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Abstract
Most of previous camouflaged object detection methods heavily
lean upon large-scale manually-labeled training samples, which
are notoriously difficult to obtain. Even worse, the reliability of
labels is compromised by the inherent challenges in accurately
annotating concealed targets that exhibit high similarities with
their surroundings. To overcome these shortcomings, this paper
develops the first semi-supervised camouflaged object detection
framework, which requires merely a small amount of samples even
having noisy/incorrect annotations. Specifically, on the one hand,
we introduce an innovative pixel-level loss re-weighting technique
to reduce possible negative impacts from imperfect labels, through
a window-based voting strategy. On the other hand, we take ad-
vantages of ensemble learning to explore robust features against
noises/outliers, thereby generating relatively reliable pseudo la-
bels for unlabelled images. Extensive experimental results on four
benchmark datasets have been conducted.

CCS Concepts
• Computing methodologies→ Image manipulation.
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1 Introduction
Camouflaged object detection (COD) aims to seek objects that are
cunningly hidden into their ambient regions. It is capable of assist-
ing numerous applications such as search-and-rescue [14], health-
care [16, 17], and recreational art [9], etc. In previous decades, tradi-
tional methods utilize hand-engineered priors, e.g., orientation gra-
dients [50], scales [18], and/or colors [54], to discover camouflaged
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(a) Concealed (b) GT of (a) (c) Unconcealed (d) GT of (c)

Figure 1: The top row shows a visual comparison between
concealed and unconcealed objects. The concealed object in
(a) is more difficult to label than the unconcealed object in (c).
The rest two rows provide three cases with noisy annotations:
The left-most columndisplays a casewith extremely complex
boundary. Themiddle shows that the boundary of the tiger is
corrupted by messy leafs as indicated by red and blue boxes,
which does not match with the ground truth, while the right-
most one suffers from incorrect annotation.

objects, the performance of which, however, is barely satisfactory
in real scenarios.

Recently, the development in deep learning techniques has made
remarkable progress for COD [6, 21, 27, 30, 38, 44, 52, 58, 65], ow-
ing to the proficiency in directly learning the mapping from input
images to annotated ground truths. But, precisely annotating con-
cealed targets in natural images, especially those with camouflaged
colors, ambiguous boundaries, and/or disrupted occlusions, remains
challenging. As demonstrated by [15, 25], manually annotating con-
cealed objects is far more arduous than doing normal/unconcealed
ones, the cost of which is about one hour per image. For instance,
the appearance of the target in Fig. 1 (a) is very similar to its sur-
roundings, requiring tremendous efforts to discover it.

To relieve the pressure from data, the semi-supervised learning
is an option, in which the amount of the labelled training set can
be smaller than that of the unlabelled set. Over the past decade,
numerous semi-supervised learning strategies have been developed
[1, 2, 5, 28, 29, 36, 39]. But , their common assumption is that the
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manual annotations in the labelled training set are clean and cor-
rect, without attention to the noisy/outlying annotations existing in
the labelled set. For the COD task, unfortunately, it is hard to avoid
noisy/incorrect labels, due to the difficulty in accurately annotating
camouflaged objects as aforementioned. Please see Fig. 1 for evi-
dence. Besides, under the semi-supervised setting, the scarcity of
labelled samples inevitably increases the risk of over-fitting those
detrimental noises/outliers, severely impeding the ability of deep
semi-supervised COD models. Thus, a question naturally arises:
how to explore discriminative and robust knowledge from noisy man-
ual labels in a small amount of data, so as to provide reliable guidance,
e.g., pseudo labels, for supervising other unlabelled images?

