
Solving for X and Beyond: Can Large Language Models Solve Complex
Math Problems with More-Than-Two Unknowns?

Anonymous ACL submission

Abstract

Large Language Models have demonstrates re-001
markable performance in solving math prob-002
lems, a hallmark of human intelligence. De-003
spite high success rates on current benchmarks,004
however, these often feature simple problems005
with only one or two unknowns, which do not006
sufficiently challenge their reasoning capaci-007
ties. This paper introduces a novel benchmark,008
BeyondX, designed to address these limitations009
by incorporating problems with multiple un-010
knowns. Recognizing the challenges in propos-011
ing multi-unknown problems from scratch, we012
developed BeyondX using an innovative au-013
tomated pipeline that progressively increases014
complexity by expanding the number of un-015
knowns in simpler problems. Empirical study016
on BeyondX reveals that the performance of017
existing LLMs, even those fine-tuned specif-018
ically on math tasks, significantly decreases019
as the number of unknowns increases - with020
a performance drop of up to 70% observed in021
GPT-4. To tackle these challenges, we propose022
the Formulate-and-Solve strategy, a general-023
ized prompting approach that effectively han-024
dles problems with an arbitrary number of un-025
knowns. Our findings reveal that this strategy026
not only enhances LLM performance on the027
BeyondX benchmark but also provides deeper028
insights into the computational limits of LLMs029
when faced with more complex mathematical030
challenges.031

