THE LEMMAS RELATED TO THE ACTION-ORACLE PROCEDURE

Lemma 1. Given a set D of meta-actions and a dictionary F of empirical distributions computed by
means of Algorithm 2, under the event Eϵ, if Algorithm 2 returns a meta-action d ∈ D for a contract
p ∈ P given as input, then it holds that a⋆(p) ∈ A(d).

Proof. For ease of presentation, in this proof we adopt the following additional notation. Given a set
D of meta-actions and a dictionary F of empirical distributions computed by means of Algorithm 2,
for every meta-action d ∈ D, we let Pd ⊆ P be the set of all the contracts that have been provided as
input to Algorithm 2 during an execution in which it computed an empirical distribution that belongs
to F [d]. Moreover, we let I(d) ⊆ A be the set of all the agent’s actions that have been played as
a best response by the agent during at least one of such executions of Algorithm 2. Formally, by
exploiting the definition of Pd, we can write I(d) :=

⋃
p∈Pd

a⋆(p).

First, we prove the following crucial property of Algorithm 2:

Property 4. Given a setD of meta-actions and a dictionary F of empirical distributions computed by
means of Algorithm 2, under the event Eϵ, ti holds that I(d) ∩ I(d′) = ∅ for every pair of (different)
meta-actions d ̸= d′ ∈ D.

In order to show that Property 4 holds, we assume by contradiction that there exist two different
meta-actions d ̸= d′ ∈ D such that a ∈ I(d) and a ∈ I(d′) for some agent’s action a ∈ A, namely
that I(d) ∩ I(d′) ̸= ∅. This implies that there exist two contracts p ∈ Pd and p′ ∈ Pd′ such that
a⋆(p) = a⋆(p′) = a. Let F̃ ∈ F [d] and F̃ ′ ∈ F [d′] be the empirical distributions over outcomes
computed by Algorithm 2 when given as inputs the contracts p and p′, respectively. Then, under
the event Eϵ, we have that ∥F̃ − F̃ ′∥∞ ≤ 2ϵ, since the two empirical distributions are generated by
sampling from the same (true) distribution Fa. Clearly, the way in which Algorithm 2 works implies
that such empirical distributions are associated with the same meta-action and put in the same entry
of the dictionary F . This contradicts the assumption that d ̸= d′, proving that Property 4 holds.

Next, we show the following additional crucial property of Algorithm 2:

Property 5. LetD be a set of meta-actions and F be a dictionary of empirical distributions computed
by means of Algorithm 2. Suppose that the following holds for every d ∈ D and a, a′ ∈ I(d):

∥Fa − Fa′∥∞ ≤ 4ϵ(|I(d)| − 1). (2)

Then, if Algorithm 2 is run again, under the event Eϵ the same condition continues to hold for the set
of meta-actions and the dictionary obtained after the execution of Algorithm 2.

For ease of presentation, in the following we call Dold and Fold the set of meta-actions and the
dictionary of empirical distributions, respectively, before the last execution of Algorithm 2, while
we call Dnew and Fnew those obtained after the last run of Algorithm 2. Moreover, in order to avoid
any confusion, given Dold and Fold, we write Iold(d) in place of I(d) for any meta-action d ∈ Dold.
Similarly, given Dnew and Fnew, we write Inew(d) in place of I(d) for any d ∈ Dnew.

In order to show that Property 5 holds, let p ∈ P be the contract given as input to Algorithm 2 during
its last run. Next, we prove that, no matter how Algorithm 2 updates Dold and Fold in order to obtain
Dnew and Fnew, the condition in Property 5 continues to hold. We split the proof in three cases.

1. If |D⋄| = 0, then Dnew = Dold ∪ {d⋄}, where d⋄ is a new meta-action. Since Fnew is
built by adding a new entry Fnew[d⋄] = {F̃} to Fold while leaving all the other entries
unchanged, it holds that Inew(d⋄) = {a⋆(p)} and Inew(d) = Iold(d) for all d ∈ Dold. As a
result, the condition in Equation 2 continues to hold for all the meta-actions d ∈ Dnew \{d⋄}.
Moreover, for the meta-action d⋄, the following holds:

0 = ∥Fa⋆(p) − Fa⋆(p)∥∞ ≤ 4ϵ(|Inew(d⋄)| − 1) = 0,

as |Inew(d⋄)| = 1. This proves that the condition in Equation 2 also holds for d⋄.

2. If |D⋄| = 1, then Dnew = Dold. We distinguish between two cases.

16

Under review as a conference paper at ICLR 2024

(a) In the case in which a⋆(p) ∈
⋃

d∈Dold Iold(d), Property 4 immediately implies that
Inew(d) = Iold(d) for all d ∈ Dnew = Dold. Indeed, if this is not the case, then there
would be two different meta-actions d ̸= d′ ∈ Dnew = Dold such that Inew(d) =

Iold(d) ∪ {a⋆(p)} (since Fnew[d] = Fold[d] ∪ {F̃}) and a⋆(p) ∈ Inew(d′) = Iold(d′),
contradicting Property 4. As a result, the condition in Equation 2 continues to holds for
all the meta-actions after the execution of Algorithm 2.

(b) In the case in which a⋆(p) /∈
⋃

d∈Dold Iold(d), the proof is more involved. Let d ∈
Dnew = Dold be the (unique) meta-action in the set D⋄ computed by Algorithm 2.
Notice that Inew(d) = Iold(d) ∪ {a⋆(p)} by how Algorithm 2 works. As a first step,
we show that, for every pair of actions a, a′ ∈ Inew(d) with a = a⋆(p), Equation 2
holds. Under the event Eϵ, it holds that ∥Fa⋆(p) − F̃∥∞ ≤ ϵ, where F̃ is the empirical
distribution computed by Algorithm 2. Moreover, since the meta-action d has been
added to D⋄ by Algorithm 2, there exists an empirical distribution F ∈ F [d] such that
∥F̃ − F∥∞ ≤ 2ϵ, and, under the event Eϵ, there exists an action a′′ ∈ Iold(d) such that
∥F − Fa′′∥∞ ≤ ϵ. Then, by applying the triangular inequality we can show that:

∥Fa⋆(p) − Fa′′∥∞ ≤ ∥Fa⋆(p) − F̃∥∞ + ∥F̃ − F∥∞ + ∥F − Fa′′∥∞ ≤ 4ϵ.

