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Supplementary Material

Our supplementary material includes dataset details, implementation details, evaluation metrics, and
additional visualization results. We also provide a demo video of our work. To enable our work to
contribute to the community, we promise to open-source codes and checkpoints upon acceptance.

A Dataset Details

The SemanticKITTI [1] dataset is a large-scale dataset based on the KITTI Vision Benchmark [2],
which includes automotive LiDAR scans voxelized into 256 x 256 x 32 grids with 0.2m resolution
for 22 sequences. The dataset contains 28 classes with non-moving and moving objects. In our
experiments, we only use RGB images captured by cam? as input from the KITTI odometry bench-
mark and follow the official split of the dataset, with sequence 08 for validation and other sequences
from O to 10 for training.

The KITTI-MOT [2] dataset is based on the KITTI Multi-Object Tracking Evaluation 2012, which
consists of 21 training sequences and 29 test sequences. It holds stereo images from two forward-
facing cameras and LiDAR point clouds. We selected all the training sequences except sequences
where the ego-car is stationary or contains only a small number of moving objects(sequence 0012,
0013, and 0017) for training, and select testing sequences 0000-0014 for validation. We also apply
LiDAR data and pseudo-optical flow to coarsely select dynamic frames for a higher sampling rate
in our training process.

The nuScenes [3] dataset consists of 1000 sequences of various driving scenes of 20 seconds du-
ration each and the keyframes are annotated at 2Hz. Each sample includes RGB images collected
by 6 surround cameras with 360° horizontal FOV and LiDAR point clouds from 32-beam LiDAR
sensors. The 1000 scenes are officially divided into training, validation, and test splits with 700,
150, and 150 scenes, respectively.

B Implementation Details

B.1 Model Architecture

We adopted ConvNeXt-Base with SparK [4] pretraining as the 2D image backbone and a four-level
FPN [5] to extract image features. We utilize TPV [6] uniformly divided to represent a cuboid area
for multi-view feature integration, i.e. [80, 80, 6.4] meters around the ego car for nuScenes [3]
and [51.2, 51.2, 6.4] meters in front of the ego car for SemanticKITTI [1] and KITTI-MOT [2].
Considering the computational cost of the subsequent temporal fusion module, we use half of the
output occupancy resolution for TPV grid cell, i.e. 0.8 meters for nuScenes and 0.4 meters for
SemanticKITTI and KITTI-MOT, respectively.

For the input temporal sequence, we utilize 2 previous frames for our temporal fusion module. Our
3D refine module includes a three-layer residual 3D convolution block and a 3D FPN block for
spatial feature integration. To upsample the volume into the output occupancy resolution, we use a
deconvolution module as FBOCC [7]. We adopt separate two-layer MLPs {©,, O} as decoders to
construct volumetric fields for SDF and flow.

B.2 2D Flow Estimation

For occupancy flow prediction in KITTI-MOT [2] dataset, we leverage the flow estimation model of
Unimatch [8] trained on FlyingChairs [9], FlyingThings3D [10] and fine-tuned on KITTI [2] to pre-
dict optical flow maps for supervision directly. Note that the Unimatch model is trained in a super-
vised manner, we provide an unsupervised flow fine-tuning strategy following [11] when adapted to
different driving scenes. Specifically, we fine-tune the Unimatch model utilizing unsupervised flow
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techniques including stopping the gradient at the occlusion mask, encouraging smoothness before
upsampling the flow field, and continual self-supervision with image resizing.

As for the nuScenes [3] dataset, the 3D occupancy flow ground-truth data is only available at 2Hz
keyframes so it is challenging for optical flow estimation. Thus we employed a tracking-based flow
estimation strategy using CoTrackerV2 [12]. We aim to obtain accurate optical flow between two
keyframes by including the non-keyframe sequences to capture the long-term track. Specifically, we
first use open-vocabulary 2D segmentor GroundedSAM][ 13] to predict dynamic foreground semantic
segmentation. Then we take the adjacent keyframes and the non-keyframe sequences between the
two keyframes as video input and conduct dense track to capture the long-term motion dependency
in the masked regions. Once we have the initial pixel coordinates in the first keyframe and the
corresponding pixel coordinates in the next, we subtract the two and get the final optical flow map
in the masked regions. We take this optical flow map with the dynamic foreground mask as pseudo-
flow labels for occupancy flow prediction.

B.3 Training Settings

The resolution of the input image is 512x1408 for nuScenes [3], 352x1216 for SemanticKITTI [1],
and 352x1216 for KITTI-MOT [2]. For loss weight, we set A o, = 5 X 1073, Aei; = 0.1, Adreg =
0.1, if present, and the weights for the edge Acqge and the LiDAR Aj;qq, losses are 0.02 and 0.2
respectively. During training, we adopt the AdamW optimizer with an initial learning rate 1e-4 and
weight decay of 0.01. We use the multi-step learning rate scheduler with linear warming up in the
first 1k iterations. We train our models with a total batch size of 8 on 8 A100 GPUs for 16 epochs.
Experiments on SemanticKITTI [1] and KITTI-MOT [2] take less than one day, while experiments
on nuScenes [3] finish within two days.