1 Introduction032

Mathematical problem-solving is a fundamental033

aspect of human intelligence, necessitating both034

language comprehension and reasoning skills. Re-035

cently, LLMs pretrained on extensive web-scale036

datasets, have exhibited exceptional abilities in ad-037

dressing a variety of complex tasks. Consequently,038

mathematical challenges are frequently employed039

to benchmark the reasoning abilities of LLMs.040

Studies have shown that these models demonstrate041

human-level efficacy in solving math problems,042

aided by diverse prompting techniques include in- 043

context learning (Wei et al., 2022; Kojima et al., 044

2022; Wang et al., 2022) and the integration of ex- 045

ternal computational tools (Gao et al., 2022; Chen 046

et al., 2022; Liu et al., 2023; He-Yueya et al., 2023). 047

Existing math datasets (see Table 6) used to 048

evaluate LLMs often consist of algebraic prob- 049

lems involving only one or two unknown variables. 050

While current results on these datasets are promis- 051

ing, their simplicity masks the true capabilities and 052

limitations of these models. For instance, GPT- 053

4 (Achiam et al., 2023) achieves a 98% success 054

rate on the GMS8K (Cobbe et al., 2021) dataset, 055

suggesting that performance on these benchmarks 056

is nearing saturation. This highlights the need for 057

the development of more complex problem sets de- 058

signed to rigorously stress test LLMs and provide 059

a more accurate measure of their performance. 060

While quantifying the complexity of these math 061

problems is multi-dimensional, one common mea- 062

sure is the number of unknowns required to solve 063

the problem. Problems with more unknowns in- 064

volve larger systems of equations, reflecting more 065

complex relationships between the quantities, and 066

thus demanding more sophisticated solving meth- 067

ods. However, creating datasets that include prob- 068

lems with multiple unknowns presents significant 069

challenges, as it is difficult for humans to manu- 070

ally develop a sufficient number of these complex 071

problems from scratch As a results, existing math 072

datasets are dominated by problems with at 073

most two unknowns (Cobbe et al., 2021; Koncel- 074

Kedziorski et al., 2016, 2015; Roy and Roth, 2018). 075

This paper tackles the aforementioned challenge 076

systematically, by presenting three key contribu- 077

tions: (1) the development of a multi-unknown 078

math benchmark, (2) an empirical study assess- 079

ing the performance of current LLMs on this new 080

benchmark, and (3) the introduction of a special- 081

ized prompting strategy designed to enhance the 082

ability of LLMs to solve multi-unknown problems. 083

1

C1: BeyondX - The first multi-unknown alge-084

braic benchmark. To efficiently generate a large085

corpus of multi-unknown problems, we developed086

a novel pipeline that automatically expands existing087

problems to N unknowns. This pipeline operates088

on three key ideas: (1). Scenario Expansion: New089

problems are derived by extending the scenarios090

(such as financial calculations or grocery shopping)091

of existing simpler problems, ensuring contextual092

relevance. (2). Progressive Extrapolation: We093

add unknowns incrementally — one at a time —094

progressing from problems with two unknowns to095

three, four, and so on. This step-by-step approach096

makes the problem generation process significantly097

more manageable. (3). Decomposed Problem Gen-098

eration: Instead of creating an entire problem at099

once, we decompose the process. The LLM is100

carefully instructed to first introduce new unknown101

variables into the base scenarios, generate the corre-102

sponding equations, translate these equations into103

semantic statements, and finally integrate them into104

the comprehensive problem statement.105

C2: Existing LLMs struggles with increasing106

unknowns. Utilizing our BeyondX benchmark,107

we conduct a comprehensive evaluation of current108

LLMs, which includes both general-purpose mod-109

els like GPT-3.5 (Brown et al., 2020), GPT-4, and110

Gemini-Pro (Team et al., 2023), as well as models111

specifically fine-tuned on mathematical problems112

(Mistral-7B (Jiang et al., 2023), WizardMath (Luo113

et al., 2023), OpenMath (Toshniwal et al., 2024),114

and MetaMath (Yu et al., 2023)). Our findings re-115

veal a significant drop in performance as the num-116

ber of unknowns in problems increases - a stagger-117

ing ∼ 70% degradation on GPT-4 for instance.118

• This marked decline indicates that current119

benchmarks may overstate the algebraic capa-120

bilities of these models.121

• Additionally, despite efforts to fine-tune122

LLMs on previous math corpus, they still123

struggle with multi-unknown problems.124

• Even sophisticated prompting strategies,125

which utilize detailed natural language expla-126

nations, fail to substantially aid LLMs in over-127

coming these more complex challenges.128

C3: Formulate-and-Solve A prompting method129

to tackle multi-unknown problems. Traditional130

prompting methods for LLMs typically do not ac-131

count for the complexity inherent in systems of132

equations, potentially limiting the math-solving ca-133

pabilities of these models. Addressing whether134

the observed performance drop in LLMs is primar- 135

ily due to inadequate prompting strategies forms a 136

critical part of future investigation. As the initial 137

step, we propose Formulate-and-Solve, an auto- 138

mated prompting method that generalizes to an ar- 139

bitrary number of unknowns. This strategy refines 140

current approaches by integrating general math- 141

solving principles to automatically craft relevant 142

multi-unknown in-context examples for LLMs. 143

Our empirical evaluations demonstrate that 144

Formulate-and-Solve outperforms traditional 145

prompting methods on both standard algebra 146

problem datasets and our more challenging 147

BeyondX dataset. Importantly, our findings 148

suggest that while the inherent limitations of LLMs 149

contribute to their underperformance on complex 150

problems, inadequate prompting strategies are 151

a substantial bottleneck. By enhancing these 152

strategies, Formulate-and-Solve not only improves 153

LLM performance but also provides clearer 154

insights into the actual computational limitations 155

of current models when faced with advanced 156

mathematical challenges. 157

2 Related Work 158

2.1 Math Word Problem Generation 159

Early research on math word problem (MWP) 160

generation relied heavily on pre-defined struc- 161

tures, including domain knowledge, equations, and 162

text templates (Nandhini and Balasundaram, 2011; 163

Williams, 2011; Polozov et al., 2015). More re- 164

cently, researchers began using pre-trained models 165

fine-tuned on equation-to-MWP examples (Wang 166

et al., 2021). Studies on using LLMs for MWP 167

generation are scarce. Existing work includes eval- 168

uating GPT-3’s ability to mimic specific problem 169

types (Zong and Krishnamachari, 2023) and us- 170

ing GPT-4 to improve readability in existing prob- 171

lems (Norberg et al., 2023). However, these ap- 172

proaches are limited to replicating existing prob- 173

lem structures, such as the number of unknowns or 174

equation templates. Our work focuses on how to 175

expand existing single or two unknown problems 176

into more complex multiple unknowns. 177

2.2 Math Word Problem Solver 178

Mathematical reasoning skills are crucial for in- 179

telligent systems, leading to a surge in research. 180

In the past, studies focused on how statistical and 181

deep learning NLP models could solve arithmetic 182

and algebraic problems (Hosseini et al., 2014; 183

2

Koncel-Kedziorski et al., 2015; Roy and Roth,184

2016; Liang et al., 2016; Ling et al., 2017). Re-185

cently, researchers have introduced increasingly186

challenging math datasets (Saxton et al., 2019;187

Amini et al., 2019; Miao et al., 2020; Patel et al.,188

2021; Hendrycks et al., 2021) to improve difficulty,189

diversity, and robustness. However, these methods190

struggle to adapt to problems outside their training191

data. This limitation has driven the rise of LLMs192

in mathematical reasoning.193

2.3 Math Reasoning with LLMs194

Many prompting techniques have emerged to un-195

lock the reasoning abilities of LLMs (Qiao et al.,196

2022). Chain-of-Thought (CoT) Prompting (Wei197

et al., 2022; Kojima et al., 2022; Wang et al., 2022)198

was proposed to generate the reasoning steps be-199

fore submitting the answer. Later, several other200

works (Nye et al., 2021; Zhou et al., 2022; Droz-201

dov et al., 2022; Wang et al., 2023) also proposed202

different approaches to utilize LLMs to solve rea-203

soning tasks by allowing intermediate steps or plan-204

ning first before solving. All of these methods205

allow LLMs to process all steps without using206

any external tools or refinements. For incorporat-207

ing external tools, Programming-of-Thought (PoT)208

prompting (Chen et al., 2022; Gao et al., 2022)209

utilizes LLMs with code pretraining to write a pro-210

gram as a rationale that explains the reasoning pro-211

cess. Equation-of-Thought (EoT) (Liu et al., 2023;212

He-Yueya et al., 2023) prompting tackles MWPs213

by converting them into linear equation systems,214

which are then solved by a symbolic solver. Al-215

though PoT and EoT tried to use external tools to216

solve MWPs, they did not consider the scenario of217

multiple unknown variables.218

Recent LLMs advancements for math reason-219

ing involve various training approaches. One220

method focuses on pretraining data specifically221

designed for math, such as Minerva (Lewkowycz222

et al., 2022), Llemma (Azerbayev et al., 2023), and223

DeepSeekMath (Shao et al., 2024). Another ap-224

proach involves generating synthetic questions and225

answers that mimic existing benchmarks. For ex-226

ample, the WizardMath series (Luo et al., 2023)227

that improves mathematical reasoning in Mistral228

7B (Jiang et al., 2023) and Llama-2 70B (Touvron229

et al., 2023) with problems sourced primarily from230

GSM8K and MATH (Hendrycks et al., 2021) via231

output from closed-source LLMs. MetaMath (Yu232

et al., 2023) and MMIQC (Liu and Yao, 2024) fo-233

cus on expanding existing questions in GSM8K234

and MATH. MetaMath rewrites questions in vari- 235

ous ways, while MMIQC combines existing math 236

pretraining data such as OpenWebMath (Paster 237

et al., 2023) with question-answer variations from 238

MetaMath. The Mammoth series (including Mam- 239

moth2) (Yue et al., 2023, 2024) uses curated in- 240

struction tuning datasets (MathInstruct, WebInstr- 241

cut) with reasoning rationales for training. The 242

OpenMathInstruct (Toshniwal et al., 2024) series 243

utilizes synthetic instruction data from open-source 244

LLMs with strong math reasoning abilities. 245

3 Automatic Generation of 246

Multi-Unknown Algebra Problems via 247

Progressive Expansion 248

3.1 Challenges for Constructing 249

Multi-Unknown Datasets 250

Generating new problems with LLMs Creat- 251

ing correct, diverse, and solvable math problems 252

manually is an exceptionally laborious task. The 253

complexity of this task increases with the addi- 254

tion of each unknown, as more unknowns require 255

consideration of additional relationships within the 256

problem scenario. To automatize this process, we 257

employ LLMs to generate the problems, with hu- 258

man verifiers subsequently ensuring the quality and 259

solvability of these problems. 260

Limitations of naive generation Directly 261

prompting LLMs to generate multi-unknown 262

algebra problems has often resulted in poor quality 263

outputs. Firstly, generating problem scenarios from 264

scratch tends to produce a narrow range of problem 265

types, as evidenced by the lack of diversity reported 266

in Table 15. Secondly, attempting to generate all 267

relevant relationships and corresponding equations 268

in a single step frequently leads to violations of 269

problem constraints, rendering many problems 270

unsolvable as detailed in Table 16. 271

3.2 Generating New Problems via Progress 272

Expansion 273

Pipeline overview To address the aforemen- 274

tioned challenges, we introduce a novel approach 275

called Progressive Expansion, which applies a 276

divide-and-conquer strategy: (1). Scenario Diver- 277

sification: We begin by expanding existing simpler 278

problems to increase scenario diversity. This lever- 279

ages the rich variety of simpler problem scenarios 280

as a foundation for more complex questions. (2). 281

Incremental Expansion: Instead of expanding prob- 282

lems from 1-2 unknowns to N unknowns in a single 283

3

Figure 1: An example question of multi-unknown algebra problem generation and its corresponding reasoning steps.
The prompts used for each step can be found Appendix 13.

leap, we incrementally introduce one new variable284

at a time. This step-by-step approach simplifies the285

transformation from N − 1 unknowns to N , mak-286

ing it more manageable and controllable for LLMs.287

(3). Enhanced Solvability: The problem expansion288

is broken into several simpler stages, making the289

entire generation more tractable for LLMs.290

Multi-step problem expansion The process of291

expanding problems is systematically divided into292

five steps, as illustrated in Figure 1. Step 1: Under-293

standing the source problem. First, we instruct the294

LLM to analyze the original problem (including295

solutions) and explicitly explain the role of each296

unknown variable. This “perception step" lays the297

groundwork for subsequent expansions. Step 2:298

Introducing a new unknown. The LLM then intro-299

duces an additional unknown variable related to the300

existing problem framework and assigns an appro-301

priate initial value (oracle value) to this variable.302

Step 3: Expanding equation sets. Next, the LLM303

generates a new equation that delineates the quanti-304

tative relationships between the new and existing305

variables. To ensure these equations are solvable,306

we integrate a Program Verifier module to assess307

and adjust their correctness as needed. Step 4: Add308

equations to the problem statement We translate309

the newly formed equations into text and incorpo-310

rate them into the original problem statement to311

maintain consistency and flow. Step 5: Final refine-312

ment. Finally, we engage the LLM in a thorough313

polishing phase to refine the problem statement,314

ensuring it is fluent and coherent. 315

3.3 Constructing the Benchmark 316

Seed problems We select ALG514 (Kushman 317

et al., 2014) and DRAW-1K (Upadhyay and Chang, 318

2017) as the foundational seed problems to expand. 319

These datasets are particularly suitable as they in- 320

clude full solutions with oracle equation sets. 321

Statistics With this generation process, we se- 322

lected a total of 240 problems. Specifically, there 323

are 100 problems with three unknowns, 80 prob- 324

lems with four unknowns, and 60 problems with 325

five unknowns. In addition, since our generated 326

dataset is expanded from the existing dataset, it con- 327

tains various topics or subjects including moving 328

objects, liquids, interest, distance, and geometry. 329

4 Benchmarking existing LLMs and 330

Prompting Methods 331

4.1 LLMs for solving multi-unknown algebra 332

problems 333

To evaluate the performance of various LLMs on 334

BeyondX, we consider the Zero-shot-CoT prompt- 335

ing method (details in Section 6.1) and test the per- 336

formance of both General-Purpose LLMs (GPT-3.5, 337

GPT-4, Gemini-Pro, Mistral-7B) and Mathemati- 338

cally fine-tuned LLMs (WizardMath, OpenMath, 339

MetaMath). 340

In Figure 2a and Figure 2b, the results show 341

a significant performance drop with multiple un- 342

4

(a) Zero-shot-CoT performance
of Close-source model.

(b) Zero-shot-CoT performance
of Open-source model.

(c) Different prompting methods
performance of GPT-3.5.

Figure 2: Preliminary study of different LLMs and prompting methods on multi-unknown algebra datasets.

knowns on both closed-source and open-source343

LLMs. For example, GPT-4 achieves near 90%344

accuracy when solving problems with 1 or 2 un-345

knowns, but the performance drops to 20% when346

solving problems with 5 unknowns. This highlights347

that current LLMs with Zero-shot-CoT are not able348

to solve multi-unknown problems, and this limi-349

tation was not recognized in the literature due to350

lack of datasets. In addition, mathematically fine-351

tuned LLMs exhibit a significant performance drop352

when encountering problems with more than two353

unknowns. This reveals a limitation of current fine-354

tuning methods, highlighting the need for improved355

algorithms or training sets.356

4.2 Prompting Methods357

Figure 2a demonstrates that state-of-the-art LLMs358

cannot solve multi-unknown problems with Zero-359

shot-CoT prompting. To investigate whether this360

issue can be mitigated with better prompting meth-361

ods, we evaluated nine existing prompting methods362

using GPT-3.5, categorized into three types:363

Zero-shot. Zero-shot-CoT (Kojima et al., 2022)364

and Plan-and-Solve (Wang et al., 2023) prompting.365

Few-shot with manual demonstrations. CoT (Wei366

et al., 2022), PoT (Gao et al., 2022), EoT (Liu367

et al., 2023), and Declarative (He-Yueya et al.,368

2023) prompting.369

Few-shot with automatic demonstrations. Analog-370

ical (Yasunaga et al., 2023), Auto-Zero-shot-CoT.371

In Figure 2c, we observe zero-shot and few-shot372

CoT prompting methods seem inadequate when373

solving multi-unknown problems. We find that374

while CoT correctly sets up the equations, it fails375

to accurately solve the system of equations. Ad-376

ditionally, even though some prompting methods377

like PoT, EoT, and Declarative use external tools378

as a calculator and equation solver, they manu-379

ally design their demonstration for simpler prob-380

lems and fail to generalize to more complex mul-381

tiple unknown scenarios. Although some meth- 382

ods construct demonstrations automatically from 383

the problem context (Analogical, Auto-CoT), they 384

still suffer from poor performance. Since LLMs 385

themselves do not have enough capability to solve 386

multi-unknown problems, the generated demonstra- 387

tions are often of low quality. This raises concerns 388

about prompt engineering requiring "human-in-the- 389

loop" solutions with domain knowledge integrated 390

through instructions. 391

Therefore, in the next section, we will go through 392

a detailed formulation of Formulate-and-Solve 393

prompting. Our method can significantly bridge 394

the gap as shown in Figure 2c. 395

5 Automatic Solver of Algebra Problems 396

To investigate whether the observed performance 397

drop is primarily due to inadequate prompting 398

strategies or the limitation of LLMs. we develop 399

Formulate-and-Solve, an automated prompting 400

method designed for LLMs to solve math prob- 401

lems with an arbitrary number of unknowns. We 402

also show that Formulate-and-Solve performs com- 403

petitively to state-of-the-art algorithms even for 404

non-algebra problems in Appendix A.1. 405

A major challenge in applying the prompting 406

method to multi-unknown problems is the scarcity 407

of hand-crafted demonstrations. Traditional exam- 408

ples with a single unknown do not scale well to 409

more complex, multi-unknown scenarios, necessi- 410

tating automated demo generation. Furthermore, 411

while language models can be guided by prompts 412

to solve these systems of equations, they often re- 413

quire external tools due to their limited ability to 414

independently solve and explicitly formulate these 415

problems into a system of equations. 416

To overcome these limitations, we propose 417

Formulate-and-Solve, a framework that incorpo- 418

rates a set of principles to instruct LLMs in gen- 419

erating demonstrations automatically. This frame- 420

5

work empowers LLMs to translate problems into421

equations and subsequently utilize external tools422

to solve them. The overall pipeline is illustrated in423

Figure 3 and we include the actual prompts used in424

each step in Appendix 14.425

Figure 3: The overview of Automatic Solver of Algebra
Problems.