By using the fact that the condition in Equation 2 holds for Dnew and Fnew, for every
action a′ ∈ Inew(d) it holds that:

∥Fa⋆(p) − Fa′∥∞ ≤ ∥Fa⋆(p) − Fa′′∥∞ + ∥Fa′′ − Fa′∥∞
≤ 4ϵ(|Iold(d)| − 1) + 4ϵ

≤ 4ϵ|Iold(d)|
= 4ϵ(|Inew(d)| − 1),

where the last equality holds since |Inew(d)| = |Iold(d)|+1, as a⋆(p) /∈
⋃

d∈Dold Iold(d).
This proves that Equation 2 holds for every pair of actions a, a′ ∈ Inew(d) with
a = a⋆(p). For all the other pairs of actions a, a′ ∈ Inew(d), the equation holds since
it was already satisfied before the last execution of Algorithm 2. Analogously, given
that Inew(d) = Iold(d) for all the meta-actions in Dnew \ {d}, we can conclude that the
condition in Equation 2 continues to holds for such meta-actions as well.

3. If |D⋄| > 1, then Dnew =
(
Dold \ D⋄) ∪ {d⋄}, where d⋄ is a new meta-action. Clearly, the

condition in Equation 2 continues to hold for all the meta-actions in Dold \ D⋄. We only
need to show that the condition holds for d⋄. We distinguish between two cases.

(a) In the case in which a⋆(p) ∈
⋃

d∈Dold Iold(d), let us first notice that a⋆(p) ∈ Iold(d)
for some d ∈ D⋄, otherwise Property 4 would be violated (as a⋆(p) ∈ Inew(d⋄) by
definition). Moreover, it is easy to see that Inew(d⋄) =

⋃
d∈D⋄ Iold(d) and, additionally,

Iold(d) ∩ Iold(d′) = ∅ for all d ̸= d′ ∈ D⋄, given how Algorithm 2 works and thanks
to Property 4. In the following, for ease of presentation, we assume w.l.o.g. that the
meta-actions in D⋄ are indexed by natural numbers so that D⋄ := {d1, . . . d|D⋄|} and
a⋆(p) ∈ Iold(d1). Next, we show that Equation 2 holds for every pair a, a′ ∈ Inew(d⋄).
First, by employing an argument similar to the one used to prove Point 2.2, we can
show that, for every dj ∈ D⋄ with j > 1, there exists an action a′′ ∈ Iold(dj) such
that ∥Fa⋆(p) − Fa′′∥∞ ≤ 4ϵ. Then, for every pair of actions a, a′ ∈ Inew(d⋄) such that
a ∈ Iold(d1) and a′ ∈ Iold(dj) for some dj ∈ D⋄ with j > 1, the following holds:

∥Fa − Fa′∥∞ ≤ ∥Fa − Fa⋆(p)∥∞ + ∥Fa⋆(p) − Fa′′∥∞ + ∥Fa′′ − Fa′∥∞
≤ 4ϵ(|Iold(d1)| − 1) + 4ϵ+ 4ϵ(|Iold(dj)| − 1)

= 4ϵ(|Iold(d1)|+ |Iold(dj)| − 1)

≤ 4ϵ(|Inew(d⋄)| − 1),

where the first inequality follows from an application of the triangular inequality, the
second one from the fact that Equation 2 holds before the last execution of Algorithm 2,
while the last inequality holds since |Inew(d⋄)| =

∑
d∈D⋄ |Iold(d)| given that Iold(d)∩

17

Under review as a conference paper at ICLR 2024

Iold(d′) = ∅ for all d ̸= d′ ∈ D⋄ thanks to Property 4. As a final step, we show that
Equation 2 holds for every pair of actions a, a′ ∈ Inew(d⋄) such that a ∈ Iold(di) and
a′ ∈ Iold(dj) for some di, dj ∈ D⋄ with i ̸= j > 1. By the fact that di, dj ∈ D⋄ and
triangular inequality, it follows that there exist a′′ ∈ Iold(di) and a′′′ ∈ Iold(dj) such
that ∥Fa′′ − F̃∥∞ ≤ 3ϵ and ∥Fa′′′ − F̃∥∞ ≤ 3ϵ under Eϵ. Then, with steps similar to
those undertaken above, we can prove the following:

∥Fa − Fa′∥∞ ≤ ∥Fa − Fa′′∥∞ + ∥Fa′′ − F̃∥∞ + ∥F̃ − Fa′′′∥∞ + ∥Fa′′′ − Fa′∥∞
≤ 4ϵ(|Iold(di)| − 1) + 3ϵ+ 3ϵ+ 4ϵ(|Iold(dj)| − 1)

= 4ϵ(|Iold(di)|+ |Iold(dj)| − 1) + 2ϵ

≤ 4ϵ(|Inew(d⋄)| − 1),

which shows that Equation 2 is satisfied for all the pairs of actions a, a′ ∈ Inew(d⋄).
(b) In the case in which a⋆(p) /∈

