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Algorithm 1 Embodied Contrastive Learning (ECL)
1: Input: Environment 𝐸, Online rollout buffer B, Data buffer D,

Curiosity reward R𝐸𝑥𝑝 (𝑜), Exploration strategy 𝐸2-CL 𝜋𝜃 with
the visual encoder 𝑓𝜃 , PCL encoder 𝑓𝜑

2: Output: Representation learning models 𝑓𝜃 and 𝑓𝜑 , Down-
stream training samples D

3: while not converged do
4: //𝐶𝑜𝑙𝑙𝑒𝑐𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑓 𝑟𝑜𝑚 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 𝑢𝑠𝑖𝑛𝑔 𝜋𝜃
5: for each timestep t do
6: 𝑜𝑡 = get_obs(𝐸), 𝑎𝑡 = 𝜋𝜃 (𝑜𝑡 ), 𝑜𝑡+1 = step(E, 𝑜𝑡 , 𝑎𝑡 )
7: //𝑅𝑒𝑙𝑎𝑏𝑒𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑐𝑢𝑟𝑖𝑖𝑜𝑠𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 R𝐸𝑥𝑝 (𝑜𝑡 )
8: B ← B ∪ {𝜏 = (𝑜𝑡 , 𝑎𝑡 , 𝑜𝑡+1,R𝐸𝑥𝑝 (𝑜𝑡 ))}
9: end for
10: //𝑈𝑝𝑑𝑎𝑡𝑒 𝜋𝜃 , 𝑓𝜃 , 𝑎𝑛𝑑 𝑓𝜑
11: Update 𝑓𝜃 with L𝑉 and update 𝑓𝜑 with L𝐸𝐶𝐿
12: Update 𝜋𝜃 with L𝑃𝑃𝑂 (𝜋𝜃 ,B)
13: //𝐶𝑜𝑙𝑙𝑒𝑐𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓 𝑜𝑟 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠

14: if record labeled data then
15: Randomly sample a small subset from current rollout

buffer {(𝑥𝑖𝑚𝑎𝑔𝑒 , 𝑦𝑙𝑎𝑏𝑒𝑙 )} ∼ B
16: D ← D ∪ {(𝑥𝑖𝑚𝑎𝑔𝑒 , 𝑦𝑙𝑎𝑏𝑒𝑙 }
17: end if
18: Empty online rollout buffer B ← ∅
19: end while

Table 6: Hyperparameters of ECL.

Hyperparameter Value
Observation (640,480), RGB

Downsample layer AveragePooling (2, 2)
Hidden size (LSTM) 512
Optimizer of 𝜋𝜃 Adam

Learning rate of 𝜋𝜃 2.5 ×10−4

Learning rate annealing Linear
Rollout buffer length 32

PPO epochs 4
PPO mini-batches 2

Discount 𝛾 0.99
GAE 𝜆 0.95

Normalize advantage False
Entropy coefficient 0.01

Value loss term coefficient 0.5
Maximum norm of gradient 0.5

Clipping 𝜖 0.1 with linear annealing
Learning rate of BA and GC 2.5 × 10−4

Optimizer of BA and GC Adam
Number of timesteps 8
BA and GC epochs 4
Projection network [512]
Prediction network [512,512]

𝛼 in R𝐸𝑥𝑝 1.0
𝛽 in L𝑉 0.2

A SUCCESS RATE ANALYSIS OF OBJECTNAV
Fig. 5 illustrates the trend of the success rate with the number of
training steps during the training process of 3DAware [62]. As
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Figure 5: Success rate of ObjectNav as a function of the num-
ber of training steps.
shown in Fig. 4, RGB image-based semantic segmentation errors
may lead to low-quality and ambiguous semantic maps, which fur-
ther leads to erroneous object recognition and localization.𝐴𝑔𝑒𝑛𝑡_𝑆𝑢𝑐𝑐
in Fig. 5 indicates that the agent recognizes the wrong object and
performs a stop action, i.e., the agent thinks it has found the object
when it actually has not. 𝑅𝑒𝑎𝑙_𝑆𝑢𝑐𝑐 in Fig. 5 indicates the real suc-
cess rate, i.e., the agent thinks it has found the object and actually
does find it. As shown in Fig. 5, the difference between 𝐴𝑔𝑒𝑛𝑡_𝑆𝑢𝑐𝑐
and 𝑅𝑒𝑎𝑙_𝑆𝑢𝑐𝑐 ranges from 20.1% to 27.7%, which reflects that the
accuracy of object recognition seriously affects the ObjectNav per-
formance. Therefore, one of the core ideas of this paper is to employ
2D-3D cross-modal pre-trained visual and PCL encoders to enhance
object recognition and improve ObjectNav performance.