Automatic Generated Demonstrations. Con-426

ventional prompting methods require creating427

and evaluating human-written examples to guide428

LLMs in solving algebra problems, which is time-429

consuming. Our approach leverages intuitive430

human-solving steps as instructions. Based on431

these instructions, the LLM iteratively generates its432

solution demonstrations (approximately five). To433

find the most effective demonstrations, we generate434

ten sets of demonstrations and assess their accu-435

racy on twenty problems. The set with the highest436

accuracy is chosen as the best.437

Solving Strategy. Our proposed method lever-438

ages the strengths of both LLMs and symbolic439

solvers. We cooperate with the human-solving440

steps in the instruction to convert algebra prob-441

lems into the corresponding systems of equations.442

Recognizing the limitations of LLMs for complex443

systems, an external symbolic solver (e.g., SymPy)444

is employed to solve the system of equations. In445

the cases of unsolvability or errors that occur in446

solving the system of equations, the finalization447

module relies solely on the original prompt and re-448

sponse. This strategy ensures adaptability in some449

scenarios where the response is not formatted. Fur-450

thermore, by incorporating the historical prompt451

and response within the finalization module, the452

approach facilitates the continuation or refinement453

of the solution response. 454

6 Experimental Results 455

6.1 Experimental Setting 456

Dataset. Our experiments are conducted on five 457

algebra problem sets, including existing widely- 458

used ones (ALG514, DRAW-1K, AsDiv, HMWP) 459

and the proposed BeyondX benchmark. AsDiv 460

consists of a wide range of math problems and 461

we only take the algebra problem subset. Also, 462

since HWMP is a Chinese dataset, we use GPT-4 463

to translate the problem into English. We find that 464

while most translation results effectively convey 465

the intended meaning. The five datasets differ in 466

size and complexity, as shown in Table 1. We also 467

report the average number of unknowns in each 468

dataset. Note that we split the proposed dataset 469

into three subsets, correspond to problems with 3 470

(BeyondX_3), 4 (BeyondX_4), and 5 (BeyondX_5) 471

unknowns, while the problems in all other datasets 472

have ≤ 2 unknowns. 473

Dataset Avg #unknowns Avg #words Size
ALG514 1.8 41.4 514
DRAW-1K 1.7 35.8 200
AsDiv 1.6 27.9 154
HMWP 1.3 77.3 548
BeyondX_3 3 65.1 200
BeyondX_4 4 94.5 160
BeyondX_5 5 118.8 120

Table 1: Statistics of existing algebra dataset.

Models. For experiments in this section, we uti- 474

lize GPT-3.5, GPT-4, and Gemini-Pro as represen- 475

tatives of general-purpose LLMs. We also opt to ex- 476

clude open-sourced LLMs, as they typically strug- 477

gle with multi-unknown problems due to their lim- 478

ited capacity to process and follow long prompts. 479

Baselines. We compare Formulate-and-Solve 480

with three types of prompting baselines: (1) Zero- 481

shot. We include Zero-shot-CoT (Kojima et al., 482

2022) and Plan-and-Solve (PS) (Wang et al., 2023) 483

prompting. The former appends “Let’s think step 484

by step” to the prompt without any demo. The 485

latter appends “Let’s first understand the problem 486

and devise a plan to solve the problem. Then, let’s 487

carry out the plan and solve the problem step by 488

step” to the prompt without any demo. (2) Few- 489

shot with manual demonstrations. CoT (Wei et al., 490

2022) creates eight hand-crafted natural language 491

examples as demonstrations. PoT (Gao et al., 2022) 492

creates eight hand-crafted Python code examples 493

as demonstrations and uses programming tools to 494

6

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG AZ Ours†

MU_1 79.3% 77.2% 82.8% 80.0% 25.5% 51.7% 33.8% 90.3% 89.7%
MU_2 46.2% 40.8% 52.7% 77.3% 26.7% 67.0% 33.9% 87.9% 93.7%
BeyondX_3 11.0% 9.5% 12.0% 50.5% 3.5% 53.5% 10.0% 0.5% 91.0%
BeyondX_4 6.3% 8.8% 3.1% 31.9% 0.0% 21.3% 10.0% 2.5% 83.8%
BeyondX_5 5.8% 5.0% 2.5% 34.2% 0.0% 5.0% 9.2% 1.7% 66.7%
Average 29.7% 28.3% 30.6% 54.8% 11.1% 39.7% 19.4% 36.6% 85.0%

Table 2: Experiment results across various unknowns using GPT-3.5. † means whether the method uses external
tools or not.

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Single
ALG514 91.2% 85.7% 91.2% 93.4% 31.9% 59.3% 38.5% 93.4% 92.3%
DRAW-1K 59.3% 63.0% 68.5% 57.4% 14.8% 38.9% 25.9% 85.2% 85.2%
AsDiv 68.3% 71.4% 71.4% 75.0% 26.8% 53.5% 54.0% 76.1% 81.7%
HMWP 21.5% 14.6% 22.0% 25.2% 4.2% 10.3% 21.0% 31.0% 37.7%
Average 60.1% 58.7% 63.3% 62.8% 19.4% 40.5% 34.8% 71.4% 74.2%

Double
ALG514 47.0% 40.7% 53.4% 81.8% 29.6% 68.8% 34.5% 90.5% 96.5%
DRAW-1K 43.8% 41.1% 50.7% 64.4% 18.5% 61.6% 32.2% 80.1% 85.6%
AsDiv 55.0% 49.5% 37.4% 11.0% 15.7% 59.0% 31.9% 79.5% 80.7%
HMWP 16.4% 9.9% 18.7% 39.8% 9.9% 26.3% 28.1% 50.3% 58.5%
Average 40.6% 35.3% 40.0% 49.2% 18.4% 53.9% 31.7% 75.1% 80.3%

Table 3: Experiment results across various algebra problem datasets which include single and double unknown
using GPT-3.5. † means whether the method uses external tools or not.

get the final answer. EoT (Liu et al., 2023) creates495

eight hand-crafted equation examples as demonstra-496

tions and uses symbolic solvers to obtain the final497

answer. Declarative (DR) (He-Yueya et al., 2023)498

creates three hand-crafted examples with princi-499

ples as demonstrations and uses symbolic solvers500

to obtain the final answer. (3) Few-shot with au-501

tomatic demonstrations. (Yasunaga et al., 2023)502

proposed Analogical prompting (AG), designed to503

automatically guide LLMs to self-generate relevant504

examples as demonstrations before proceeding to505

solve the problem. We come up with another naive506

method: selecting examples from the dataset and507

employing Zero-shot-CoT (Kojima et al., 2022) to508

generate examples as demonstrations. We refer to509

this method as Auto-Zero-shot-CoT (AZ).510

6.2 Main Results511

To investigate which reasoning methods and mod-512

els better solve multi-unknown problems, we sum-513

marize the performance of different prompting514

methods using GPT-3.5 in Table 2 and Tables 3. We515

also evaluate and compare various prompting meth-516

ods with GPT-4 and Gemini-Pro in Appendix A.3.517

Comparison with various prompting baselines.518

Table 2 and Figure 2c present the accuracy com-519

parison of our method with existing approaches on520

datasets containing 1 to 5 unknowns. We combine521

ALG514 and DRAW-1K into MU_1 and MU_2522

for problems with 1 and 2 unknowns, respectively, 523

and use BeyondX for problems with 3, 4, or 5 un- 524

knowns. Figure 2c illustrates that only our method 525

maintains reasonable accuracy when the number of 526

unknowns exceeds two, while other methods expe- 527

rience a significant performance decline. For prob- 528

lems with five unknowns, our method achieves a 529

66.7% accuracy, while the best alternative achieves 530

only 34.2%. 531

This improvement is attributed to our instruc- 532

tional approach and automatic demonstrations, 533

which effectively address general algebra problems. 534

Furthermore, datasets with multiple unknowns typ- 535

ically involve longer questions and necessitate the 536

construction of more equations for a solution. We 537

find that using lengthy natural language reasoning 538

steps can easily introduce operational and calcula- 539

tion errors. In contrast, our method guides LLMs to 540

generate a system of equations as an intermediate 541

reasoning step, making it less prone to mistakes dur- 542

ing equation formulation. As a result, our method 543

maintains high accuracy when using a symbolic 544

solver to solve the equations. We also observe that 545

leveraging external tools, such as programming 546

or symbolic solvers, to tackle algebra problems 547

generally yields better performance than directly 548

obtaining the final answer from the model in the 549

presence of multiple unknowns. 550

Next, we verify whether Formulate-and-Solve 551

7

Instruction Demos Solver Equation U1 U2 U3 U4 U5
✗ ✗ ✓ ✓ 77.8% 74.0% 60.0% 33.8% 18.3%
✗ ✓ ✓ ✓ 79.6% 77.4% 79.0% 56.3% 48.3%
✓ ✗ ✓ ✓ 64.1% 81.2% 82.0% 68.3% 60.0%
✓ ✓ ✗ ✓ 59.3% 73.3% 43.0% 16.8% 15.0%
✓ ✓ ✓ ✓ 85.2% 87.6% 90.0% 81.3% 66.7%