In this work, we devise a semi-supervised COD framework for
mitigating the heavy annotation burden. It accomplishes the semi-
supervised learning amidst noisy manual labels by embracing two
pivotal techniques including loss re-weighting, and ensemble learn-
ing. To be more specific, on the one hand, a novel loss re-weighting
strategy is proposed to adjust the penalty strength with respect to
each pixel. The principle behind is that, for two neighbor pixels,
both of them highly likely belong to camouflaged objects, or neither
of them does. If the category of a pixel deviates from that of its
nearby pixels, the annotation for this pixel is suspected to be incor-
rect/noisy. It is imperative to safeguard against undue deviations
in the optimization direction, which may arise from the annota-
tions inconsistent with their neighbors. To this end, we propose
to determine the loss weights specific to each pixel, according to
the neighbor information within a window. On the other hand, we
seek to integrate potentially weak-yet-valuable knowledge from
different sources, e.g., different models or different training mo-
ments. By doing so, the interference of noisy/incorrect annotations
inherent in the training data can be alleviated, drawing upon the
principles of ensemble learning. Despite the knowledge learned
either at a particular training moment, or by a single model, is
easily disturbed by noisy/outlier samples, it remains eligible to
serve as a valuable source for ensemble. Based on the above, we
utilize the information from both different training moments and
different models to generate pseudo labels. Notably, our model
solely necessitates the backbone pre-trained in a unsupervised man-
ner, obviating the requirement for any labeled data from large-
scale datasets, e.g., ImageNet [11]. Our project page is available at:
https://github.com/ForawardStar/COD, and our contributions can
be summarized as follows:

• We develop a semi-supervised learning scheme amidst noisy
manual labels, to liberate the heavy burden of annotation.
To the best of our knowledge, this work is the first attempt
of semi-supervised COD.
• We propose a novel window-based voting strategy to ad-
just loss weights to each pixel, and an ensemble learning
algorithm to integrate the knowledge from different training
moments and different networks.
• We customize the network architecture, to advance the inte-
gration and interaction across different scales, emulating the
behavior of human vision system when viewing complex
scenes.
• We conduct extensive experiments to verify the effective-
ness of our proposed method on benchmark datasets. The

results indicate that our method can achieve competitive
performance compared to fully-supervised COD models.

2 Related Work
Camouflaged Object Detection. Early attempts on COD typically

utilize hand-crafted features to recognize camouflaged objects,
the performance of which, however, is limited. Recently, benefit-
ing from the availability of manually labelled datasets, such as,
CHAMELEON [55], NC4K [45], CAMO [33], and COD10K [14, 15],
the field of camouflaged object detection has been significantly
propelled forward by deep learning techniques. As a representative,
SINet [14] incorporates a search phase responsible for finding the
locations of concealed objects, and an identification phase for pre-
cisely segmenting detection targets. FindNet [37] embeds both the
boundary and texture information into the learned features, and the
boundary and texture enhancement modules are adopted to high-
light global and local patterns, respectively. ZoomNet [51] employs
a zoom in and out operation to explore mixed-scale semantics, aim-
ing at handling the objects with diverse scales. HitNet [27] refines
the low-resolution representations using high-resolution ones, in
an iterative feedback fashion. FEDER [21] decomposes the features
into multiple frequency bands through learnable wavelets, where
the most informative bands are mined to differentiate foreground
and background. Similarly, [10, 63, 71] introduce the frequency clue
as an extra evidence for recognizing camouflaged objects. MSCAF-
Net [41] uses an enhanced receptive field module to refine the
features learned at each layer, and a cross-scale feature fusion mod-
ule to enrich the diversity of extracted features. FSPNet [30] makes
use of a non-local token enhancement module that interacts neigh-
boring tokens and explores graph-based high-order relations within
tokens. Some works [35, 66, 70] discover difficult-to-detect sam-
ples to facilitate the identification of the camouflaged objects that
are tough to be precisely found, based on uncertainty estimation.
Several other works also [34, 46, 69, 73] leverage the benefits of
multi-task learning that introduces auxiliary tasks, such as image
classification and edge detection.

Despite exhibiting promising performance, previous deep learn-
ing models heavily rely on extensive manually annotated training
data, which poses significant challenges in terms of collection. Re-
cently, He et al. [25] customized a weakly supervised COD frame-
work, but there is still a large gap in the detection accuracy com-
pared to fully-supervised methods. For the sake of reducing the
heavy annotation burden, a semi-supervised COD framework is
highly desired, which requires only a limited number of labelled
samples. Hence, in this paper, we develop the first semi-supervised
COD framework that achieves competitive accruacy compared to
previous fully-supervised deep models.

Semi-Supervised Learning. Semi-supervised learning serves as
the cornerstone of numerous computer vision andmultimedia tasks,
the goal of which is to learn a deep model using a small amount
of labelled data, together with unlabelled data. Generally, semi-
supervised learning methods can be roughly divided into two cate-
gories: entropy minimization, and consistency regularization.