⋃
d∈Dold Iold(d), let us first observe that Inew(d⋄) =⋃

d∈D⋄ Iold(d) ∪ {a⋆(p)} and Iold(d) ∩ Iold(d′) = ∅ for all d ̸= d′ ∈ D⋄, given how
Algorithm 2 works and thanks to Property 4. Next, we show that Equation 2 holds
for every pair of actions a, a′ ∈ Inew(d⋄). As a first step, we consider the case in
which a = a⋆(p), and we show that Equation 2 holds for every a′ ∈ Inew(d⋄) such that
a′ ∈ Iold(d) for some d ∈ D⋄. In order to show this, we first observe that, given how
Algorithm 2 works, there exists F ∈ Fold[d] such that ∥F̃ − F∥ ≤ 2ϵ, and, under the
event Eϵ, there exists an action a′′ ∈ Iold(d) such that ∥Fa′′ − F∥ ≤ ϵ. Then:

∥Fa⋆(p) − Fa′∥∞ ≤ ∥Fa⋆(p) − F̃∥∞ + ∥F̃ − F∥∞ + ∥F − Fa′′∥∞ + ∥Fa′′ − Fa′∥∞
≤ 4ϵ+ 4ϵ(|Iold(d)| − 1)

≤ 4ϵ(|Inew(d⋄)| − 1),

where the last inequality holds since |Inew
d⋄ | =

∑
d∈D⋄ |Iold(d)| as Iold(d)∩Iold(d′) = ∅

for all d ̸= d′ ∈ D⋄. As a second step, we consider the case in which a ∈ Iold(d) and
a′ ∈ Iold(d′) for some pair d ̸= d′ ∈ D⋄. Given how Algorithm 2 works, there exist
F ∈ Fold[d] and F ′ ∈ Fold[d′] such that ∥F − F̃∥ ≤ 2ϵ and ∥F ′− F̃∥ ≤ 2ϵ. Moreover,
by the fact that d, d′ ∈ D⋄ and the triangular inequality, it follows that there exist
a′′ ∈ Iold(d) and a′′′ ∈ Iold(d′) such that ∥Fa′′ − F̃∥∞ ≤ 3ϵ and ∥Fa′′′ − F̃∥∞ ≤ 3ϵ
under the event Eϵ. Then, the following holds:

∥Fa − Fa′∥∞ ≤ ∥Fa − Fa′′∥∞ + ∥Fa′′ − F̃∥∞ + ∥F̃ − Fa′′′∥∞ + ∥Fa′′′ − Fa′∥∞
≤ 4ϵ(|Iold(d)| − 1) + 3ϵ+ 3ϵ+ 4ϵ(|Iold(d′)| − 1)

= 4ϵ(|Iold(d)|+ |Iold(d′)| − 1) + 2ϵ

≤ 4ϵ(|Inew(d⋄)| − 1).

Finally, by observing that the size of I(d) for each possible set of meta-actions D is bounded by the
number of agent’s actions n, for each a, a′ ∈ I(d) and d ∈ D we have that:

∥Fa − Fa′∥ ≤ 4nϵ. (3)
Then, under the event Eϵ, by letting a′ ∈ I(d) be the action leading to the empirical distribution
F̃d computed at Line 19 in Algorithm 2 we have ∥F̃d − Fa′∥∞ ≤ ϵ. Finally, combining the two
inequalities, we get:

∥F̃d − Fa⋆(p)∥∞ ≤ ∥F̃d − Fa′∥∞ + ∥Fa′ − Fa⋆(p)∥∞ ≤ 4ϵn+ ϵ ≤ 5ϵn.

This implies that a⋆(p) ∈ A(d).

To conclude the proof we show that I(d) ⊆ A(d). Let a′ ∈ I(d) be an arbitrary action, and let F̃d be
the empirical distribution computed by Algorithm 2 by sampling from Fa. Then for each a′′ ∈ I(d)
we have:

∥F̃d − Fa′′∥∞ ≤ ∥F̃d − Fa′∥∞ + ∥Fa′ − Fa′′∥∞ ≤ 4ϵn+ ϵ ≤ 5ϵn.

Since the latter argument holds for all the actions a ∈ I(d) this hows that
∥Fa − Fa′∥∞ ≤ 4nϵ, (4)

for all the actions a, a′ ∈ A(d).

18

Under review as a conference paper at ICLR 2024

Lemma 2. Under the event Eϵ, Algorithm 2 returns ⊥ at most 2n times.

Proof. As a first step, we observe that under the event Eϵ, the size of D increases whenever the
principal observes an empirical distribution F̃ that satisfies ∥F̃ − F̃ ′∥∞ ≥ 2ϵ for every F̃ ′ ∈ F .
This condition holds when the agent chooses an action that has not been selected before. This is
because, if the principal commits to a contract implementing an action the agent has already played,
the resulting estimated empirical distribution F̃ must satisfy ∥F̃ − F∥∞ ≤ 2ϵ for some d ∈ D and
F ∈ Fd, as guaranteed by the event Eϵ. Consequently, the cardinality of D can increase at most n
times, which corresponds to the total number of actions. Furthermore, we observe that the cardinality
of D can decrease by merging one or more meta-actions into a single one, with the condition |D| ≥ 1.
Therefore, in the worst case the cardinality of D is reduced by one n times, resulting in 2n being the
maximum number of times Algorithm 2 returns ⊥.

Lemma 3. Given a set D of meta-actions and a dictionary F of empirical distributions computed
by means of Algorithm 2, under the event Eϵ, for every meta-action d ∈ D and associated action
a ∈ A(d) it holds that |c(d)− ca| ≤ 4Bϵmn.