Table 4: Ablation experiment results across various number of unknowns using GPT-3.5. Our method achieves the
highest accuracy among all.

maintains its effectiveness for problems with one552

or two unknowns. For this, we compare it with553

baselines on commonly used algebra datasets con-554

taining one or two unknowns, with the results pre-555

sented in Table 3. The results demonstrate that556

Formulate-and-Solve again achieves the best per-557

formance. Compared with other automatic few-558

shot methods such as AZ, the performance gap is559

considerably smaller (5.2% on average) for one or560

two unknowns than for multiple unknowns (48.4%561

on average). This is likely because it is easier to562

generate a high-quality demo for problems with one563

or two unknowns. Also, we cannot see a big dif-564

ference between the zero-shot and few-shot CoT in565

this experiment since the manual few-shot demon-566

strations that are commonly used in previous work567

are beneficial for solving arithmetic problems, not568

algebra problems.569

7 Discussion and Analysis570

Error Reason Percentage (%)
(E1) Fewer or More Equations 14.3% (12/84)
(E2) Incorrect Equation 36.9% (31/84)
(E3) Incorrect Extraction Form 31.0% (26/84)
(E4) Others 17.9% (15/84)

Table 5: Statistics of Error Analysis under GPT-3.5.

Ablation Study. We analyze the significance of571

each component within in Fomulate-and-Solve572

through an ablation study. We assess five varia-573

tions: (1) Use a system of equations as a rationale574

for reasoning. (2) Remove the instruction before575

demonstrations. (3) Remove demonstrations after576

the instruction. (4) Use an LLM instead of a sym-577

bolic solver to solve a system of equations. (5) Our578

method. For each variation, we randomly select 60579

problems from each unknown dataset of ALG514580

and DRAW-1K, and evaluate their performance.581

The results are provided in Table 4.582

We observe that performance decreases signif-583

icantly when instruction or demonstration is re-584

moved, highlighting its role in guiding the LLM.585

Interestingly, instruction has a greater impact than586

demonstration. Replacing the symbolic solver with587

an LLM also leads to a decrease in accuracy. These588

findings confirm that all elements in Formulate- 589

and-Solve contribute significantly to solving multi- 590

unknown problems. 591

Error Analysis. We delve deeper into the pri- 592

mary challenges that LLMs encounter when solv- 593

ing multiple unknown algebra problems. This ex- 594

ploration may offer insights into designing more 595

effective prompting methods in the future. To gain 596

a quantitative understanding of model failures, we 597

conduct an error analysis on the Formulate-and- 598

Solve method implemented with GPT-3.5 on Be- 599

yondX. We collect all instances where predictions 600

were incorrect and annotate the main reasons for 601

these mispredictions. The error types include: (E1) 602

generating too few or too many equations, (E2) 603

producing the correct number of equations but with 604

incorrect content, (E3) generating responses in the 605

wrong format, preventing the extraction of the equa- 606

tion system, and (E4) other cases. 607

As illustrated in Table 5, the most common error 608

is E2 (incorrect equation). This indicates that cur- 609

rent LLMs equipped with prompting methods still 610

struggle to accurately formulate multi-unknown 611

equations in some cases. Besides, 31% of the er- 612

rors occur due to the wrong format of the response, 613

and 14.3% of the errors arise when LLMs fail to 614

align relevant information correctly with the equa- 615

tions, resulting in either too few or too many equa- 616

tions. The detailed qualitative analysis of the error 617

examples is in Appendix D.2. 618

8 Conclusion 619

We introduce BeyondX, the first benchmark for 620

evaluating LLMs on multi-unknown problems. Our 621

analysis reveals a significant performance drop in 622

LLMs and existing prompting methods when faced 623

with such problems. To address this, we propose 624

Formulate-and-Solve, a novel prompting method 625

that leverages instruction, automatic demonstra- 626

tions and a system of equations. Experiments 627

demonstrate the effectiveness of Formulate-and- 628

Solve in tackling multi-unknown problems. 629

8

Limitations630

Scope of Benchmark.631

Although our automatic generation method can de-632

crease the labor-intensive data collection process,633

our method still needs to be expanded from high-634

quality problems with low unknowns. Besides, we635

figure that some types or topics of the problems636

cannot be extended to multiple unknown problems.637

And, our benchmark is limited to English questions638

and data. We look forward to future benchmarks on639

a broader domain or modality and other languages.640

Models and Reasoning Methods.641

Although we experiment with many representative642

models and reasoning methods in this paper, we643

acknowledge that this does not cover all models644

and frameworks. Besides, we acknowledge that our645

approach falls short on more straightforward arith-646

metic datasets since our method is more suitable647

for algebra datasets. Further research is required to648

explore new problem-solving methods for general649

math reasoning tasks, including different modali-650

ties.651

References652

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama653
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,654
Diogo Almeida, Janko Altenschmidt, Sam Altman,655
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.656
arXiv preprint arXiv:2303.08774.657

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-658
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.659
2019. Mathqa: Towards interpretable math word660
problem solving with operation-based formalisms.661
arXiv preprint arXiv:1905.13319.662

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,663
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,664
Jia Deng, Stella Biderman, and Sean Welleck. 2023.665
Llemma: An open language model for mathematics.666
arXiv preprint arXiv:2310.10631.667

Tom Brown, Benjamin Mann, Nick Ryder, Melanie668
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind669
Neelakantan, Pranav Shyam, Girish Sastry, Amanda670
Askell, et al. 2020. Language models are few-shot671
learners. Advances in neural information processing672
systems, 33:1877–1901.673

Wenhu Chen, Xueguang Ma, Xinyi Wang, and674
William W Cohen. 2022. Program of thoughts675
prompting: Disentangling computation from reason-676
ing for numerical reasoning tasks. arXiv preprint677
arXiv:2211.12588.678

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 679
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 680
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 681
Nakano, et al. 2021. Training verifiers to solve math 682
word problems. arXiv preprint arXiv:2110.14168. 683

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, 684
Nathan Scales, Xinying Song, Xinyun Chen, Olivier 685
Bousquet, and Denny Zhou. 2022. Compositional 686
semantic parsing with large language models. In 687
The Eleventh International Conference on Learning 688
Representations. 689

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 690
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 691
ham Neubig. 2022. Pal: Program-aided language 692
models. arXiv preprint arXiv:2211.10435. 693

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and 694
Noah D Goodman. 2023. Solving math word prob- 695
lems by combining language models with symbolic 696
solvers. arXiv preprint arXiv:2304.09102. 697

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 698
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 699
cob Steinhardt. 2021. Measuring mathematical prob- 700
lem solving with the math dataset. arXiv preprint 701
arXiv:2103.03874. 702

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren 703
Etzioni, and Nate Kushman. 2014. Learning to solve 704
arithmetic word problems with verb categorization. 705
In Proceedings of the 2014 Conference on Empirical 706
Methods in Natural Language Processing (EMNLP), 707
pages 523–533. 708

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 709
sch, Chris Bamford, Devendra Singh Chaplot, Diego 710
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 711
laume Lample, Lucile Saulnier, et al. 2023. Mistral 712
7b. arXiv preprint arXiv:2310.06825. 713

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 714
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 715
guage models are zero-shot reasoners. Advances in 716
neural information processing systems, 35:22199– 717
22213. 718

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish 719
Sabharwal, Oren Etzioni, and Siena Dumas Ang. 720
2015. Parsing algebraic word problems into equa- 721
tions. Transactions of the Association for Computa- 722
tional Linguistics, 3:585–597. 723

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 724
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS: 725
A math word problem repository. In Proceedings of 726
the 2016 Conference of the North American Chapter 727
of the Association for Computational Linguistics: Hu- 728
man Language Technologies, pages 1152–1157, San 729
Diego, California. Association for Computational 730
Linguistics. 731

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and 732
Regina Barzilay. 2014. Learning to automatically 733
solve algebra word problems. In Proceedings of the 734

9

https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026

52nd Annual Meeting of the Association for Compu-735
tational Linguistics (Volume 1: Long Papers), pages736
271–281, Baltimore, Maryland. Association for Com-737
putational Linguistics.738

Aitor Lewkowycz, Anders Andreassen, David Dohan,739
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,740
Ambrose Slone, Cem Anil, Imanol Schlag, Theo741
Gutman-Solo, et al. 2022. Solving quantitative rea-742
soning problems with language models. Advances743
in Neural Information Processing Systems, 35:3843–744
3857.745

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang,746
Chung-Min Li, Shen-Yu Miao, and Keh-Yih Su. 2016.747
A tag-based english math word problem solver with748
understanding, reasoning and explanation. In Pro-749
ceedings of the 2016 conference of the North Amer-750
ican chapter of the association for computational751
linguistics: Demonstrations, pages 67–71.752

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-753
som. 2017. Program induction by rationale genera-754
tion: Learning to solve and explain algebraic word755
problems. arXiv preprint arXiv:1705.04146.756

Haoxiong Liu and Andrew Chi-Chih Yao. 2024. Aug-757
menting math word problems via iterative question758
composing. arXiv preprint arXiv:2401.09003.759

Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun760
Hu, Yue Zhang, Xipeng Qiu, and Zheng Zhang.761
2023. Plan, verify and switch: Integrated rea-762
soning with diverse x-of-thoughts. arXiv preprint763
arXiv:2310.14628.764

