
Supplementary Material1

Our supplementary material includes dataset details, implementation details, evaluation metrics, and2

additional visualization results. We also provide a demo video of our work. To enable our work to3

contribute to the community, we promise to open-source codes and checkpoints upon acceptance.4

A Dataset Details5

The SemanticKITTI [1] dataset is a large-scale dataset based on the KITTI Vision Benchmark [2],6

which includes automotive LiDAR scans voxelized into 256 × 256 × 32 grids with 0.2m resolution7

for 22 sequences. The dataset contains 28 classes with non-moving and moving objects. In our8

experiments, we only use RGB images captured by cam2 as input from the KITTI odometry bench-9

mark and follow the official split of the dataset, with sequence 08 for validation and other sequences10

from 0 to 10 for training.11

The KITTI-MOT [2] dataset is based on the KITTI Multi-Object Tracking Evaluation 2012, which12

consists of 21 training sequences and 29 test sequences. It holds stereo images from two forward-13

facing cameras and LiDAR point clouds. We selected all the training sequences except sequences14

where the ego-car is stationary or contains only a small number of moving objects(sequence 0012,15

0013, and 0017) for training, and select testing sequences 0000-0014 for validation. We also apply16

LiDAR data and pseudo-optical flow to coarsely select dynamic frames for a higher sampling rate17

in our training process.18

The nuScenes [3] dataset consists of 1000 sequences of various driving scenes of 20 seconds du-19

ration each and the keyframes are annotated at 2Hz. Each sample includes RGB images collected20

by 6 surround cameras with 360◦ horizontal FOV and LiDAR point clouds from 32-beam LiDAR21

sensors. The 1000 scenes are officially divided into training, validation, and test splits with 700,22

150, and 150 scenes, respectively.23

B Implementation Details24

B.1 Model Architecture25

We adopted ConvNeXt-Base with SparK [4] pretraining as the 2D image backbone and a four-level26

FPN [5] to extract image features. We utilize TPV [6] uniformly divided to represent a cuboid area27

for multi-view feature integration, i.e. [80, 80, 6.4] meters around the ego car for nuScenes [3]28

and [51.2, 51.2, 6.4] meters in front of the ego car for SemanticKITTI [1] and KITTI-MOT [2].29

Considering the computational cost of the subsequent temporal fusion module, we use half of the30

output occupancy resolution for TPV grid cell, i.e. 0.8 meters for nuScenes and 0.4 meters for31

SemanticKITTI and KITTI-MOT, respectively.32

For the input temporal sequence, we utilize 2 previous frames for our temporal fusion module. Our33

3D refine module includes a three-layer residual 3D convolution block and a 3D FPN block for34

spatial feature integration. To upsample the volume into the output occupancy resolution, we use a35

deconvolution module as FBOCC [7]. We adopt separate two-layer MLPs {Θs,Θf} as decoders to36

construct volumetric fields for SDF and flow.37

B.2 2D Flow Estimation38

For occupancy flow prediction in KITTI-MOT [2] dataset, we leverage the flow estimation model of39

Unimatch [8] trained on FlyingChairs [9], FlyingThings3D [10] and fine-tuned on KITTI [2] to pre-40

dict optical flow maps for supervision directly. Note that the Unimatch model is trained in a super-41

vised manner, we provide an unsupervised flow fine-tuning strategy following [11] when adapted to42

different driving scenes. Specifically, we fine-tune the Unimatch model utilizing unsupervised flow43
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techniques including stopping the gradient at the occlusion mask, encouraging smoothness before44

upsampling the flow field, and continual self-supervision with image resizing.45

As for the nuScenes [3] dataset, the 3D occupancy flow ground-truth data is only available at 2Hz46

keyframes so it is challenging for optical flow estimation. Thus we employed a tracking-based flow47

estimation strategy using CoTrackerV2 [12]. We aim to obtain accurate optical flow between two48