B PSEUDO-CODE, HYPERPARAMETERS, AND
TRAINING CURVES OF ECL

The details of our ECL are shown in Algorithm 1. The inputs to the
algorithm include the visually realistic interactive environment 𝐸,
the rollout buffer B for PPO, the buffer D for collecting retraining
data, the curiosity reward R𝐸𝑥𝑝 (𝑜), the exploration strategy 𝜋𝜃 , the
visual encoder 𝑓𝜃 , and the PCL encoder 𝑓𝜑 . To be specific, the ECL
consists of three phases: (1) collecting visual observations using
the exploration strategy 𝜋𝜃 , (2) updating the exploration strategy
and the representation learning model 𝑓𝜃 and 𝑓𝜑 , and (3) collect-
ing training data for downstream object recognition tasks. Until
the training process converges, the algorithm outputs the trained
representation learning models and the collected data (250K RGB
images and semantic labels). The upper and lower sections of Table
6 list the hyperparameters for PPO and contrastive representation
learning, respectively. We follow previous works [20, 53] as close
as possible.

The training curves of our ECL are shown in Figure 6. (a)-(c)
illustrate the trends of action prediction accuracy, action-aware cu-
riosity reward R𝐸𝑥𝑝 , and contrastive loss L𝐸𝐶𝑅𝐿 with the number
of training steps, respectively. The curiosity reward R𝐸𝑥𝑝 grows
with the number of training steps, which means that the agent is
progressively able to seek and collect more novel visual observa-
tions while maintaining the diversity of exploration actions. The
fluctuations of action prediction accuracy in Fig. 6 (a) also portend
an increasing richness of visual features and the complexity of
actions. It is worth noting that the action prediction accuracy is
consistently at a low level. On the one hand, the increasing complex-
ity of visual features and action sequences increases the difficulty

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Embodied Contrastive Learning with Geometric Consistency and Behavioral Awareness for Object Navigation MM ’24, October 28–November 1, 2024, Australia, Melbourne

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

 

𝐴𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝐿𝑜𝑠𝑠 ℒ𝐸𝐶𝑅𝐿𝐴𝑐𝑡𝑖𝑜𝑛-𝑎𝑤𝑎𝑟𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 ℛ𝐸𝑥𝑝

(𝑎) (𝑏) (𝑐)

Figure 6: The training curves of ECL.

 

(1)

(2)

(3)

(4)

Figure 7: Examples of RGB images collected by 𝐸2-CL for
model retraining. (1) High-quality images collected by agents
taking diverse actions. (2) The agent is blocked by an obstacle
(bed) and is forced to slide. (3) The agent is blocked by the
wall and can’t move. (4) The agent’s FoV is heavily obscured
by obstacles.

Table 7: Effects of exploration strategy on the performance
of retrained models.

Method Train Split Test Split
ObjDet InstSeg ObjDet InstSeg

CRL [20] 68.78 57.16 21.93 19.44
RND [4] 71.44 60.85 25.44 22.57
𝐸2-CL 72.32 62.11 25.89 23.81

of action prediction. As shown in Fig. 6 (a), the action prediction
accuracy is somewhat regained after sufficiently interactive learn-
ing. On the other hand, since the agent in the Habitat simulator
is not equipped with collision avoidance, it is easily blocked by
obstacles, resulting in collecting a portion of low-quality image-
action data. The low-quality RGB images shown in Fig. 7 (2)-(4)
are an important factor causing the low action prediction accuracy.
The contrastive loss L𝐸𝐶𝑅𝐿 shown in Fig. 6 (c) shows a trend of
decreasing, then fluctuating, and finally converging as the number
of training steps increases. This trend implies adequate information
exchange between the 2D visual features and the 3D geometric
structures.

Table 8: Effects of different window lengths on contrastive
representation learning.