Proof. Let d ∈ D be a meta-action and assume that the event Eϵ holds. Let a′ ∈ argmina∈A(d) ca
and let p′ be a contract such that a⋆(p′) = a′. By employing Definition 3, we know that for any
action a ∈ A(d), there exists a contract p ∈ P such that a⋆(p) = a. Then the following inequalities
hold:

4Bϵmn ≥ ∥Fa − Fa′∥∞∥p∥1 ≥
∑
ω∈Ω

(Fa,ω − Fa′,ω) pω ≥ ca − ca′ , (5)

and, similarly,

4Bϵmn ≥ ∥Fa′ − Fa∥∞∥p′∥1 ≥
∑
ω∈Ω

(Fa′,ω − Fa,ω) p
′
ω ≥ ca′ − ca. (6)

In particular, in the chains of inequalities above, the first ‘≥’ holds since ∥Fa − Fa′∥∞ ≤ 4ϵn by
Lemma 1 and the fact that the norm ∥ · ∥1 of contracts in P is upper bounded by Bm. Finally, by
applying Equations 5 and 6, we have that:

|ca − ca′ | = |ca − c(d)| ≤ 4Bϵmn,

for every possible action a ∈ A(d) since ca′ = c(d) by definition, concluding the proof.

Lemma 4. Given a set D of meta-actions and a dictionary F of empirical distributions computed by
means of Algorithm 2, under the event Eϵ, for every meta-action d ∈ D, associated action a ∈ A(d),
and contract p ∈ P it holds |

∑
ω∈Ω F̃d,ω pω − c(d)−

∑
ω∈Ω Fa,ω pω + ca| ≤ 9Bϵmn.

Proof. To prove the lemma we observe that for each action a ∈ A(d) it holds:∣∣∣∣∣∑
ω∈Ω

F̃d,ωpω − c(d)−
∑
ω∈Ω

Fa,ωpω + ca

∣∣∣∣∣ ≤ ∥F̃d − Fa∥∞∥p∥1 + |c(d)− ca|

≤ 5Bϵmn+ 4Bϵmn = 9Bϵmn,

where the first inequality holds by applying the triangular inequality and Holder’s inequality. The
second inequality holds by employing Lemma 3 and leveraging Definition 3 that guarantees ∥F̃d −
Fa∥∞ ≤ 5ϵn for every action a ∈ A(d). Additionally, we observe that the ∥ · ∥1 norm of contracts in
P is upper bounded by Bm, which concludes the proof.

We conclude the subsection by providing an auxiliary lemmas related to the Action-Oracle
procedure that will be employed to bound the probability of the clean event Eϵ in the proof of
Theorem 2.
Lemma 12. Given α, ϵ ∈ (0, 1), let F̃ ∈ ∆Ω be the empirical distribution computed by Algorithm 2
with q :=

⌈
1

2ϵ2 log
(
2m
α

)⌉
for a contract p ∈ P given as input. Then, it holds that E[F̃ω] = Fa⋆(p),ω

for all ω ∈ Ω and, with probability of at least 1− α, it also holds that ∥F̃ − Fa⋆(p)∥∞ ≤ ϵ.

19

Under review as a conference paper at ICLR 2024

Proof. By construction, the empirical distribution F̃ ∈ ∆Ω is computed from q i.i.d. samples drawn
according to Fa⋆(p), with each ω ∈ Ω being drawn with probability Fa⋆(p),ω . Therefore, the empirical
distribution F̃ is a random vector supported on ∆Ω, whose expectation is such that E[F̃ω] = Fa⋆(p),ω

for all ω ∈ Ω. Moreover, by Hoeffding’s inequality, for every ω ∈ Ω, we have that:

P
{
|F̃ω − E[F̃ω]| ≥ ϵ

}
= P

{
|F̃ω − Fa⋆(p),ω| ≥ ϵ

}
≥ 1− 2e−2qϵ2 . (7)

Then, by employing a union bound and Equation 7 we have that:

P
{
∥F̃ − Fa⋆(p)∥∞ ≤ ϵ

}
= P

{⋂
ω∈Ω

{
|F̃ω − Fa⋆(p),ω| ≤ ϵ

}}
≥ 1− 2me−2qϵ2 ≥ 1− α,

where the last inequality holds by definition of q.

C.3 PROOFS OF THE LEMMAS RELATED TO THE TRY-COVER PROCEDURE

To prove Lemma 5, we first introduce Definition 6 for a given a set of meta-actions D. This
definition associates to each meta-acxxtion d the set of contracts in which the agent’s utility, computed
employing the empirical distribution over outcomes returned by the Action-Oracle procedure
and the cost of a meta-action introduced in Definition 4, is greater or equal to the utility computed
with the same quantities for all the remaining meta-actions in D. Formally we have that:

Definition 6. Given a set of meta-actions D, we let Pdi(D) ⊆ P be the set defined as follows:

Pdi
(D) :=

{
p ∈ P |

∑
ω∈Ω

F̃di,ωpω − c(di) ≥
∑
ω∈Ω

F̃dj ,ωpω − c(dj) ∀dj ∈ D

}
.

It is important to notice that we can equivalently formulate Definition 6 by means of Definition 5.
More specifically, given a set of met actions D, for each di ∈ D we let Pdi

(D) := ∩j∈DHij be the
intersection of a subset of the halfspaces introduced in Definition 5.

As a second step, we introduce two useful lemmas. Lemma 13 shows that for any set of meta-actions
D, the union of the sets Pd(D) over all d ∈ D is equal to P . On the other hand, Lemma 14 shows
that the set Pd(D) is a subset of the upper bounds Ud computed by the Try-Cover procedure.

Lemma 13. Given a set of meta-actions D it always holds ∪d∈DPd(D) = P .

Proof. The lemma follows observing that, for each p ∈ P , there always exits a di ∈ D such that:∑
ω∈Ω

F̃di,ωpω − c(di) ≥
∑
ω∈Ω

F̃dj ,ωpω − c(dj) ∀dj ∈ D.

This is due to the fact that the cardinality of D is always ensured to be greater than or equal to one.
Therefore, for each contract p ∈ P , there exists a meta-action d such that p ∈ Pd(D), thus ensuring
that ∪d∈DPd(D) = P . This concludes the proof.