B.4 Temporal Fusion Module

Algorithm 1 provides the pseudo-code of our proposed temporal fusion module. In the BEV fusion
process, we employ a Backward Forward Attention Module (BFAM) with deformable attention
(DAttn) to fuse the BEV features from two adjacent frames. To illustrate our algorithmic process
clearly, we visually demonstrate our temporal fusion module in the demo video.

Algorithm 1 Pseudo-code for Temporal Fusion Module

1: Input: A temporal sequence of Voxel features {V_(,,_1),...,V_1,Vo}. Vp represents Voxel
feature of the current frame and V_; corresponds to the i-th frame before V. A sequence of
transformation matrix of ego coordinates {7 (,,—1y,...,, 71,70}
fori =0ton —1do

V_,; < EgoMotionAlignment(V_;, T_;, T)

BY , < MeanPooling(V_;)

B_; « Concatenate(VolumeToSlices(V_;), BY ) > temporal volumes to BEV slices
end for
fori =0ton —2do

B_(i11) < B_(i41) + 8- DAttn(B_ i1y, {B_i, B_i+1)}) > backward process
9: end for
10: fori =n —2to0do
11:  B_;+ B_;+ 3 -DAttn(B_;,{B_(i+1), B_i}) > forward process
12: end for
13: V, By < SlicesToVolume(B)
14: V' < BEVVolumeFusion(V, B,)

15: return V'

B.5 Differentiable Rendering

In the rendering stage, we conduct a uniform sampling of N points P = {p;|i = 1, ..., N} along the
ray and apply a tri-linear interpolation operation to efficiently compute the SDF values for each point
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from the volumetric SDF field [14]. Furthermore, the unbiased rendering weights can be calculated
by w; = a; H’_l (1 — o), with ; denoting the opacity value proposed by NeuS [15]:

j=1
0 = masx (WO) ()

where ®(x) is sigmoid function ®(x) = (1 + e~¢*)~! with a temperature coefficient &.

Let d; and f; denote the depth and flow of the i-th point, we can calculate the rendered depth d and
flow f of the ray by:

N N
d= szdl, f = szfz (2)
i=1 i=1

C Evaluation Metrics

C.1 Depth Estimation Evaluation Metrics

Following [16, 17, 18], we use evaluation metrics for self-supervised depth estimation as follows:

1 1
Abs Rel: ?Z|d—d*|/d*, Sq Rel: ?Z|d—d*|2/d* 3)
T 2=, | 2=

1 1
RMSE: | [ > |d—d*|*,  RMSE log: T > " |logd —log d*|? (4)
171 deT d deT

where d and d* indicate predicted and ground truth depths respectively, and 7" indicates all pixels
on the depth map. We calculate metrics for depth values in the range of [0.1, 80] meters using 1:2
resolution against the raw image.

C.2 3D Occupancy Prediction Evaluation Metrics

Previous approaches [19, 20, 21] utilize the intersection over union (IoU) as the evaluation metrics
of 3D occupancy prediction on SemanticKITTI [1] dataset. However, according to our experiment
results, the penalty is overly strict in evaluating the reconstruction quality effectively. As illustrated
in Figure 1, we observed that rendering-based methods [19, 20] often generate true positive (TP)
predictions(marked in green in the figure) distributed on the ground or in invisible regions below
the ground. This prevents effective evaluation of reconstruction details, as a deviation of one voxel
will lead to an IoU of zero. Furthermore, rendering-based methods tend to predict a thick surface
due to the absence of supervision in invisible regions, causing a large number of false positive (FP)
predictions(marked in red in the figure) and a significant reduction of the precision metric.

Input Image SelfOcc (IoU)

Occupancy(Ours)

Figure 1: The comparison of IoU and RayloU measurement results in 3D occupancy prediction.

3
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To demonstrate the advanced occupancy prediction quality of our approach, we employ Ray-based
IoU (RayloU) [22] as our evaluation metric and re-evaluate other comparative methods using their
open-source checkpoint models. Initially, we generated LiDAR rays with origins sampled from
the sequence, and then compute the travel distances of each LiDAR ray before intersecting with
the occupied voxels. A query ray is classified as true positive(TP) when the L1 error between the
predicted depth and ground-truth depth is less than a pre-defined threshold (1m, 2m, and 4m).

As is shown in Figure 1, the RayloU metric reflected the superiority of our method on the detailed
prediction of the tree and bicycles compared to SelfOcc.