Window Length Train Split Test Split
ObjDet InstSeg ObjDet InstSeg

l= 4 68.98 60.47 22.78 21.05
l= 6 71.09 61.71 24.38 22.66
l= 8 72.32 62.11 25.89 23.81
l= 10 72.21 62.83 25.19 24.01
l= 12 72.02 62.28 24.80 23.19

C EXPLORATION EVALUATIONS
To demonstrate the superiority of our exploration strategy, 𝐸2-CL,
CRL, and RND are first employed to collect data for object detection
and instance segmentation tasks in Gibson scenarios, respectively.
By adopting the three categories of data to retrain our pre-trained
visual encoder 𝑓𝜃 , the specific experimental results are shown in
Table 7. Our method achieves the best AP metrics on both train and
val splits, suggesting that 𝐸2-CL can adequately explore diverse
scenes and capture high-quality visual observations conducive to
object recognition.

To intuitively evaluate CRL, RND, and 𝐸2-CL, we employ three
exploration strategies to explore five different scenarios in the Gib-
son dataset, respectively, as shown in Fig. 8. The dark and light
gray colors in the maps indicate unexplored and explored areas,
respectively. The trajectories that fade from dark blue to light blue
indicate the exploration process. Intuitively, 𝐸2-CL can explore 5
different environments to the fullest extent. Notably, RND likewise
fully explores the third environment, but its trajectory is longer and
more convoluted than that of 𝐸2-CL. In the more complex fourth
scene, the CRL and RND wander through narrow spaces, leading to
failed explorations. However, 𝐸2-CL can escape the narrow space
and can fully perceive the fourth scene. We believe that the shorter
exploration trajectories and the ability to escape from narrow spaces
benefit from the design of our action-aware contrastive reward, as
it encourages attempting diverse actions to discover novel visual
stimuli.

D EFFECTS OF WINDOW LENGTH AND DATA
MAGNITUDE

Given that different window lengths will yield different behavioral
awareness learning scopes and different 3D semantic map scales
in the CRL, we evaluate the effects of different window lengths 𝑙 .
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Figure 8: Qualitative comparisons of CRL, RND, and 𝐸2-CL.

 

Figure 9: Effects of window length 𝑙 on model performance.

Specifically, we adopt different 𝑙 for CRL in the pre-training phase,
respectively. The pre-training visual encoders are further retrained
for the object detection and instance segmentation tasks. Table 8
and Fig. 9 show that 𝑙 = 8 and 𝑙 = 10 yield similarly optimal AP met-
rics. Interestingly, the AP metrics begin to decrease slightly when
using 𝑙 = 12. The results reflect that larger behavioral awareness
learning ranges and 3D semantic map scales may negatively affect
the performance of CRL. After weighing the computational cost
and performance, 𝑙 = 8 is finally used in this study.

In addition, we evaluate the effects of different data magnitudes
on the retrained visual encoder’s performance, and the specific
experimental results are shown in Table 9. We find that the model’s
performance on both tasks decays severely as the data magnitude
decreases uniformly. The experimental results demonstrate the
necessity of adequately exploring diverse scenarios and collecting
novel data.

Table 9: Effects of data magnitude on the performance of
retrained models.

Data Magnitude Train Split Test Split
ObjDet InstSeg ObjDet InstSeg

20% (50K) 43.49 36.81 16.71 13.92
40% (100K) 58.07 49.08 14.27 11.94
60% (150K) 66.12 57.26 19.71 16.09
80% (200K) 69.63 58.71 24.93 22.16
100% (250K) 72.32 62.11 25.89 23.81

 
𝑎  𝑆𝑒𝑚𝐸𝑥𝑝 𝑏  𝑆𝑡𝑢𝑏𝑏𝑜𝑟𝑛 𝑐  3𝐷-𝐴𝑤𝑎𝑟𝑒 𝑑  𝑂𝑢𝑟𝑠

Figure 10: Visualizations of the action space for different
exploration strategies.

 

Ours

Ours

Figure 11: GPU hours is used to quantify the training cost
on Gibson and MP3D datasets. Note: the MP3D plot uses a
log-scale for X axis.

E CROSS-DATASET GENERALIZATION OF ECL
The following two testing schemes are utilized to verify whether
our ECL pre-training learns features that are generalized across
datasets:

(1) The visual encoder pre-trained on the MP3D train split is
migrated to the Gibson dataset for retraining and completing the
object recognition tasks. The specific comparative results are shown
in Table 10.

(2) The visual encoder pre-trained on Gibson train split is inte-
grated into our ObjectNav policy for further retraining and eval-
uation on the MP3D dataset. The specific comparative results are
shown in Table 11. Notably, the parameters of the PCL encoder of
the ObjectNav policy are randomly initialized. Since the Gibson
and MP3D datasets contain different semantic categories, the corre-
sponding 3D semantic maps have different categories and channels.
Therefore, we can not directly migrate the PCL encoder across
datasets.