Lemma 14. Under the event Eϵ, it always holds Pd(D) ⊆ Ud for each meta-action d ∈ D.

Proof. To prove the lemma we observe that, for any meta-action di ∈ D, the following inclusions
hold:

Udi
= ∩j∈Ddi

H̃ij ⊃ ∩j∈Ddi
Hij ⊃ ∩j∈DHij = Pdi

(D).

The first inclusion holds thanks to the definition of the halfspace H̃ij and employing Lemma 10,
which entails under the event Eϵ. The second inclusion holds because Ddi is a subset of D for each
di ∈ D. Finally, the last equality holds because of the definition of Pdi(D).

Lemma 5. Under the event Eϵ, when Algorithm 3 returns {Ld}d∈D, it holds that
⋃

d∈D Ld = P .

20

Under review as a conference paper at ICLR 2024

Proof. As a first step we notice that, if Algorithm 3 returns {Ld}d∈D, then the set D has not been
updated during its execution and, thus, we must have Ld = Ud for all d ∈ D. In addition, we notice
that, under the event Eϵ, thanks to Lemma 13 and Lemma 14 the following inclusion holds:⋃

di∈D

Udi
⊇
⋃

di∈D

Pdi
(D) = P.

Then, by putting all together we get:⋃
di∈D

Ldi
=
⋃

di∈D

Udi
=
⋃

di∈D

Pi(D) = P,

concluding the proof.

Lemma 6. Under the event Eϵ, when Algorithm 3 returns {Ld}d∈D, for every meta-action d ∈ D,
contract p ∈ Ld and action a′ ∈ A(d), there exists a γ that polynomially depends on m, n, ϵ, and B
such that: ∑

ω∈Ω

Fa′,ω pω − ca′ ≥
∑
ω∈Ω

Fa,ω pω − ca − γ ∀a ∈ A.

Proof. In order to prove the lemma, we rely on the crucial observation that, for any vertex p ∈ V (Ldi
)

of the lower bound of a meta-action di ∈ D, the Action-Oracle procedure called by Algorithm 3
with p as input either returned di or another meta-action dj ∈ D such that p ∈ H̃ij with dj ∈ Ddi .

First, we consider the case in which the meta-action returned by Action-Oracle in the vertex p
is equal to di. In such a case, a⋆(p) ∈ A(di) thanks to Lemma 1 and the following holds:∑

ω∈Ω

F̃di,ω pω − c(di) ≥
∑
ω∈Ω

Fa⋆(p),ω pω − ca⋆(p) − 9Bϵmn,

by means of Lemma 4. Next, we consider the case in which the meta-action returned by Algorithm 2
is equal to dj with p that belongs to H̃ij . In such a case the following inequalities hold:∑

ω∈Ω

F̃di,ω pω − c(di) ≥
∑
ω∈Ω

F̃dj ,ω pω − c(dj)− y

≥
∑
ω∈Ω

Fa⋆(p),ω pω − ca⋆(p) − 9Bϵmn− y,

where the first inequality follows by Lemma 10 that guarantees that p belongs to H̃ij ⊆ Hy
ij

with y = 18Bϵmn2 + 2nη
√
m, while the second inequality holds because of Lemma 4, since

a⋆(p) ∈ A(dj) thanks to Lemma 1 .

Finally, by putting together the inequalities for the two cases considered above and employing
Lemma 4, we can conclude that, for every vertex p ∈ V (Ld) of the lower bound of a meta-action
d ∈ D, it holds: ∑

ω∈Ω

Fa,ω pω − ca ≥
∑
ω∈Ω

F̃d,ω pω − c(d)− 9Bϵmn

≥
∑
ω∈Ω

Fa⋆(p),ω pω − ca⋆(p) − γ, (8)

for each action a ∈ A(d) by setting γ := 27Bϵmn2 + 2nη
√
m.

Moreover, by noticing that each lower bound Ld is a convex polytope, we can employ the
Carathéodory’s theorem to decompose each contract p ∈ Ld as a convex combination of the vertices
of Ld. Formally: ∑

p′∈V (Ld)

α(p′) p′ω = pω ∀ω ∈ Ω, (9)

where α(p′) ≥ 0 is the weight given to vertex p′ ∈ V (Ld), so that it holds
∑

p′∈V (Ld)
α(p′) = 1.

Finally, for every p ∈ Ld and action a ∈ A(d) we have:

∑
ω∈Ω

Fa⋆(p),ω pω − ca⋆(p) =
∑
ω∈Ω

Fa⋆(p),ω

 ∑
p′∈V (Ld)

α(p′) p′ω

− ca⋆(p)

21

Under review as a conference paper at ICLR 2024

=
∑

p′∈V (Ld)

α(p′)

(∑
ω∈Ω

Fa⋆(p),ω p′ω − ca⋆(p)

)

≤
∑

p′∈V (Ld)

α(p′)

(∑
ω∈Ω

Fa,ω p′ω − ca + γ

)

=
∑
ω∈Ω

Fa,ω

 ∑
p′∈V (Ld)

α(p′) p′ω

− ca + γ

=
∑
ω∈Ω

Fa,ω pω − ca + γ,

where the first and the last equalities hold thanks of Equation 9, while the second and the third
equalities hold since

∑
p′∈V (Ld)

α(p′) = 1. Finally, the inequality holds thanks to Inequality 8 by
setting γ := 27Bϵmn2 + 2nη

√
m.

Lemma 7. Under event Eϵ, Algorithm 3 requires at most O
(
n2q

(
log (Bm/η) +

(
m+n+1

m

)))
rounds.