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-765
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei766
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-767
ardmath: Empowering mathematical reasoning for768
large language models via reinforced evol-instruct.769
arXiv preprint arXiv:2308.09583.770

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.771
2020. A diverse corpus for evaluating and developing772
English math word problem solvers. In Proceedings773
of the 58th Annual Meeting of the Association for774
Computational Linguistics, pages 975–984, Online.775
Association for Computational Linguistics.776

Kumaresh Nandhini and Sadhu Ramakrishnan Bala-777
sundaram. 2011. Math word question generation778
for training the students with learning difficulties.779
In Proceedings of the International Conference &780
Workshop on Emerging Trends in Technology, pages781
206–211.782

Kole Norberg, Husni Almoubayyed, Stephen E Fancsali,783
Logan De Ley, Kyle Weldon, April Murphy, and784
Steven Ritter. 2023. Rewriting math word problems785
with large language models. In AIEd23: artificial786
intelligence in education, empowering education with787
LLMs workshop.788

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,789
Henryk Michalewski, Jacob Austin, David Bieber,790

David Dohan, Aitor Lewkowycz, Maarten Bosma, 791
David Luan, et al. 2021. Show your work: Scratch- 792
pads for intermediate computation with language 793
models. arXiv preprint arXiv:2112.00114. 794

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, 795
and Jimmy Ba. 2023. Openwebmath: An open 796
dataset of high-quality mathematical web text. arXiv 797
preprint arXiv:2310.06786. 798

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 799
2021. Are nlp models really able to solve 800
simple math word problems? arXiv preprint 801
arXiv:2103.07191. 802

Oleksandr Polozov, Eleanor O’Rourke, Adam M 803
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo- 804
ran Popović. 2015. Personalized mathematical word 805
problem generation. In Twenty-Fourth International 806
Joint Conference on Artificial Intelligence. 807

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, 808
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, 809
and Huajun Chen. 2022. Reasoning with lan- 810
guage model prompting: A survey. arXiv preprint 811
arXiv:2212.09597. 812

Subhro Roy and Dan Roth. 2016. Solving gen- 813
eral arithmetic word problems. arXiv preprint 814
arXiv:1608.01413. 815

Subhro Roy and Dan Roth. 2018. Mapping to declara- 816
tive knowledge for word problem solving. Transac- 817
tions of the Association for Computational Linguis- 818
tics, 6:159–172. 819

David Saxton, Edward Grefenstette, Felix Hill, and 820
Pushmeet Kohli. 2019. Analysing mathematical rea- 821
soning abilities of neural models. arXiv preprint 822
arXiv:1904.01557. 823

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 824
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and 825
Daya Guo. 2024. Deepseekmath: Pushing the limits 826
of mathematical reasoning in open language models. 827
arXiv preprint arXiv:2402.03300. 828

Gemini Team, Rohan Anil, Sebastian Borgeaud, 829
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 830
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 831
Anja Hauth, et al. 2023. Gemini: a family of 832
highly capable multimodal models. arXiv preprint 833
arXiv:2312.11805. 834

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi- 835
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024. 836
Openmathinstruct-1: A 1.8 million math instruction 837
tuning dataset. arXiv preprint arXiv:2402.10176. 838

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 839
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 840
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 841
Bhosale, et al. 2023. Llama 2: Open founda- 842
tion and fine-tuned chat models. arXiv preprint 843
arXiv:2307.09288. 844

10

https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92

Shyam Upadhyay and Ming-Wei Chang. 2017. An-845
notating derivations: A new evaluation strategy and846
dataset for algebra word problems. In Proceedings847
of the 15th Conference of the European Chapter of848
the Association for Computational Linguistics: Vol-849
ume 1, Long Papers, pages 494–504, Valencia, Spain.850
Association for Computational Linguistics.851

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi852
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-853
and-solve prompting: Improving zero-shot chain-of-854
thought reasoning by large language models. In Pro-855
ceedings of the 61st Annual Meeting of the Associa-856
tion for Computational Linguistics (Volume 1: Long857
Papers), pages 2609–2634, Toronto, Canada. Associ-858
ation for Computational Linguistics.859

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,860
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and861
Denny Zhou. 2022. Self-consistency improves chain862
of thought reasoning in language models. arXiv863
preprint arXiv:2203.11171.864

Zichao Wang, Andrew Lan, and Richard Baraniuk. 2021.865
Math word problem generation with mathematical866
consistency and problem context constraints. In Pro-867
ceedings of the 2021 Conference on Empirical Meth-868
ods in Natural Language Processing, pages 5986–869
5999, Online and Punta Cana, Dominican Republic.870
Association for Computational Linguistics.871

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten872
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,873
et al. 2022. Chain-of-thought prompting elicits rea-874
soning in large language models. Advances in neural875
information processing systems, 35:24824–24837.876

Sandra Williams. 2011. Generating mathematical word877
problems. In 2011 AAAI Fall symposium series.878

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong879
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and880
Denny Zhou. 2023. Large language models as ana-881
logical reasoners. arXiv preprint arXiv:2310.01714.882

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,883
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-884
guo Li, Adrian Weller, and Weiyang Liu. 2023.885
Metamath: Bootstrap your own mathematical ques-886
tions for large language models. arXiv preprint887
arXiv:2309.12284.888

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-889
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.890
2023. Mammoth: Building math generalist models891
through hybrid instruction tuning. arXiv preprint892
arXiv:2309.05653.893

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.894
2024. Mammoth2: Scaling instructions from the web.895
arXiv preprint arXiv:2405.03548.896

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,897
Nathan Scales, Xuezhi Wang, Dale Schuurmans,898
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.899

Least-to-most prompting enables complex reason- 900
ing in large language models. arXiv preprint 901
arXiv:2205.10625. 902

Mingyu Zong and Bhaskar Krishnamachari. 2023. Solv- 903
ing math word problems concerning systems of equa- 904
tions with gpt-3. In Proceedings of the AAAI Con- 905
ference on Artificial Intelligence, volume 37, pages 906
15972–15979. 907

11

https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2021.emnlp-main.484
https://doi.org/10.18653/v1/2021.emnlp-main.484
https://doi.org/10.18653/v1/2021.emnlp-main.484

Algorithm 1 Formulate-and-Solve Reasoning Al-
gorithm

Require: question Q, instruction I , reasoning
module R, symbolic solver S, finalize mod-
ule F

1: function AUTO DEMO(I , Question, K)
2: while K ̸= 0 do
3: D ← R(I +D +Question)
4: K ← K − 1
5: end while
6: return D ▷ D is a demo
7: end function
8: D ← AutoDemo()
9: p← I +D +Q ▷ p is a input prompt

10: eq ← R(p)
11: if S(eq) then ▷ Equation System is solvable
12: ans← F (Q+ eq + S(eq))
13: else
14: ans← F (Q+ eq)
15: end if
16: return ans ▷ Return the Answer

A Further Experiment908

A.1 Generalization to common arithmetic909

datasets910

We analyze the generalizability of Formulate-911

and-Solve framework to other common arithmetic912

datasets, such as GSM8K, SVAMP, AddSub, Sin-913

gleEq, and MultiArith where some problems can914

be seen as single unknown problems. From Table915

7, we can see that our method can still perform a916

comparable performance to other existing custom917

prompting methods for arithmetic tasks since these918

datasets are much easier than multiple unknown919

datasets and only allow minimal room for improve-920

ment.921

A.2 Experiments different mathematical922

models on BeyondX923

We further evaluate different existing mathematical924

models fine-tuned on Mistral-7B on BeyondX un-925

der Zero-shot-CoT setting. As shown in Figure 4,926

the results indicate that these open-source LLMs927

are still struggling with more complex mathemati-928

cal reasoning tasks in multiple unknown problems.929

There is still a significant amount of effort dur-930

ing pretraining or supervised fine-tuning to instill931

enough multiple unknown knowledge and the way932

of solving multiple unknown system of equations933

into the models’ parameters to close the gap.934

Figure 4: The performance of different existing open-
source models.

A.3 Experiments different models on 935

Formulate-and-Solve 936

We further assess the performance of Formulate- 937

and-Solve across various base models, such as GPT- 938

4 and Gemini. The results of Gemini-Pro and GPT- 939

4 are shown in Table 11 and Table 12, and we 940

illustrate the performance curve in Figure 5a and 941

Figure 5b. The findings remain as GPT-3.5 and 942

our method outperforms a large gap among other 943

methods. Additionally, we observe that The per- 944

formance of the Gemini-Pro model generally falls 945

between that of GPT-3.5 and GPT-4 across various 946

settings and prompting methods. 947

A.4 Experiments different shots of 948

demonstrations on Formulate-and-Solve 949

In Figure 5, we analyze the effect of varying the 950

number of automatic generated exemplars (K) in 951

our approach on GPT-3.5. Here, we show three 952

variations with K = 3, 5, and 8. In Table 9, we 953

observe that LLM demonstrates consistent perfor- 954

mance under single or double unknown in different 955

datasets. When K is bigger, on average, perfor- 956

mance improves. 957

B Full Instruction 958

In this section, we show the full instructions in 959

Section 3 and Section 5. 960

B.1 Automatic Generation of Multiple 961

Unknown Algebra Problems 962

We can see the full instructions in Table 13. 963

B.2 Automatic Solver of Algebra Problems 964

We can see the full instructions in Table 14. 965

12

Dataset Rationale Size # of Variables Source Domain
SingleEQ Equation 508 1 Internet Arithmetic
MAWPS Equation 3320 1 Internet Arithmetic
AllArith Equation 831 1 Internet Arithmetic
Dolphin18K Equation 18460 1 Internet Arithmetic/Alegbra
Math23K Equation 23162 1 Internet Arithmetic/Alegbra
SVAMP Equation 1000 1 Internet Arithmetic/Alegbra
GSM8K Natural Language 8792 1 Annotated Arithmetic/Alegbra
AQuA Natural Language 100000 1 GMAT/GRE Arithmetic/Alegbra
MATHQA Natural Language 37297 1 GMAT/GRE Arithmetic/Alegbra
ASDiv Equation 2305 1-2 Internet Arithmetic/Alegbra
ALG514 Equation 514 1-2 Internet Alegbra
DRAW-1K Equation 1000 1-2 Internet Alegbra
HMWP Equation 5470 1-2 Internet Alegbra
BeyondX Equation 480 1-5 LLMs Generated Alegbra

Table 6: List of existing math dataset.