The experimental results show that ECL pre-training across
datasets likewise enhances the performance of the object recogni-
tion task and ObjectNav. As expected, the behavior-aware visual
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Figure 12: Visualizations of the 3D semantic maps and navigation processes.
Table 10: Cross-Dataset Generalization of ECL on Object
Recognition Tasks.

Method (Venue)
Train Split Test Split

ObjDet InstSeg ObjDet InstSeg
OVRL [5, 55] (ICLR 2023) 67.56 54.82 22.23 20.18
𝐸𝑔𝑜2-MAP† [28] (ICCV 2023) 67.29 54.97 20.72 19.89
Pri3D [29] (ICCV 2021) 70.28 59.86 25.34 23.04
MIT [57] (ICCV 2023) 68.30 56.88 24.19 22.61
From ECL (Gibson) 72.32 62.11 25.89 23.81
From ECL (MP3D) 71.61 60.94 25.26 23.48

features that fuse 2D-3D cross-modal scene priors can be general-
ized to novel and unseen scenes. This phenomenon suggests that
our ECL method can adequately represent the visual patterns and
structural cues of the scenarios in an embodied manner, which are
friendly to downstream tasks.

F DETAILS OF THE OBJECTNAV STRATEGY
The SOTA modular approaches [9, 39, 45, 62] usually decouple Ob-
jectNav into a scene exploration sub-task and an object recognition
sub-task to solve the problems of "Where to look?" and "How to lo-
calize and navigate to a specific object?". Therefore, utilizing scene
structures and semantic contexts to achieve efficient exploration
decisions is a prerequisite for recognizing and navigating to a given
object category. SemExp [9] proposes to use the entire local map
as an action space for the exploration sub-strategy. Since explo-
ration actions are regressively predicted, the huge action space
will result in inefficient sampling, further reducing the efficiency
of exploration decisions. To alleviate this problem, Stubborn [39]
and 3D-Aware [62] propose heuristic and learning-based corner-
guided exploration strategies, respectively. Specifically, these two
works argue that exploration actions only need to provide direction
guidance to the agent, and therefore define the exploratory action
space as the four corners of a local map, as shown in Fig. 10 (b)
and (c). The design of our exploration sub-strategy continues this
thought, but in practice the exploration action space is expanded
from four corners to eight directions as shown in Fig. 10 (d). For

Table 11: Cross-Dataset Generalization of ECL on ObjectNav.
† denotes the results we obtained using the official open-
source code.

Method (Venue)
MP3D (val)

SR (%) ↑ SPL (%) ↑ DTS (m) ↓ Ext. Data
OVRL [55] (ICLR 2023) 28.6 7.4 - no
𝐸𝑔𝑜2-MAP [28] (ICCV 2023) 29.0 10.6 5.17 yes
3D-Aware† [62] (CVPR 2023) 33.4 13.6 5.03 no
Ours (ECL-MP3D) 34.8 14.7 4.95 no
Ours (ECL-Gibson) 34.1 14.3 5.06 no

each exploration decision-making, the agent picks one of the eight
locations as the exploration goal 𝑔𝑡

𝐸𝑥𝑝
.

Notably, the point cloud encoder is employed to extract features
of the local 3D semantic map corresponding to the 𝑙+1 image frames.
Similar to humans localizing objects in the current field of view,
we believe that agents are most likely to recognize an object goal
within the local 3D regionwhere the agent is currently located. Such
an assumption alleviates the computational burden imposed by
larger-scale point clouds. Notably, Gated Recurrent Units (GRU) are
utilized to pass local features in the temporal dimension, facilitating
long-term exploration and object recognition, as shown in Fig. 3.

G ANALYSIS OF COMPUTATIONAL COST
As shown in Fig. 11, we quantify training cost using GPU hours used
to train the model. Our method costs relatively little to train but
achieves the best ObjectNav performance. Specifically, our method
is trained on the Gibson and MP3D datasets for about 70 GPU hours
and 195 GPU hours, respectively. In addition, we find that end-
to-end methods typically cost more training hours than modular
methods.

H MORE OBJECTNAV DEMOS
Fig. 12 (a) illustrates the 3D semantic map for a specific scenario.
The background has been omitted to emphasize the category and
shape of the objects. Fig. 12 (b) illustrates the efficient navigation
processes with a bed and a chair as target categories, respectively.
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