keyframes by including the non-keyframe sequences to capture the long-term track. Specifically, we49

first use open-vocabulary 2D segmentor GroundedSAM[13] to predict dynamic foreground semantic50

segmentation. Then we take the adjacent keyframes and the non-keyframe sequences between the51

two keyframes as video input and conduct dense track to capture the long-term motion dependency52

in the masked regions. Once we have the initial pixel coordinates in the first keyframe and the53

corresponding pixel coordinates in the next, we subtract the two and get the final optical flow map54

in the masked regions. We take this optical flow map with the dynamic foreground mask as pseudo-55

flow labels for occupancy flow prediction.56

B.3 Training Settings57

The resolution of the input image is 512x1408 for nuScenes [3], 352x1216 for SemanticKITTI [1],58

and 352x1216 for KITTI-MOT [2]. For loss weight, we set λflow = 5× 10−3, λeik = 0.1, λdreg =59

0.1, if present, and the weights for the edge λedge and the LiDAR λlidar losses are 0.02 and 0.260

respectively. During training, we adopt the AdamW optimizer with an initial learning rate 1e-4 and61

weight decay of 0.01. We use the multi-step learning rate scheduler with linear warming up in the62

first 1k iterations. We train our models with a total batch size of 8 on 8 A100 GPUs for 16 epochs.63

Experiments on SemanticKITTI [1] and KITTI-MOT [2] take less than one day, while experiments64

on nuScenes [3] finish within two days.65

B.4 Temporal Fusion Module66

Algorithm 1 provides the pseudo-code of our proposed temporal fusion module. In the BEV fusion67

process, we employ a Backward Forward Attention Module (BFAM) with deformable attention68

(DAttn) to fuse the BEV features from two adjacent frames. To illustrate our algorithmic process69

clearly, we visually demonstrate our temporal fusion module in the demo video.70

Algorithm 1 Pseudo-code for Temporal Fusion Module
1: Input: A temporal sequence of Voxel features {V−(n−1), . . . , V−1, V0}. V0 represents Voxel

feature of the current frame and V−i corresponds to the i-th frame before V0. A sequence of
transformation matrix of ego coordinates {T−(n−1), . . . , , T−1, T0}.

2: for i = 0 to n− 1 do
3: V̂−i ← EgoMotionAlignment(V−i, T−i, T0)

4: Bg
−i ← MeanPooling(V̂−i)

5: B−i ← Concatenate(VolumeToSlices(V̂−i), B
g
−i) ▷ temporal volumes to BEV slices

6: end for
7: for i = 0 to n− 2 do
8: B−(i+1) ← B−(i+1) + β · DAttn(B−(i+1), {B−i, B−(i+1)}) ▷ backward process
9: end for

10: for i = n− 2 to 0 do
11: B−i ← B−i + β · DAttn(B−i, {B−(i+1), B−i}) ▷ forward process
12: end for
13: Ṽ , B̃g ← SlicesToVolume(B0)

14: Ṽ ′ ← BEVVolumeFusion(Ṽ , B̃g)

15: return Ṽ ′

B.5 Differentiable Rendering71

In the rendering stage, we conduct a uniform sampling of N points P = {pi|i = 1, ..., N} along the72

ray and apply a tri-linear interpolation operation to efficiently compute the SDF values for each point73
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from the volumetric SDF field [14]. Furthermore, the unbiased rendering weights can be calculated74

by wi = αi

∏i−1
j=1(1− αj), with αi denoting the opacity value proposed by NeuS [15]:75

αi = max

(
Φ(si)− Φ(si+1)

Φ(si)
, 0

)
(1)

where Φ(x) is sigmoid function Φ(x) = (1 + e−ξx)−1 with a temperature coefficient ξ.76

Let di and fi denote the depth and flow of the i-th point, we can calculate the rendered depth d and77

flow f of the ray by:78

d =

N∑
i=1

widi, f =

N∑
i=1

wifi (2)