The approaches based on entropy minimization concern them-
selves with anticipating unlabelled data exhibiting low entropy. As
pointed out by [19], the predictions made for unlabelled samples
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should be situated distant from the decision boundary, underlining
the imperative of minimizing entropy in unlabelled data. VAT [49]
defines a novel virtual adversarial loss as the measurement of local
smoothness around every input data points against local pertur-
bations. Wang et al. [61] separated certain and uncertain pixels
based on the entropy of their predictions, It redirects each unre-
liable pixel to a category-specific queue populated with negative
samples, while striving to train the model using all potential pixels.
St++ [67] implements selective re-training by prioritizing reliable
unlabeled images, prioritizing those that exhibit holistic prediction-
level stability. Dense teacher [72] introduces an innovative region
selection technique that effectively highlights crucial information
while efficiently suppressing noises associated with dense labels.

Besides entropy minimization, consistency regularization is also
effective in semi-supervised learning. As data augmentation demon-
strates evident effectiveness, some works center on ensuring the
predictions of two augmented/perturbed inputs stay consistent
through regularization. For example, CutMix [68] cuts and pastes
images patches between two different images, with the ground truth
labels mixed proportionally to the area of the patches. UDA [64]
delves into the role of noise injection in consistency training and
observe that advanced data augmentation techniques, particularly
those that excel in supervised learning, hold promise in this context.
ReMixMatch [3] employs a distribution alignment strategy aimed at
narrowing the gap between the marginal distribution of predictions
on unlabeled data and that of ground-truth labels. FixMatch [56]
begins by generating pseudo-labels from the model’s predictions
on weakly augmented unlabeled images. These labels are kept only
if the model predicts with high confidence. Subsequently, the model
is trained to predict these labels on strongly augmented versions
of the same images. Nonetheless, the preset threshold employed in
FixMatch relegates certain examples of low confidence to obscurity,
preventing them from misleading the learning procedure.

Though achieving promising performance, the above mentioned
semi-supervised learning methods usually assume that the labelled
data is correct and reliable, without the consideration of noisy anno-
tations. However, there exist severe noisy annotations in the COD
datasets, posing a considerable obstacle to learn reliable knowledge
from the labelled set. It is infeasible to directly apply existing semi-
supervised methods to COD. Hence, in this paper, we develop a
novel semi-supervised COD method.

3 Methodology
We denote the labelled training data by D𝑙 := {(𝑋𝑛, 𝑌𝑛), 𝑛 :=
1, 2, ..., 𝑁 }, where 𝑁 is the total number of labelled training samples,
𝑋𝑛 is the natural images used for input, and𝑌𝑛 is the corresponding
ground truth. In the semi-supervised setting, the number of samples
in the labelled training set D𝑙 is smaller than that in the unlabelled
set D𝑢 := {𝑋𝑚,𝑚 := 1, 2, ..., 𝑀}, i.e., 𝑁 < 𝑀 . This work aims to
devise a semi-supervised camouflaged object detection framework,
by considering the adverse influence of noisy manual annotations
exist in the labelled training setD𝑙 . To achieve the goal, we propose
to 1) re-weight the losses specific/particular to each pixel, based on
the neighbor information, and 2) integrate the knowledge across
different training moments and networks.

Algorithm 1 Ensemble Learning for Semi-Supervised COD
Input: Training dataset D𝑙 and D𝑢 ; the total number of labelled
samples 𝑁 , and unlabelled samples𝑀 ; the total number of training
epochs 𝐸𝑃 ; two networks G1 and G2 trained by back-propagation;
two momentum networks G1

𝑚𝑜 and G2
𝑚𝑜 ; data augmentation

function DataAug(·)
Output: The network with the minimum average training loss
Initialize: 𝑒𝑝 := 0; Randomly initialize G1 and G2

1: for 𝑒𝑝 ← 1 to 𝐸𝑃 do
2: Compute 𝛼𝑒𝑝 by 𝛼𝑒𝑝 := 𝑒𝑝/𝐸𝑃 ;
3: num := 0;
4: S𝑙 := {𝑛 |1, 2, ..., 𝑁 }, S𝑢 := {𝑚 |1, 2, ..., 𝑀};
5: for 𝑛𝑢𝑚 ← 1 to 𝑁 do
6: Uniformly sample the indexes 𝑛 and𝑚 from S𝑙 and S𝑢 ,

respectively;
7: Read data 𝑋𝑚 from D𝑢 ;
8: 𝑂1

𝑚 := G1
𝑚𝑜 (𝑋𝑚), 𝑂2

𝑚 := G2
𝑚𝑜 (𝑋𝑚);