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG CoT Ours†

MultiArith 94.3% 95.3% 98.7% 98.2% 50.2% 90.5% 73.8% 95.7% 97.7%
GSM8K 77.9% 75.1% 79.5% 75.7% 28.2% 59.4% 52.9% 77.7% 71.4%
AddSub 91.9% 89.9% 94.9% 92.4% 55.4% 89.6% 64.8% 94.9% 91.5%
SingleEq 95.7% 97.0% 98.4% 97.6% 53.0% 92.3% 67.5% 97.6% 96.3%
SVAMP 82.7% 82.1% 80.8% 84.8% 44.9% 76.9% 59.5% 82.1% 81.6%
Average 88.5% 87.6% 90.5% 89.7% 46.3% 81.7% 63.7% 89.6% 87.7%

Table 7: We compare the results across various arithmetic problem datasets using GPT-3.5. † means whether the
method uses external tools or not.

C Detail Studies of Automatic Generation966

of Multi-Unknown Algebra Problems967

C.1 Construction Steps968

Starting from the 2 unknown problems in our seed969

dataset, we use Zero-shot prompting with GPT-4970

to generate an initial demonstration using the in-971

struction in Table 13, which is then manually re-972

fined. The LLM then iteratively creates additional973

demonstrations (approximately five) based on the974

problem, the system of equations, and the existing975

demonstrations. Combining this information, the976

LLM generates a new problem with N+1 unknowns977

and its corresponding system of equations. Finally,978

we use GPT-4 to solve these newly generated prob-979

lems, discarding low-quality ones (where GPT-4980

provides incorrect answers) for the next round.981

C.2 Quality Validation982

We recruit 12 raters to validate whether the gener-983

ated problems are reasonable and whether they are984

consistent with the generated system of equations.985

We show the ratio of problems that are marked as986

“unreasonable” by raters in in Table 10. To under-987

stand why LLMs struggle with our instruction, we988

analyzed unreasonable problems in Table 17. Our989

findings reveal several limitations. First, LLMs990

cannot directly derive complex constant meanings 991

requiring decomposition (Case 1). Second, unclear 992

instructions lead to repetitive equations (Case 2). 993

Third, introducing new variables might not be effec- 994

tive for all problems (e.g., river rate and distance, 995

Case 3). Finally, LLMs may generate inconsistent 996

numerical values within problems (Case 4). 997

C.3 Full Examples 998

In Figure 6, we show the full examples of our pro- 999

posed generation method under each unknown. 1000

D Detail Studies of Automatic Solver of 1001

Algebra Problems 1002

D.1 Overall Pipeline 1003

We describe the overall pipeline of Forumulate-and- 1004

Solve in Algorithm 1. 1005

D.2 Qualitative Analysis of Error Cases 1006

We show every type of error case that GPT-3.5 can- 1007

not answer correctly in Table 18. From E1, the 1008

system of equations is missing an equation about 1009

the relation "Total number of cars: 20". From E2, 1010

the first equation is wrong since the relation is "To- 1011

tal sum of the average miles per gallon obtained 1012

by the three cars is 75", which means "a + b + c 1013

13

Model name Dataset Tool-Integrated MU_1 MU_2 BeyondX_3 BeyondX_4 BeyondX_5
Mistral-7B (Base) - - 7.3% 5.5% 3.0% 1.3% 7.5%
Arithmo-Mistral-7B MetaMathQA &MathInstruct ✗ 43.5% 26.8% 12.5% 9.4% 8.3%
MetaMath-Mistral-7B MetaMathQA ✗ 46.7% 51.0% 15.0% 15.0% 15.0%
WizardMath-Mistral-7B Not released ✗ 65.2% 58.7% 20.0% 13.1% 13.3%
MMIQC-Mistral-7B MMIQC ✗ 29.6% 12.4% 8.0% 6.9% 5.8%
MAmmoTH-Mistral-7B MathInstruct ✓ 46.8% 23.7% 4.5% 4.4% 4.2%
MAmmoTH2-Mistral-7B WebInstruct ✓ 69.0% 68.0% 25.0% 16.3% 9.2%
OpenMath-Mistral-7B OpenMathInstruct-1 ✓ 12.1% 5.3% 5.5% 1.9% 0.8%

Table 8: Experiment results of open-source math models that are fine-tune on Mistral-7B base model across various
algebra problem datasets under Zero-shot-CoT setting.

(a) Different prompting methods performance of Gemini (b) Different prompting methods performance of GPT-4

Figure 5: The performance on multiple unknown datasets.

K-Shot 3-shot 5-shot 8-shot
Single

ALG514 92.3% 92.3% 95.6%
DRAW-1K 82.6% 85.2% 90.7%
AsDiv 79.7% 81.7% 85.5%
HMWP 34.5% 37.7% 38.0%
Average 72.3% 74.2% 77.5%

Double
ALG514 96.0% 96.5% 97.1%
DRAW-1K 84.9% 85.6% 85.6%
AsDiv 82.7% 80.7% 81.7%
HMWP 57.9% 58.5% 60.9%
Average 80.4% 80.3% 81.3%

Table 9: Performance comparison of our method across
different shots using GPT-3.5.

= 75". From E3, since the first equation equals1014

the third equation twice, the solution of this sys-1015

tem of equations is infinite. From E4, since the1016

response format is different from the demonstra-1017

tion, we cannot extract the system of equations1018

from the response.1019

D.3 Full Examples1020

In Table 19 and Table 20, we show the input and1021

output examples of each unknown using Formulate-1022

and-Solve in GPT-3.5.1023

Source Dataset Avg #unknowns Size Avg #words Unreasonable Problem Rate
ALG514 3 100 68.8 25.4% (100/134)

4 80 96.6 20.2% (80/100)
5 60 128.4 10.6% (60/89)

DRAW-1K 3 100 61.5 30.3% (100/143)
4 80 92.4 24.9% (80/107)
5 60 109.2 15.3% (60/94)

Table 10: Statistics of Proposed dataset. Unreasonable
Problem Rate means #Unreasonable Problem/ #Total
Human Seen Problem

14

Model Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Single

Gemini

ALG514 55.0% 55.0% 82.4% 89.0% 52.8% 86.8% 70.3% 89.0% 94.5%
DRAW-1K 44.4% 48.2% 43.3% 57.4% 37.0% 75.9% 48.2% 77.8% 72.2%
AsDiv 47.9% 49.3% 57.8% 75.0% 60.6% 74.7% 49.3% 74.7% 77.5%
HMWP 18.6% 17.0% 22.3% 15.1% 23.6% 23.1% 26.0% 30.8% 46.6%
Average 41.5% 42.3% 51.4% 59.1% 43.5% 65.1% 48.4% 68.1% 72.7%

GPT-4

ALG514 92.3% 93.4% 92.3% 90.1% 39.9% 86.8% 93.4% 93.4% 98.9%
DRAW-1K 81.5% 77.8% 75.9% 81.5% 31.9% 81.5% 77.8% 81.5% 88.9%
AsDiv 88.9% 88.9% 88.9% 62.5% 11.3% 81.7% 84.1% 83.1% 90.1%
HMWP 54.9% 52.8% 53.1% 22.0% 0.3% 31.3% 32.6% 55.4% 54.9%
Average 79.4% 78.2% 77.5% 64.0% 20.8% 70.3% 72.0% 78.4% 83.2%

Double

Gemini

ALG514 69.3% 69.3% 53.9% 47.8% 39.7% 94.8% 33.3% 86.8% 95.3%
DRAW-1K 61.0% 70.6% 43.8% 43.2% 27.4% 84.9% 30.1% 74.0% 87.0%
AsDiv 77.1% 74.7% 63.9% 7.5% 7.2% 85.5% 49.4% 74.7% 84.3%
HMWP 25.2% 32.2% 32.8% 26.9% 2.9% 56.7% 25.7% 43.9% 61.7%
Average 58.1% 61.7% 48.6% 31.3% 19.3% 80.5% 34.7% 69.8% 82.1%

GPT-4

ALG514 97.2% 96.9% 91.5% 89.8% 32.4% 84.4% 80.1% 94.3% 98.8%
DRAW-1K 78.1% 79.5% 71.2% 79.5% 32.1% 79.5% 65.1% 86.3% 89.0%
AsDiv 86.8% 85.7% 83.5% 11.6% 2.4% 79.5% 39.6% 91.6% 90.4%
HMWP 64.3% 64.9% 57.3% 56.3% 1.2% 57.9% 38.6% 71.4% 75.4%
Average 81.6% 81.8% 75.9% 59.3% 17.0% 75.3% 55.8% 85.9% 88.4%

Table 11: Experiment results across various algebra problem datasets which include single and double unknown
using Gemini-Pro and GPT-4. Our method achieves the highest accuracy among all these datasets. † means whether
the method uses external tools or not.