C Evaluation Metrics79

C.1 Depth Estimation Evaluation Metrics80

Following [16, 17, 18], we use evaluation metrics for self-supervised depth estimation as follows:81

Abs Rel:
1

|T |
∑
d∈T

|d− d∗| /d∗, Sq Rel:
1

|T |
∑
d∈T

|d− d∗|2 /d∗ (3)

RMSE:

√
1

|T |
∑
d∈T

|d− d∗|2, RMSE log:

√
1

|T |
∑
d∈T

|log d− log d∗|2 (4)

where d and d∗ indicate predicted and ground truth depths respectively, and T indicates all pixels82

on the depth map. We calculate metrics for depth values in the range of [0.1, 80] meters using 1:283

resolution against the raw image.84

C.2 3D Occupancy Prediction Evaluation Metrics85

Previous approaches [19, 20, 21] utilize the intersection over union (IoU) as the evaluation metrics86

of 3D occupancy prediction on SemanticKITTI [1] dataset. However, according to our experiment87

results, the penalty is overly strict in evaluating the reconstruction quality effectively. As illustrated88

in Figure 1, we observed that rendering-based methods [19, 20] often generate true positive (TP)89

predictions(marked in green in the figure) distributed on the ground or in invisible regions below90

the ground. This prevents effective evaluation of reconstruction details, as a deviation of one voxel91

will lead to an IoU of zero. Furthermore, rendering-based methods tend to predict a thick surface92

due to the absence of supervision in invisible regions, causing a large number of false positive (FP)93

predictions(marked in red in the figure) and a significant reduction of the precision metric.94

Input Image

SelfOcc (RayIoU) Ours (RayIoU)

SelfOcc (IoU) Ours(IoU)

Occupancy(Ours)

Figure 1: The comparison of IoU and RayIoU measurement results in 3D occupancy prediction.
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To demonstrate the advanced occupancy prediction quality of our approach, we employ Ray-based95

IoU (RayIoU) [22] as our evaluation metric and re-evaluate other comparative methods using their96

open-source checkpoint models. Initially, we generated LiDAR rays with origins sampled from97

the sequence, and then compute the travel distances of each LiDAR ray before intersecting with98

the occupied voxels. A query ray is classified as true positive(TP) when the L1 error between the99

predicted depth and ground-truth depth is less than a pre-defined threshold (1m, 2m, and 4m).100

As is shown in Figure 1, the RayIoU metric reflected the superiority of our method on the detailed101

prediction of the tree and bicycles compared to SelfOcc.102

C.3 Occupancy Flow Prediction Evaluation Metrics103

On the KITTI-MOT [2] data, due to the absence of ground-truth occupancy flow labels, we con-104

duct the evaluation following the scene flow benchmark of KITTI dataset [2]. Specifically, we use105

LiDAR-projected depth and pseudo 2D optical flow cues to generate disparity and optical flow la-106

bels. And we computed end-point error of rendered and ground-truth disparity (DE) and optical107

flow (EPE). D1 5% represent the percentage of disparity outliers with end-point error smaller than108

4 pixels or 5% of the ground-truth disparity. F1 10% is the percentage of optical flow outliers with109

end-point error smaller than 8 pixels or 10% of the ground-truth flow labels. And SF 10% is the per-110

centage of scene flow outliers (outliers in either D1 10% or F1 10%). To better evaluate the scene111

flow in foreground regions, we also reported the foreground disparity error (DE FG) and optical112

flow error (EPE FG) by leveraging the semantic mask obtained from GroundedSAM [13].113

On the nuScenes [3] dataset, since we have the ground-truth occupancy flow labels, we use Ray-114

based IoU (RayIoU), and absolute velocity error (mAVE) for occupancy flow, following the evalu-115

ation metrics of Occupancy and Flow track for CVPR 2024 Autonomous Grand Challenge.116