Proof. As a first step, we observe that Algorithm 3 terminates in a finite number of rounds. By the
way in which Algorithm 3 intersects the upper bounds with the halfspaces computed with the help of
the Find-HS procedure, the algorithm terminates with Ld = Ud for all d ∈ D after a finite number
of rounds as long as, for each meta-action di ∈ D, the halfspaces H̃ij with dj ∈ D are computed at
most once. It is easy to see that this is indeed the case. Specifically, for every meta-actions di ∈ D,
Algorithm 6 is called to build the halfspace H̃ij only when Algorithm 2 returns dj with dj ̸∈ Ddi

for a vertex p ∈ V (Udi
) of the upper bound Udi

. If the halfspace has already been computed, then
dj ∈ Ddi

by the way in which the set Ddi
is updated. As a result, if Algorithm 2 called on a vertex

of the upper bound Udi returns the meta-action dj ∈ Ddi , then Algorithm 3 does not compute the
halfspace again.

For every di ∈ D, the number of vertices of the upper bound Udi
is at most

(
m+n+1

m

)
= O(mn),

since the halfspaces defining the polytope Udi
are a subset of the m+ 1 halfspaces defining P and

the halfspaces H̃ij with dj ∈ D. The number of halfspaces H̃ij is at most n for every meta-action
di ∈ D. Consequently, since each vertex lies at the intersection of at most m linearly independent
hyperplanes, the total number of vertices of the upper bound Udi is bounded by

(
m+n+1

m

)
= O(mn),

for every di ∈ D
We also observe that, for every di ∈ D, the while loop in Line 28 terminates with at most V (Udi

) =(
m+n+1

m

)
= O(mn) iterations. This is because, during each iteration, either the algorithm finds a new

halfspace or it exits from the loop. At each iteration of the loop, the algorithm invokes Algorithm 2,
which requires q rounds. Moreover, finding a new halfspace requires a number of rounds of the order
of O (q log (Bm/η)), as stated in Lemma 11. Therefore, the total number of rounds required by the
execution of the while loop in Line 28 is at most O

(
q
(
log (Bm/η) +

(
m+n+1

m

)))
.

Let us also notice that, during each iteration of the while loop in Line 9, either the algorithm finds a
new halfspace or it exits from the loop. This is because, if no halfspace is computed, the algorithm
does not update the boundaries of Udi

, meaning that the meta-action implemented in each vertex
of Ldi

is either di or some dj belonging to Ddi
. Moreover, since the number of halfspaces H̃ij

is bounded by n for each Udi
, the while loop in Line 9 terminates in at most n steps. As a result,

the number of rounds required by the execution of the while loop in Line 9 is of the order of
O
(
nq
(
log(Bm/η) +

(
m+n+1

m

)))
, being the while loop in Lines 28 nested within the one in Line 9.

Finally, we observe that the while loop in Line 7 iterates over the set of meta-actions actions D,
which has cardinality at most n. Therefore, the total number of rounds required to execute the entire
algorithm is of the order of O

(
n2q

(
log (Bm/η) +

(
m+n+1

m

)))
, which concludes the proof.

22

Under review as a conference paper at ICLR 2024

C.4 PROOFS OF THE LEMMAS RELATED TO THE FIND-CONTRACT PROCEDURE

Lemma 8. Under the event Eϵ, if {Ld}d∈D is a cover of P computed by Try-Cover, Algorithm 4
returns a contract p ∈ [0, B]m such that u(p) ≥ maxp′∈[0,B]m u(p′)− ρ.

Proof. In the following, we define po ∈ [0, B]m as the optimal contract, while we let pℓ := (1 −√
γ)po +

√
γr, where γ is defined as in Lemma 6. Additionally, we define do ∈ D as one of the

meta-actions such that po ∈ Ldo . Similarly, we let dℓ ∈ D be one of the meta-actions such that
pℓ ∈ Ldℓ . It is important to note that pℓ ∈ [0, B]m since ∥r∥∞ ≤ 1. Furthermore, Lemma 5 ensures
that there exists at least one dℓ ∈ D such that pℓ ∈ Ldℓ .

As a first step, we prove that, for each ai ∈ A(dℓ), it holds:

γ ≥
∑
ω∈Ω

(Fa⋆(pℓ),ω − Fai,ω)p
ℓ
ω + cai

− ca⋆(pℓ)

≥
∑
ω∈Ω

(Fa⋆(po),ω − Fai,ω)p
ℓ
ω + cai

− ca⋆(po)

=
∑
ω∈Ω

(Fa⋆(po),ω − Fai,ω)p
o
ω + cai − ca⋆(po) +

√
γ
∑
ω∈Ω

(Fa⋆(po),ω − Fai,ω)(rω − poω)

≥ √γ
∑
ω∈Ω

(Fa⋆(po),ω − Fai,ω)(rω − poω),

where the first inequality holds because of Lemma 6 since pℓ ∈ Ldℓ , while the second and the third
inequalities hold because of the definition of best-response and the equality holds because of the
definition of pℓ ∈ Ldℓ .

Then, by rearranging the latter inequality, we can show that for each action ai ∈ A(dℓ) the following
holds: ∑

ω∈Ω

Fai,ω(rω − poω) ≥
∑
ω∈Ω

Fa⋆(po),ω(rω − poω)−
√
γ. (10)

Furthermore, for each action ai ∈ A(dℓ), we have that:∑
ω∈Ω

Fai,ω

(
rω − pℓω

)
=
∑
ω∈Ω

Fai,ω (rω − ((1−√γ)poω +
√
γrω))

=
∑
ω∈Ω

Fai,ω (rω − poω)−
√
γ
∑
ω∈Ω

Fai,ω (rω − poω)

≥
∑
ω∈Ω

Fai,ω (rω − poω)−
√
γ

≥
∑
ω∈Ω

Fa⋆(po),ω(rω − poω)− 2
√
γ,

where the first equality holds because of the definition of pℓ ∈ Ldℓ
, while the first inequality holds

since ∥r∥∞ ≤ 1 and the latter inequality because of Inequality 10. Putting all together we get:∑
ω∈Ω

Fai,ω

(
rω − pℓω

)
≥
∑
ω∈Ω

Fa⋆(po),ω(rω − poω)− 2
√
γ

= OPT− 2
√
γ, (11)

for each ai ∈ A(dℓ) with pℓ ∈ Ldℓ .