Model Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Gemini

MU_1 51.0% 52.4% 67.9% 77.2% 46.9% 82.8% 62.1% 84.8% 86.2%
MU_2 67.1% 69.6% 51.3% 46.6% 36.6% 92.3% 32.5% 83.5% 93.1%
BeyondX_3 23.0% 23.0% 18.5% 18.0% 0.5% 83.5% 14.5% 13.0% 93.0%
BeyondX_4 11.9% 11.9% 10.0% 18.1% 0.0% 79.4% 12.5% 8.1% 86.3%
BeyondX_5 9.2% 11.7% 11.7% 10.0% 0.0% 60.8% 8.3% 10.8% 70.0%
Average 32.4% 33.7% 31.9% 34.0% 16.8% 79.7% 26.0% 40.1% 85.7%

GPT-4

MU_1 88.3% 87.6% 86.2% 86.9% 36.9% 84.8% 87.6% 89.0% 95.2%
MU_2 92.3% 92.4% 86.3% 87.2% 32.3% 83.1% 76.3% 92.3% 96.3%
BeyondX_3 74.0% 70.5% 65.5% 71.5% 2.5% 88.0% 13.5% 83.5% 94.5%
BeyondX_4 29.4% 31.9% 30.6% 49.4% 0.6% 82.5% 1.9% 41.3% 89.4%
BeyondX_5 20.0% 18.3% 15.8% 40.8% 1.7% 56.7% 0.8% 26.7% 75.8%
Average 60.8% 60.1% 56.9% 67.2% 14.8% 79.0% 36.0% 66.5% 90.2%

Table 12: Experiment results across various unknowns using Gemini-Pro and GPT-4. Our method achieves the
highest accuracy among all these datasets. † means whether the method uses external tools or not.

Instruction for Automatic Generation of Multiple Unknown Algebra Problems
1. Write down each variable meaning in a system of equations by understanding the relation between a system of equations
and a math word problem.
2. Introduce a new variable based on the existing variable meaning. Then, assign a value to the new variable based on the
solution of the existing system of equations.
3. Add new terms and new equations to the existing system of equations to generate a solvable three-unknown system of
equations.
4. Introduce new statements that are related to the existing math word problem or modify the existing statement to rewrite the
problem into a three-unknown math word problem based on the new system of equations and the same original scenario.
5. Formulate and rephrase the statements and scenario into a coherent and reasonable math word problem.

Table 13: Actual instruction of algebra problem generation.

Instruction for Automatic Solver of Algebra Problems
1. Determine what the question is asking.
2. Write down the relevant information in simple statements.
3. Assign symbols (must be an alphabetic character e.g., x, y, z etc.) to unknown values that must be found.
4. Determine how the statements relate to each other mathematically.
5. Give the equations only here, with each equation on a new line.

Table 14: Actual instruction of algebra problem solver.

15

(a) Two-unknown (source problem) (b) Three-unknown

(c) Four-unknown (d) Five-unknown

Figure 6: Example problems with different numbers of unknown generated from the same source problem.

16

Prompt:
Generate a three-unknown math word problem and its corresponding system of equations.
Example 1:
Word Problem:
Three friends, Alice, Bob, and Carol, decide to pool their money to buy a gift for a friend. Alice contributes twice as much
as Bob, while Carol contributes $10 more than Bob. The total amount they collect is $110. How much did each person
contribute?

System of Equations:
Let A represent the amount Alice contributes,B represent the amount Bob contributes, and C represent the amount Carol
contributes. Based on the information given:
1. A = 2B (Alice contributes twice as much as Bob)
2. C = B + 10 (Carol contributes $10 more than Bob)
3. A + B + C = 110 (The total amount collected is $110)
Example 2:
Word Problem:
During a school fundraiser, three students, Emily, Daniel, and Fiona, sold raffle tickets. Emily sold 5 more tickets than Daniel.
Fiona sold twice as many tickets as Emily. Together, they sold a total of 155 tickets. How many tickets did each student sell?

System of Equations:
Let E represent the number of tickets Emily sold, D represent the number of tickets Daniel sold, and F represent the number
of tickets Fiona sold. Based on the information given:
1. E = D + 5 (Emily sold 5 more tickets than Daniel)
2. F = 2E (Fiona sold twice as many tickets as Emily)
3. E + D + F = 155 (Together, they sold a total of 155 tickets)
Example 3:
Word Problem:
In a small bakery, three types of pastries are made daily: croissants, muffins, and scones. The number of croissants made is
twice the number of muffins. The bakery made 30 more scones than muffins. At the end of the day, they counted a total of
210 pastries. How many of each type of pastry were made?

System of Equations:
Let C represent the number of croissants, M represent the number of muffins, and S represent the number of scones. Based
on the information given:
1. C = 2M (The number of croissants is twice the number of muffins)
2. S = M + 30 (There are 30 more scones than muffins)
3. C + M + S = 210 (The total number of pastries is 210)

Table 15: Examples of multiple unknown algebra problem and corresponding system of equations using simple
prompt on GPT-4.

17

Prompt 1:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
0.01 * 35.0 * x + 0.01 * 15.0 * y = 0.01 * 27.0 * (200.0)
y = (200.0 - x)
Response 1:
Expanded System of Equations:
0.01 * 35.0 * x + 0.01 * 15.0 * y + 0.01 * 25.0 * z = 0.01 * 27.0 * 200.0
y + z = 200.0 - x
x - y = z - 50.0
Math Word Problem:
A company is investing in three different projects. The first project is expected to yield a 35% return, the second a 15% return,
and the third a 25% return. The total investment is $200 and the total expected return is 27% of the total investment. If the
company invests $50 more in the first project than in the third, and the total investment in the second and third projects equals
the remaining amount after investing in the first project, how much is invested in each project?
Source Problem:
An alloy containing 15 % brass is to be combined with an alloy containing 35 % brass to form an alloy containing 27 % brass.
How much of each alloy should be combined to make 200 pounds of the 27 % brass alloy?
Prompt 2:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
6.0 * 0.01 * x + 9.0 * 0.01 * y = 684.0
x + y = 10000.0
Response 2:
Expanded System of Equations:
6.0 * 0.01 * x + 9.0 * 0.01 * y + 5.0 * 0.01 * z = 684.0
x + y + z = 10000.0
x - y = 2000.0
Math Word Problem:
A company is investing in three different projects. The first project is expected to yield a 6% return, the second a 9% return,
and the third a 5% return. The total investment is $10,000 and the total expected return is $684. If the company invests $2000
more in the first project than in the second, how much is invested in each project?
Source Problem:
Suppose you invested 10,000 dollars, part at 6 % annual interest and the rest at 9 % annual interest. If you received 684
dollars in interest after one year, how much did you invest at 6 % annual interest and at 9 % annual interest?
Prompt 3:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
7.0 * x + 5.0 * y = 146.0
x + y = 24.0
Response 3:
Expanded System of Equations:
7.0 * x + 5.0 * y + 3.0 * z = 146.0
x + y + z = 24.0
x - y = 2.0
Math Word Problem:
A store sells three types of fruits: apples, bananas, and cherries. Apples cost $7 per pound, bananas cost $5 per pound, and
cherries cost $3 per pound. The store sold a total of 24 pounds of these fruits and made $146. If the store sold 2 more pounds
of apples than bananas, how many pounds of each type of fruit were sold?
Source Problem:
Samuel has found that his new car gets 7 miles per gallon on the highway and 5 miles per gallon in the city. He recently drove
146 miles on 24 gallons of gasoline. How many miles did he drive on the highway? How many miles did he drive in the city?
Prompt 4:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
5.0 + y = x
4.0 * x + 3.0 * y = 97.0
Response 4:
Expanded System of Equations:
5.0 + y + z = x
4.0 * x + 3.0 * y - z = 97.0
x - y = z + 2.0
Math Word Problem:
Three friends, Alice, Bob, and Charlie, are playing a game. The score of Alice is 5 more than Bob’s score. When Alice’s
score is multiplied by 4 and added to 3 times Bob’s score, it equals 97 minus Charlie’s score. If Alice’s score minus Bob’s
score equals Charlie’s score plus 2, what are the individual scores of Alice, Bob, and Charlie?
Source Problem:
One number is 5 more than another number. Four times the larger number plus 3 times the smaller is 97. Find the numbers.

Table 16: Examples of multiple unknown algebra problem generation, corresponding system of equations and
source problem using equation-aware prompt on GPT-4.

18

Case 1: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to make 40 mL of
a solution that is 1.1% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals the difference
between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the 5% solution
equals twice the amount of the 2% solution plus 10 mL.
System of Equations:
(0.01 * 1.0) * x + (0.01 * 5.0) * y + (0.01 * 2.0) * z = 1.10 (40 * 0.0275)
y + z = 40.0 - x
x + y = 2.0 * z + 10.0
Correct Question: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to
make 40 mL of a solution that is 2.75% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals
the difference between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the
5% solution equals twice the amount of the 2% solution plus 10 mL.
Case 2: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel is 50 cents
per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling for 45.625
cents per pound? The sum of the pounds of zinc and nickel equals 80 minus the pounds of copper.
System of Equations:
65.0 * x + 30.0 * y + 50.0 * z = 3650.0
y + z = 80.0 - x
x + y + z = 80.0
Correct Question: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel
is 50 cents per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling
for 45.625 cents per pound? The sum of the pounds of zinc and nickel equals 7 times the pounds of copper. (create new
math relation)
Case 3: Three cars are travelling in opposite directions. After two hours, they are 372 km apart. The first car is the slowest,
the second car travels 6 kph faster than the first car, and the third car travels 4 kph slower than the first car. Find the average
speed of each car.
System of Equations:
2.0 * (x + y + z) = 372.0
y = x + 6.0
z = x - 81.0
Correct Question: Cannot Expand
Case 4: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 5 years older than Masc. The sum of
their ages is 49. What are their ages?
System of Equations:
y + x + z = 37.0
y = x + 7.0
z = y - 7.0
Correct Question: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 7 years younger than
Masc. The sum of their ages is 37. What are their ages?