For RayIoU measurement, we perform evaluation on the OpenOcc benchmark [23] as introduced in117

subsection C.2. We use mAVE to indicate the velocity errors for a set of true positives (TP) with a118

threshold of 2m distance. The absolute velocity error (AVE) is defined for 8 classes (’car’, ’truck’,119

’trailer’, ’bus’, ’construction vehicle’, ’bicycle’, ’motorcycle’, ’pedestrian’) in m/s.120

D Visualization Results121

D.1 Depth Estimation122

Figure 2 shows the qualitive comparison of depth estimation on the SemanticKITTI [1] validation123

set. The visualization results illustrate the successful prediction of detailed and accurate depth by124

our method compared to other rendering-based approaches.125

D.2 3D Occupancy Prediction126

Figure 3 shows the qualitive comparison of 3D occupancy prediction on the SemanticKITTI [1]127

validation set. Our method achieves precise occupancy prediction for thin structures such as poles,128

trees, and cyclists. Also, it provides smooth predictions for cars and road surfaces compared to other129

supervised [21] and self-supervised [20, 24, 19] methods.130

We provided more visualization results of depth estimation, novel view depth synthesis, and 3D131

occupancy prediction to illustrate the superiority of our method. As is shown in Figure 4, our132

method exhibited strong performance across these three tasks.133

D.3 Occupancy Flow Prediction134

Figure 5 and Figure 6 shows the visualization results of the depth estimation and occupancy flow135

prediction tasks on the KITTI-MOT [2] and nuScenes [3] validation set. Our proposed method can136

simultaneously provide accurate 3D occupancy and occupancy flow prediction.137
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OccNeRFSelfOcc OursInput Image

Figure 2: Qualitative comparison for self-supervised depth estimation with other baselines on
the SemanticKITTI [1] validation set.
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Figure 3: Qualitative comparison for 3D occupancy prediction on the SemanticKITTI [1] vali-
dation set. The red bounding box shows the most noticeable part.

Input Image Depth (Input View) Depth (X+2m, Yam+10° View) Occupancy (Input View) Occupancy (Global View)

Figure 4: Visualizations of depth estimation, novel view depth synthesis, 3D occupancy predic-
tion on the SemanticKITTI [1] validation set. (X+2m) means moving +2 meters along the x-axis
of the LiDAR coordinate, and (Yaw+10°) means turning left for 10°.
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Input Image Rendered Depth 3D Occupancy 3D Occupancy (GV) Occupancy Flow

Input Image Rendered Depth 3D Occupancy Occupancy Flow Occupancy Flow (GV)

Figure 5: Visualizations of depth estimation, 3D occupancy, and occupancy flow prediction on
the KITTI-MOT [2] validation set. GV indicates the global view.

FRONT_LEFT FRONT FRONT_RIGHT BACK_LEFT BACK BACK_RIGHT

Figure 6: Visualizations of depth estimation, 3D occupancy, and occupancy flow prediction on
the nuScenes [3] validation set. We show the six input surrounding images in the first row and
the estimated depth from the corresponding views in the second row. The third and fourth rows
demonstrate the predicted 3D occupancy and occupancy flow results separately.

E Limitations and Future Work138

Although we use temporal sequence input to better exploit the historical information, our model139

cannot completely handle the occlusion problem due to the inherent rendering-based limitation.140

Subsequent research could investigate long-term occupancy flow modeling and solutions to leverage141

the temporal sequence supervision to scale up the visible range of perspective. In addition, although142

our Let Occ Flow can offer accurate 3D occupancy and occupancy flow prediction, the prediction143

quality highly relies on the quality of optical flow cues, which serves as the supervision for the144

flow field. To improve the quality of 2D optical flow labels, we proposed a tracking-based flow145

estimation method and an unsupervised flow fine-tuning strategy. We hope the future work can pay146

more attention on the improvement of the flow supervision quality. Finally, our occupancy flow147

prediction does not explicitly enforce consistency within instances, and future work may explore to148

integrate instance perception into occupancy flow prediction.149
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