Now, we show that the principal’s utility in the contract returned by Algorithm 4 is close to the
optimal one. To do that we let {F̃d}d∈D be the set of empirical distributions employed by Algorithm 4.
Furthermore, we let p⋆ ∈ Ld⋆ be the contract computed in Line 5 of Algorithm 4. Analogously,
we let pf := (1 − √γ)p⋆ +

√
γr be the final contract the principal commits to. Then, for each

ai ∈ A(d⋆), we have:

u(pf) ≥
∑
ω∈Ω

Fai,ω (rω − p⋆ω)− 2
√
γ

23

Under review as a conference paper at ICLR 2024

≥
∑
ω∈Ω

F̃d⋆,ω (rω − p⋆ω)− 2
√
γ − 5ϵmn,

where the first inequality follows from Proposition A.4 by Dutting et al. (2021) and u(p⋆) ≤ 1,
while the second inequality holds by means of Definition 3 as ai ∈ A(d⋆). Analogously, for each
ai ∈ A(dℓ), we have: ∑

ω∈Ω

F̃d⋆,ω (rω − p⋆ω) ≥
∑
ω∈Ω

F̃dℓ,ω

(
rω − pℓω

)
≥
∑
ω∈Ω

Fai,ω

(
rω − pℓω

)
− 5ϵmn

≥ OPT− 2
√
γ − 5ϵmn,

where the first inequality holds because of the optimality of p⋆, the second inequality holds because
of Definition 3 since ai ∈ A(dℓ), while the third inequality holds because of Inequality 11. Finally,
by putting all together we get:

u(pf) ≥ OPT− 4

√
27Bϵmn2 + 2nη

√
m− 10ϵmn

≥ OPT− 32
√
Bϵm2n2,

where we employ the definition of γ as prescribed by Lemma 6. As a result, in order to achieve a
ρ-optimal solution we set:

ϵ :=
ρ2

322Bm2n2
,

while η := ϵ
√
mn/2.

C.5 PROOF OF THEOREM 2

Theorem 2. Given ρ ∈ (0, 1), δ ∈ (0, 1), and B ≥ 1 as inputs, with probability at least 1− δ the
Discover-and-Cover algorithm (Algorithm 1) is guaranteed to return a contract p ∈ [0, B]m

such that u(p) ≥ maxp′∈[0,B]m u(p′)− ρ in at most Õ(mn · I · 1/ρ4 log(1/δ)) rounds, where I is a
term that depends polynomially in m, n, and B.

Proof. First, we notice that to achieve ρ-optimal solution under the event Eϵ, as observed in Lemma 8,
we must set:

ϵ :=
ρ2

322Bm2n2
and η := ϵ

√
mn/2. (12)

To ensure that Algorithm 1 returns a ρ-optimal solution with a probability of at least 1− δ, we need
to set the remaining parameters α and q in a way that P(Eϵ) ≥ 1− δ. Intuitively, the probability of
the event Eϵ corresponds to the probability that, whenever Algorithm 2 is invoked by Algorithm 3, it
returns an empirical distribution sufficiently close to the actual one.

First, we observe that given ϵ, α and a distribution over outcomes F , Algorithm 2 computes an
empirical distribution F̃ satisfying ∥F̃ − F∥∞ ≤ ϵ with a probability of at least 1− α, in a number
of rounds q =

⌈
1

2ϵ2 log
(
2m
α

)⌉
as prescribed by Lemma 12.

To ensure that Algorithm 2 returns an empirical distribution that closely approximates the true distri-
bution each time it is called, we need to bound the number of times the Discover-and-Cover
procedure invokes Algorithm 2. By applying Lemma 7, we have that the maximum number of
times the Action-Oracle algorithm is called by the Try-Cover algorithm is bounded by
n2
(
log (2Bm/η) +

(
m+n+1

m

))
. Additionally, according to Lemma 2, the Try-Cover procedure is

invoked at most 2n times during the execution of the Discover-and-Cover algorithm. Conse-
quently, the number of times Algorithm 2 is invoked is bounded by 2n3

(
log (2Bm/η) +

(
m+n+1

m

))
.

By applying a union bound over all the times Algorithm 2 is invoked and considering that each
time it returns an empirical distribution that is within ϵ distance in the ∥ · ∥∞ norm from the actual
distribution with probability at least 1− α, we can conclude that the event Eϵ occurs with probability
at least:

P(Eϵ) ≥ 1− 2αn3

(
log

(
2Bm

η

)
+

(
m+ n+ 1

m

))
.

24

Under review as a conference paper at ICLR 2024

As a result, by setting:

α :=
δ

2n3
(
log (2Bm/η) +

(
m+n+1

m

)) , (13)

with η defined as above guarantees that P(Eϵ) ≥ 1− δ. Thus, the number of rounds q required by
Algorithm 2 is equal to:

q :=

⌈
1

2ϵ2
log

(
2m

α

)⌉
,

with ϵ, α defined as in Equations 12 and 13. Then, by employing Lemma 2 and Lemma 7, the number
of rounds to execute Algorithm 1 is of the order of O

(
qn3

(
log (2Bm/η) +

(
m+n+1

m

)))
.

Finally, by definition of the parameters α, ϵ, and q , the total number of rounds required by Algorithm 1
to return a ρ-optimal solution with probability at least 1− δ is at most:

Õ
(
mnB

2m4n8

ρ4
log

(
1

δ

))
,

which concludes the proof.