Table 17: Error cases of multiple unknown algebra problem generation, corresponding system of equations, and
correct question.

19

E1: Fewer or More Equation in the Set
Input:
{Instruction}
{Demos}
Question: The Rocket Coaster has expanded and now has 20 cars: some hold 4 people, some hold 6 people, and some hold 2
people. Altogether, there is room for 82 people. It is also known that the number of 4-passenger cars plus the number of
6-passenger cars equals three times the number of 2-passenger cars. How many of each type of car are there?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the number of each type of car.
2- Relevant information:

- Total number of cars: 20
- Total capacity: 82 people
- Relationship between the number of cars: 4-passenger + 6-passenger = 3 * 2-passenger

3- Assign symbols:
Let a = number of 4-passenger cars
Let b = number of 6-passenger cars
Let c = number of 2-passenger cars

4- Mathematical relationships:
- 4a + 6b + 2c = 82 (total capacity)
- a + b = 3c (relationship between the number of cars)

5- System of equations:
4a + 6b + 2c = 82
a + b = 3c

E2: Wrong equation (meaning the coefficients or constant terms are wrong)
Input:
{Instruction}
{Demos}
Question: In a family, there are 3 cars. In a particular week, the sum of the average miles per gallon obtained by the three
cars is 75. The first car has consumed 40 gallons, the second car has consumed 20 gallons, and the third car has consumed
10 gallons. This resulted in a total of 1700 miles driven by the three cars combined. Additionally, the sum of the average
gas mileage of the first car and the third car is 15 more than twice the average gas mileage of the second car. What was the
average gas mileage obtained by each of the 3 cars that week?
Output:
1- The question is asking for the average gas mileage obtained by each of the 3 cars in a particular week.
2- Relevant information:

- Total sum of the average miles per gallon obtained by the three cars: 75
- Gallons consumed by the first car: 40
- Gallons consumed by the second car: 20
- Gallons consumed by the third car: 10
- Total miles driven by the three cars: 1700
- Relationship between the average gas mileage of the cars

3- Assign symbols:
Let a = average gas mileage of the first car
Let b = average gas mileage of the second car
Let c = average gas mileage of the third car

4- Mathematical relationships:
- (40/a) + (20/b) + (10/c) = 75
- 40a + 20b + 10c = 1700
- (a + c) = 15 + 2b

5- System of equations:
(40/a) + (20/b) + (10/c) = 75
40a + 20b + 10c = 1700
(a + c) = 15 + 2b

E3: Wrong Extraction Form of System of Equations
Input:
{Instruction}
{Demos}
Question: The Drama Club sold 1,700 tickets for the end-of-year-performance. Admission prices were 12 dollars for adults,
6 dollars for students, and 10 dollars for seniors. The total amount collected at the box office was 18,200 dollars. It is known
that twice the number of student tickets plus the number of adult tickets equals three times the number of senior tickets plus
1200. How many students, adults, and seniors attended the play?
Output:
The system of equations for the given word problem is as follows:
1. Let a be the number of adult tickets sold, s be the number of student tickets sold, and r be the number of senior tickets sold.
2. Mathematical relationship:

- a + s + r = 1700 (total tickets sold)
- 12a + 6s + 10r = 18200 (total revenue collected)
- 2s + a = 3r + 1200 (number of tickets relationship)

The system of equations is:
a + s + r = 1700
12a + 6s + 10r = 18200
2s + a = 3r + 1200

Table 18: Different type of error example of Formulate-and-Solve on GPT-3.5.

20

Three-Unknown
Input:
{Instruction}
{Demos}
Question: A chemist has three solutions: one that is 18 % alcohol, one that is 50 % alcohol, and one that is 10 % alcohol. He
wants to make 100 liters of a solution that is 26 % alcohol. Also, the amount of the 18 % alcohol solution plus the amount
of the 50 % alcohol solution he uses equals four times the amount of the 10 % alcohol solution. How many liters of each
solution should he add?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the number of liters of each solution the chemist should add.
2- Relevant information:

- Total liters of solution: 100
- Desired alcohol concentration: 26%
- Relationship between the amount of solutions: amount of 18% solution + amount of 50% solution = 4 * amount of 10%

solution
3- Assign symbols:

Let a = liters of 18% alcohol solution
Let b = liters of 50% alcohol solution
Let c = liters of 10% alcohol solution

4- Mathematical relationships:
- a + b + c = 100 (total liters of solution)
- 0.18a + 0.50b + 0.10c = 0.26 * 100 (desired alcohol concentration)
- a + b = 4c (relationship between the amount of solutions)

5- System of equations:
a + b + c = 100
0.18a + 0.50b + 0.10c = 26
a + b = 4c

Four-Unknown
Input:
{Instruction}
{Demos}
Question: In a laboratory, a chemist needs to prepare 300 milliliters of a 20 % HCl solution. She has available a 10 % HCl
solution, a 30 % HCl solution, a 20 % HCl solution, and a 40 % HCl solution. She knows that the volume of the 30 % HCl
solution plus twice the volume of the 10 % HCl solution equals five times the volume of the 20 % HCl solution plus 100
milliliters. The volume of the 30 % HCl solution plus the volume of the 10 % HCl solution plus the volume of the 20 % HCl
solution equals four times the volume of the 40 % HCl solution plus 50 milliliters. How many milliliters of each solution
should she use?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the volume of each solution to be used.
2- Relevant information:

- Total volume needed: 300 milliliters
- Mathematical relationships between the volumes of the solutions

3- Assign symbols:
Let x be the volume of the 10% HCl solution.
Let y be the volume of the 30% HCl solution.
Let z be the volume of the 20% HCl solution.
Let w be the volume of the 40% HCl solution.

4- Mathematical relationships:
x + y + z + w = 300 (total volume needed)
0.1x + 0.3y + 0.2z + 0.4w = 0.2 * 300 (20% HCl solution)
y + 2x = 5z + 100 (relationship 1)
y + x + z = 4w + 50 (relationship 2)

5- System of equations:
x + y + z + w = 300
0.1x + 0.3y + 0.2z + 0.4w = 60
y + 2x - 5z = 100
y + x + z - 4w = 50

Table 19: Full output example of Formulate-and-Solve on GPT-3.5 from three and four-unknown problem.

21

Five-Unknown
Input:
{Instruction}
{Demos}
Question: A chemist has five solutions: one that is 39 % alcohol, one that is 50 % alcohol, one that is 12 % alcohol, one that
is 5 % alcohol, and one that is 3 % alcohol. He wants to make 140 liters of a solution that is 27.5 % alcohol. Also, the amount
of the 39 % alcohol solution plus the amount of the 50 % alcohol solution he uses equals four times the amount of the 12 %
alcohol solution. The amount of the 39 % alcohol solution plus the amount of the 50 % alcohol solution plus the amount of
the 12 % alcohol solution equals five times the amount of the 5 % alcohol solution. The amount of the 39 % alcohol solution
plus the amount of the 50 % alcohol solution plus the amount of the 12 % alcohol solution plus the amount of the 5 % alcohol
solution equals six times the amount of the 3 % alcohol solution. How many liters of each solution should he add?
Output:
I can help you with that. Let’s start by writing down the relevant information in simple statements:
1- The question is asking for the amount of each solution the chemist should add to make 140 liters of a solution that is 27.5%
alcohol.
2- Relevant information:

- The chemist has five solutions: 39% alcohol, 50% alcohol, 12% alcohol, 5% alcohol, and 3% alcohol.
- He wants to make 140 liters of a solution that is 27.5% alcohol.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution he uses equals four times the

amount of the 12% alcohol solution.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol

solution equals five times the amount of the 5% alcohol solution.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol

solution plus the amount of the 5% alcohol solution equals six times the amount of the 3% alcohol solution.
3- Assign symbols:

Let a = amount of 39% alcohol solution
Let b = amount of 50% alcohol solution
Let c = amount of 12% alcohol solution
Let d = amount of 5% alcohol solution
Let e = amount of 3% alcohol solution

4- Mathematical relationships:
a + b + c + d + e = 140
0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 0.275 * 140
a + b = 4c
a + b + c = 5d
a + b + c + d = 6e

5- System of equations:
a + b + c + d + e = 140
0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 38.5
a + b - 4c = 0
a + b + c - 5d = 0
a + b + c + d - 6e = 0

Table 20: Full output example of Formulate-and-Solve on GPT-3.5 from five-unknown problem.

22

	Introduction
	Related Work
	Math Word Problem Generation
	Math Word Problem Solver
	Math Reasoning with LLMs

	Automatic Generation of Multi-Unknown Algebra Problems via Progressive Expansion
	Challenges for Constructing Multi-Unknown Datasets
	Generating New Problems via Progress Expansion
	Constructing the Benchmark

	Benchmarking existing LLMs and Prompting Methods
	LLMs for solving multi-unknown algebra problems
	Prompting Methods

	Automatic Solver of Algebra Problems
	Experimental Results
	Experimental Setting
	Main Results

	Discussion and Analysis
	Conclusion
	Further Experiment
	Generalization to common arithmetic datasets
	Experiments different mathematical models on BeyondX
	Experiments different models on Formulate-and-Solve
	Experiments different shots of demonstrations on Formulate-and-Solve

	Full Instruction
	Automatic Generation of Multiple Unknown Algebra Problems
	Automatic Solver of Algebra Problems

	Detail Studies of Automatic Generation of Multi-Unknown Algebra Problems
	Construction Steps
	Quality Validation
	Full Examples

	Detail Studies of Automatic Solver of Algebra Problems
	Overall Pipeline
	Qualitative Analysis of Error Cases
	Full Examples