9: Compute 𝑌𝑚 by Eq. (4);
10: Read data 𝑋𝑛 , 𝑌𝑛 from D𝑙 ;
11: 𝑋 1

𝑛 := DataAug(𝑋𝑛), 𝑋 2
𝑛 := DataAug(𝑋𝑛);

12: 𝑉 1
𝑛 := G1 (𝑋 1

𝑛), 𝐶1
𝑚 := G1 (𝑋𝑚);

13: Compute L1
𝑙
by Eq. (8) and L1

𝑢 by Eq. (10);
14: Update G1 through back-propagation;
15: 𝑉 2

𝑛 := G2 (𝑋 2
𝑛), 𝐶2

𝑚 := G2 (𝑋𝑚);
16: Compute L2

𝑙
by Eq. (9) and L2

𝑢 by Eq. (11);
17: Update G2 through back-propagation;
18: Remove 𝑛 and𝑚 from S𝑙 and S𝑢 , respectively;
19: end for
20: if The average training loss of G1 decreases then
21: Update G1

𝑚𝑜 by Eq. (3);
22: else
23: Keep the parameters of G1

𝑚𝑜 unchanged;
24: end if
25: if The average training loss of G2 decreases then
26: Update G2

𝑚𝑜 by Eq. (3);
27: else
28: Keep the parameters of G2

𝑚𝑜 unchanged;
29: end if
30: end for

3.1 Loss Re-weighting Strategy
As discussed above, the annotated learning target 𝑌𝑛 may contain
noisy or wrong annotations, which are highly likely to mislead the
optimization direction during training. To reduce the disturbance
of noisy labels in D𝑙 , we design a window-based voting strategy, to
adjust the penalty strength for each pixel, according to the neighbor
information within a window. In the context of dense pixel-wise
classification tasks, e.g., COD or semantic segmentation, a ubiqui-
tous observation is that pixels in close proximity usually shows
similar colors, textures, or other visual characteristics, tending to
belong to the same category or object. The reason lies in that pixels
in natural images do not typically exist in isolation, but instead are
correlated with their neighboring pixels. Such inter-connectivity
often stems from the continuity of objects, and the consistency of
visual effects such as appearances and depths. Based on this, we
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Figure 2: The illustration of our network architecture. “K” and “D” below each convolution block in (c), indicate the kernel size
and dilatation rate, respectively.

argue that if the classification of a pixel has a significant deviation
from its neighbors, the reliability of its annotation is low.

Therefore, to mitigate the misleading effects of these unreliable
pixels on optimization direction, we propose awindow-based voting
strategy that determines the loss weights of a pixel based on its
deviation from the voting results of adjacent pixels. The loss weight
for the 𝑖-th pixel in a label 𝑌 can be calculated as:

𝜔 (𝑌 (𝑖 ) ) := 1 − |𝑌 (𝑖 ) − Vot(𝑌 (𝑖 ) ) |, (1)

where | · | is the absolute operation, and the values in𝑌 are bounded
by 0 as the lower bound and 1 as the upper bound. The voting
function Vot(·) is to enable pixels within a designated window to
cast their votes. It can be formulated as:

Vot(𝑌 (𝑖 ) ) := 1
|W(𝑖) |

∑︁
𝑗∈W(𝑖 ), 𝑗≠𝑖

𝑌 ( 𝑗 ) , (2)

whereW(𝑖) denotes a squared window centered at the 𝑖-th pixel,
and |W(𝑖) | is the total amount of pixels within the windowW(𝑖).

3.2 Information Integration
For the sufficient capacity in exploring robust features in the noisy
labelled set D𝑙 , we propose a novel ensemble learning algorithm as
detailed in Algorithm 1, which integrates the knowledge learned
from different trainingmoments and differentmodels. The proposed
ensemble learning algorithm helps to provide reliable pseudo labels
for the unlabelled set D𝑢 . In testing, only one network with the
minimum average training loss throughout the entire training pro-
cess, is executed. As evidenced by the literature on model ensemble
[8, 26, 43], integrating predictions from diverse sources is reason-
able, due to that it aids in averting over-fitting to noises/outliers.