D OTHER OMITTED PROOFS

In this section, we provide all the remaining omitted proofs.
Theorem 1. For any number N ∈ N, there is no algorithm that is guaranteed to find a κ-optimal
contract with probability greater than or equal to 1− δ by using less than N rounds, where κ, δ > 0
are some absolute constants.

Proof. We consider a group of instances parametrized by a parameter ϵ ∈
(
0, 1

80

)
. In each instance,

we let A = {a1, a2} be the set of actions while we let Ω = {ω1, ω2, ω3} be the set of outcomes.
Furthermore, the distributions over the outcomes of the two actions are defined as follows: Fa1 =(
1
2 , 0,

1
2

)
and Fa2

= (0, ϵ, 1− ϵ) with associated cost of ca1
= 0 and ca2

= 1
4 , respectively. In all

the instances the principal’s reward is given by r = (0, 0, 1) while the optimal contract is equal to
p∗ = (0, 1

4ϵ , 0), resulting in a principal’s expected utility of u(p∗) = 3
4 − ϵ.

As a first step, we show that if pω2
≤ 1

8ϵ , then the principal’s utility is at most 9
80 -optimal. To show

that, we first consider the case in which the agent selects action a1. In such a case, the highest
expected utility achieved by the principal is at most 1

2 , which occurs when they commit to the null
contract p = (0, 0, 0). Clearly, the utility achieved in p = (0, 0, 0) is not 9

80 -optimal, for each possible
ϵ ∈ (0, 1

80).

Then, we consider the case in which the agent selects action a2. In this scenario, we observe that the
agent selects such an action only when the contract committed by the principal is such that pω3

> 1
4 ,

resulting in an expected principal’ s utility of at most:

u(p) =
∑
ω∈Ω

Fa2,ω(rω − p′ω) ≤ −
1

8
+ (1− ϵ)

(
1− 1

4

)
≤ −1

8
+

3

4
=

5

8
,

which is not 9
80 -optimal, for any value of ϵ ∈ (0, 1

80). Consequently, for each possible action selected
by the agent, if pω3

≤ 1
4 , then the expected utility of the principal’s utility cannot be 9

80 -optimal.

To conclude the proof, we consider two instances characterized by ϵ1 = 1
80N log(2N) and ϵ2 = 1

80N2 ,
for an arbitrary fixed N ≥ 1. In the following, we let Pϵ1 and Pϵ2 be the probability measures induced
by the N-rounds interconnection of an arbitrary algorithm executed in the first and in the second
instances, respectively. Furthermore, we denote with KL(Pϵ1 ,Pϵ2) the Kullback-Leibler divergence
between these two measures. Then, by applying the Kullback-Leibler decomposition, with a simple
calculation we can show that:

KL(Pϵ1 ,Pϵ2) ≤ Eϵ1

[
N∑
t=1

KL(F ϵ1
a2
, F ϵ2

a2
)

]

25

Under review as a conference paper at ICLR 2024

≤ N(ϵ1 log(ϵ1/ϵ2) + (1− ϵ1) log((1−ϵ1)/(1−ϵ2)))

≤ 2/79,

where we let F ϵ1
ai

and F ϵ2
ai

be the distributions over outcomes of action ai ∈ A in the first and in the
second instances, respectively.

We now introduce the event I, defined as the event in which the final contract returned by a given
algorithm satisfies the condition pω2

≥ 1
8ϵ2

. We observe that if the event I holds in the first instance,
then the learned contract provides a negative principal’s utility. On the contrary, if such an event does
not hold in the second instance, the final contract is not 9

80 -optimal, as previously observed. Then, by
the Pinsker’s inequality we have that:

Pϵ2(Ic) + Pϵ1(I) ≥
1

2
exp (−KL(Pϵ1 ,Pϵ2)) =

1

2
exp (−2/79). (14)

Consequently, there exists no algorithm returning a 9/80-optimal with a probability greater or equal
to 1

4 exp (−2/79), thus concluding the proof.

Theorem 3. Given α ∈ (0, 1), Algorithm 5 achieves RT ≤ Õ
(
mn · I · log(1/δ) · T 4/5

)
with

probability at least 1− δ, where I is a term that depends polynomially on m, n, and B.

Proof. Thanks to Theorem 2, we know that by employing an appropriate number of rounds, the
solution returned by Algorithm 1 is ρ-optimal with probability at least 1− δ, for given values of ρ
and δ greater than zero. Furthermore, we notice that the per-round regret suffered by Algorithm 5 is
bounded by B + 1 during the execution of Algorithm 1, and it is at most ρ for the remaining rounds.
Formally, we have that:

RT ≤ Õ
(
mnB

3m4n8

ρ4
log

(
1

δ

)
+ Tρ

)
.

Thus, by setting ρ = mn/5B3/5mn8/5T−1/5 as input to Algorithm 1, with probability at least 1− δ
the cumulative regret is bounded by:

RT ≤ Õ
(
mnB3/5n8/5 log

(
1

δ

)
T 4/5

)
,

concluding the proof.

26

	Introduction
	Preliminaries on hidden-action principal-agent problems
	Learning optimal contracts
	The Discover-and-Cover algorithm
	Action-Oracle
	Try-Cover
	Find-Contract
	Putting it all together

	Connection with online learning in principal-agent problems
	Related works
	Details about the Find-HS procedure
	Additional details about the Discover-and-Cover algorithm
	Definitions of the parameters in Algorithm 1
	Proofs of the lemmas related to the Action-Oracle procedure
	Proofs of the lemmas related to the Try-Cover procedure
	Proofs of the lemmas related to the Find-Contract procedure
	Proof of Theorem 2

	Other omitted proofs