C.3 Occupancy Flow Prediction Evaluation Metrics

On the KITTI-MOT [2] data, due to the absence of ground-truth occupancy flow labels, we con-
duct the evaluation following the scene flow benchmark of KITTI dataset [2]. Specifically, we use
LiDAR-projected depth and pseudo 2D optical flow cues to generate disparity and optical flow la-
bels. And we computed end-point error of rendered and ground-truth disparity (DE) and optical
flow (EPE). D1_5% represent the percentage of disparity outliers with end-point error smaller than
4 pixels or 5% of the ground-truth disparity. F1_10% is the percentage of optical flow outliers with
end-point error smaller than 8 pixels or 10% of the ground-truth flow labels. And SF_10% is the per-
centage of scene flow outliers (outliers in either D1_10% or F1_10%). To better evaluate the scene
flow in foreground regions, we also reported the foreground disparity error (DE_FG) and optical
flow error (EPE_FG) by leveraging the semantic mask obtained from GroundedSAM [13].

On the nuScenes [3] dataset, since we have the ground-truth occupancy flow labels, we use Ray-
based IoU (RayloU), and absolute velocity error (mAVE) for occupancy flow, following the evalu-
ation metrics of Occupancy and Flow track for CVPR 2024 Autonomous Grand Challenge.

For RayloU measurement, we perform evaluation on the OpenOcc benchmark [23] as introduced in
subsection C.2. We use mAVE to indicate the velocity errors for a set of true positives (TP) with a
threshold of 2m distance. The absolute velocity error (AVE) is defined for 8 classes (*car’, "truck’,
’trailer’, *bus’, ’construction_vehicle’, *bicycle’, "'motorcycle’, *pedestrian’) in m/s.

D Visualization Results

D.1 Depth Estimation

Figure 2 shows the qualitive comparison of depth estimation on the SemanticKITTI [1] validation
set. The visualization results illustrate the successful prediction of detailed and accurate depth by
our method compared to other rendering-based approaches.

D.2 3D Occupancy Prediction

Figure 3 shows the qualitive comparison of 3D occupancy prediction on the SemanticKITTT [1]
validation set. Our method achieves precise occupancy prediction for thin structures such as poles,
trees, and cyclists. Also, it provides smooth predictions for cars and road surfaces compared to other
supervised [21] and self-supervised [20, 24, 19] methods.

We provided more visualization results of depth estimation, novel view depth synthesis, and 3D
occupancy prediction to illustrate the superiority of our method. As is shown in Figure 4, our
method exhibited strong performance across these three tasks.

D.3 Occupancy Flow Prediction

Figure 5 and Figure 6 shows the visualization results of the depth estimation and occupancy flow
prediction tasks on the KITTI-MOT [2] and nuScenes [3] validation set. Our proposed method can
simultaneously provide accurate 3D occupancy and occupancy flow prediction.



Input Image SelfOcc OccNeRF Ours

Figure 2: Qualitative comparison for self-supervised depth estimation with other baselines on
the SemanticKITTI [1] validation set.

Input Image MonoScene SceneRF

OccNeRF SelfOcc Ours

Input Image MonoScene SceneRF

OccNeRF SelfOcc Ours

Figure 3: Qualitative comparison for 3D occupancy prediction on the SemanticKITTI [1] vali-
dation set. The red bounding box shows the most noticeable part.

Input Image Depth (Input View) Depth (X+2m, Yam+10° View) Occupancy (Input View) Occupancy (Global View)

RN S S—=--LE N
TP TRl

Figure 4: Visualizations of depth estimation, novel view depth synthesis, 3D occupancy predic-
tion on the SemanticKITTI [1] validation set. (X+2m) means moving +2 meters along the x-axis
of the LiDAR coordinate, and (Yaw+10°) means turning left for 10°.
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Input Image

Rendered Depth

Rendered Depth 3D Occupancy 3D Occupancy (GV) Occupancy Flow

3D Occupancy Occupancy Flow Occupancy Flow (GV)

Input Image

Figure 5: Visualizations of depth estimation, 3D occupancy, and occupancy flow prediction on
the KITTI-MOT [2] validation set. GV indicates the global view.
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Figure 6: Visualizations of depth estimation, 3D occupancy, and occupancy flow prediction on
the nuScenes [3] validation set. We show the six input surrounding images in the first row and
the estimated depth from the corresponding views in the second row. The third and fourth rows
demonstrate the predicted 3D occupancy and occupancy flow results separately.

E Limitations and Future Work

Although we use temporal sequence input to better exploit the historical information, our model
cannot completely handle the occlusion problem due to the inherent rendering-based limitation.
Subsequent research could investigate long-term occupancy flow modeling and solutions to leverage
the temporal sequence supervision to scale up the visible range of perspective. In addition, although
our Let Occ Flow can offer accurate 3D occupancy and occupancy flow prediction, the prediction
quality highly relies on the quality of optical flow cues, which serves as the supervision for the
flow field. To improve the quality of 2D optical flow labels, we proposed a tracking-based flow
estimation method and an unsupervised flow fine-tuning strategy. We hope the future work can pay
more attention on the improvement of the flow supervision quality. Finally, our occupancy flow
prediction does not explicitly enforce consistency within instances, and future work may explore to
integrate instance perception into occupancy flow prediction.
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