To integrate the knowledge from different training moments, we
incorporate the momentum network whose parameters are updated
by accumulating the parameters of the back-propagation network
trained after different epochs. But, simply aggregating the knowl-
edge learned at all epochs, leads to sub-optimal detection accuracy
as some unwanted epochs with poor performance are also involved
for integration. Thus, to mitigate the disruption caused by unde-
sirable training moments, we propose to discard those unwanted
epochs that yield unsatisfactory results, through assessing whether
the losses decrease in comparison to the preceding epochs. In detail,
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Table 1: Quantitative comparison with state-of-the-arts on four datasets, i.e., CAMO, CHAMELEON, COD10K, and NC4K. The
best results are highlighted in Bold, while the second best results are marked in Italic. “Ours-10%”, “Ours-25%”, and “Ours-40%”
mean that 10%, 25%, and 40% samples of the total training data are labelled, respectively, while other samples are unlabelled.
“Ours-all” indicates that all training samples in COD datasets are labelled, yet the backbone is initialized using the parameters
pre-trained in a fully-supervised manner. The results of other competitors are directly cited from their original papers.

Method
CAMO CHAMELEON COD10K NC4K

MAE↓ S𝑚 ↑ F𝑤
𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑

Fully-Supervised
ANet [34] .126 .682 .484 .722 - - - - - - - - - - - -
SINet [15] .092 .745 .644 .829 .034 .872 .806 .946 .043 .776 .631 .874 .058 .808 .723 .883

SINetV2 [14] .070 .820 .743 .895 - - - - .037 .815 .680 .906 .048 .847 .770 .914
TINet [75] .087 .781 .678 .848 - - - - .042 .793 .635 .878 .055 .829 .734 .890
SLSR [45] .080 .787 .696 .854 .030 .890 .822 .948 .037 .804 .673 .892 .048 .840 .766 .907
MGL [69] .088 .775 .673 .842 .031 .893 .812 .941 .035 .814 .666 .890 .053 .833 .739 .893
PFNet [48] .085 .782 .695 .855 .033 .882 .810 .945 .040 .800 .660 .890 .053 .829 .745 .898
UJSC [35] .073 .800 .728 .873 .030 .891 .833 .955 .035 .809 .684 .891 .047 .842 .771 .907
C2FNet [57] .080 .796 .719 .864 .032 .888 .828 .946 .036 .813 .686 .900 .049 .838 .762 .904
UGTR [66] .086 .784 .684 .851 .031 .888 .794 .940 .036 .817 .666 .890 .052 .839 .746 .899

ZoomNet [51] .066 .820 .752 .892 .023 .902 .845 .958 .029 .838 .729 .911 .043 .853 .784 .912
FEDER [21] .066 .836 - - .026 .903 - - .029 .844 - - .042 .862 - -
FSPNet [30] .050 .856 .799 .928 - - - - .026 .851 .735 .930 .035 .879 .816 .937
SegMaR [31] .071 .815 .742 .884 .025 .906 .860 - .033 .833 .724 .906 .046 .841 .781 .907
Frequency [71] .062 .844 .778 - .027 .898 .837 - .030 .837 .731 - - - - -
DaCOD [59] .051 .855 .796 - - - - - .028 .840 .729 - .035 .874 .814 -
PENet [38] .063 .828 .771 - .024 .902 .851 - .031 .831 .723 - .042 .855 .795 -
BGNet [58] .073 .812 .749 .882 - - - - .033 .831 .722 .911 .044 .851 .788 .916
FindNet [73] .079 .796 .717 .867 .027 .895 .841 - .034 .818 .699 .901 .048 .841 .771 .907
HitNet [27] .056 .844 .806 .910 .018 .922 .903 - .023 .869 .804 .938 .039 .870 .825 .929
Ours-all .051 .854 .817 .932 .016 .928 .907 .975 .020 .874 .812 .940 .033 .887 .840 .939

Weakly-Supervised
Scribble [25] .092 .735 .641 - .046 .818 .744 - .049 .733 .576 - - - - -

Semi-Supervised
Ours-10% .077 .789 .732 .859 .036 .850 .773 .928 .033 .819 .725 .891 .046 .838 .787 .903
Ours-25% .074 .796 .737 .866 .034 .858 .780 .934 .032 .824 .728 .896 .044 .844 .795 .911
Ours-40% .071 .805 .746 .871 .032 .865 .787 .940 .029 .830 .735 .905 .041 .851 .802 .918

as illustrated in Algorithm 1, if the average losses at the current
epoch decrease compared to the last epoch, the parameters of the
momentum network can be updated through:

P𝑒𝑝𝑚𝑜 := (P𝑒𝑝
𝑏𝑝
+ P𝑒𝑝−1𝑚𝑜 )/2, (3)

whereP𝑒𝑝
𝑏𝑝

andP𝑒𝑝𝑚𝑜 indicate the parameters of the back-propagation
network and momentum network at 𝑒𝑝-th epoch, respectively; Oth-
erwise, the parameters remain unchanged, say P𝑒𝑝𝑚𝑜 := P𝑒𝑝−1𝑚𝑜 .

As for combining the features from different models, we incorpo-
rate two networks, i.e., G1 (·) and G2 (·), with identical architectures
as detailed in Section 3.3. Both of G1 (·) and G2 (·) are trained via
back-propagation, along with two momentum networks G1

𝑚𝑜 (·)
and G2

𝑚𝑜 (·) corresponding to G1 (·) and G2 (·), respectively. Note
that G1 (·) and G2 (·) are initialized with random distinctive param-
eters, and receive different augmented inputs, which contributes

to capture diverse information for ensemble. To generate pseudo
labels for samples in the unlabelled set D𝑢 , the predictions by two
momentum networks will be fused according to their pixel-level
uncertainties. The process of producing the pseudo label 𝑌𝑚 for the
𝑚-th unlabelled sample, can be described as:

𝑌𝑚 := 𝑈 1
𝑚 ◦𝑂1

𝑚 +𝑈 2
𝑚 ◦𝑂2

𝑚, (4)

in which

𝑈 1
𝑚 :=

|𝑂1
𝑚 − 0.5|

|𝑂1
𝑚 − 0.5| + |𝑂2

𝑚 − 0.5|
,

𝑈 2
𝑚 :=

|𝑂2
𝑚 − 0.5|

|𝑂1
𝑚 − 0.5| + |𝑂2

𝑚 − 0.5|
,

(5)

where ◦ denotes the Hadamard product, 𝑂1
𝑚 := G1

𝑚𝑜 (𝑋𝑚) and
𝑂2
𝑚 := G2

𝑚𝑜 (𝑋𝑚), 𝑈 1
𝑚 and 𝑈 2

𝑚 are the uncertainty scores of the
predictions𝑂1

𝑚 and𝑂2
𝑚 , respectively. If the predictions by a network
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hover nearer (further) to 0.5 in comparison to another, it signifies a
greater (lesser) degree of uncertainty in its predictions. As a result,
its influence in the fusion process should be diminished (enhanced).
It is worth to mention that the images in the labelled set D𝑙 will
not be processed by our momentum networks.

3.3 Network Architecture
For the COD task, it is critical to make use of the information from
different scales, imitating the human behaviors when perceiving
perplexing scenes. Otherwise, the detection results would be con-
siderably poor when handling the samples with low reliability in
annotations. As demonstrated by [30, 38, 51], to pinpoint camou-
flaged objects in a scene, humans often reference and compare
changes in shape or appearance across different scales, which sup-
ports the design of numerous deep COD models. To effectively
achieve the goal of capturing the mixed-scale semantics, we employ
a U-shaped network architecture as shown in Fig. 2 (a). We advo-
cate that small-scale features can be extracted by a convolution
neural network (CNN) due to its local nature [24, 40, 60, 62, 74],
and large-scale features can be explored by a vision transformer
(ViT) thanks to its ability to model global relationships among patch
tokens [4, 12, 20, 32, 42, 53].

Hence, we take advantages of ViT-B/16 [12] and ResNet50 [24]
as our backbone to explore mixed-scale information, the input sizes
of which are 224 × 224 and 704 × 704, respectively. We emphasize
that ViT-B/16 and ResNet50 are respectively pre-trained through
leveraging MAE [22] and MoCo [23] in a unsupervised fashion,
without relying on any labels in ImageNet [11]. The deepest block
of ViT-B/16 learns features with larger scales, which are then lever-
aged to individually engage and interact with the smaller-scale
features captured by four convolution blocks of ResNet50. For the
sake of ensuring sufficient interaction between the features learned
by CNN and ViT, as shown in Fig. 2 (b), a scale interaction module
(SIM) is designed. The channel attention scores predicted according
to the smaller-scale features extracted by CNN (brown arrows in Fig.
2 (b)), are utilized to steer the larger-scale features acquired by ViT
(blue arrows in Fig. 2 (b)). These steered features are then employed
to predict the scaling weights for pixel-wise multiplication with
smaller-scale features, as well as the biases for addition. Inspired
by [27], two feed-back blocks are used for iteratively refining the
features of the second and forth blocks, which progressively en-
large the receptive fields without increasing the parameter amount.
Subsequently, after being interacted using our SIM and refined by
feed-back blocks, the decoder takes these features as input to pro-
duce multi-scale (four scales in total) representations. The features
generated by the 1-st block together with the features refined by
feed-back blocks will be fused using our proposed cross receptive
field fusion module (CRFM). As shown in Fig. 2 (c), we draw support
from dilated convolutions with exponentially increased dilation
rates, to excavate the features of different receptive fields. After
being processed by a channel attention operation for enhancing
useful information, a 1×1 convolution for outputting a one-channel
feature map in Fig. 2 (c), and a Sigmoid activation in Fig. 2 (a), final
results can be obtained. The red and orange line in Fig. 2 (c), repre-
sent the two groups of features that are inputted into our CRFM,
respectively.

3.4 Learning Objective
The total learning objective consists of the weighted Binary Cross
Entropy (BCE) and Intersection over Union (IOU) loss, which can
be formulated as:

L𝑏𝑐𝑒 (𝑅,𝑌 ) := −
|𝑌 |∑︁
𝑖

𝜔 (𝑌 (𝑖 ) )·[𝑌 (𝑖 )Log(𝑅 (𝑖 ) )+(1−𝑌 (𝑖 ) )Log(1−𝑅 (𝑖 ) )],

(6)

L𝑖𝑜𝑢 (𝑅,𝑌 ) :=
|𝑌 |∑︁
𝑖

1 − 𝑅 ◦ 𝑌
𝑅 + 𝑌 , (7)

where 𝑅 and 𝑌 are the detection result and ground truth, respec-
tively. |𝑌 | is the total number of pixels in 𝑌 . For samples in the
labelled set D𝑙 , Eq. 8 and Eq. 9 are the losses of G1 (·) and G2 (·),
respectively, which are formulated as:

L1
𝑙
:=

𝑁∑︁
𝑛:=1
[L𝑏𝑐𝑒 (𝑉 1

𝑛 , 𝑌𝑛) + L𝑖𝑜𝑢 (𝑉 1
𝑛 , 𝑌𝑛)], (8)

L2
𝑙
:=

𝑁∑︁
𝑛:=1
[L𝑏𝑐𝑒 (𝑉 2

𝑛 , 𝑌𝑛) + L𝑖𝑜𝑢 (𝑉 2
𝑛 , 𝑌𝑛)], (9)

where𝑉 1
𝑛 := G1 (𝑋𝑛), and𝑉 2

𝑛 := G2 (𝑋𝑛). For the unlabelled samples
in D𝑢 , due to that the performance of deep models is poor at the
early training stage, the pseudo labels generated through Eq. 4 are
not so reliable. To avoid being misled by low-quality pseudo labels,
we gradually increase the weight of the losses as training proceeds.
Therefore, the losses for unlabelled images are formulated as:

L1
𝑢 :=

𝑀∑︁
𝑚:=1

𝛼𝑒𝑝 · [L𝑏𝑐𝑒 (𝐶1
𝑚, 𝑌𝑚) + L𝑖𝑜𝑢 (𝐶1

𝑚, 𝑌𝑚)], (10)

L2
𝑢 :=

𝑀∑︁
𝑚:=1

𝛼𝑒𝑝 · [L𝑏𝑐𝑒 (𝐶2
𝑚, 𝑌𝑚) + L𝑖𝑜𝑢 (𝐶2

𝑚, 𝑌𝑚)], (11)

where 𝐶1
𝑚 := G1 (𝑋𝑚), and 𝐶2

𝑚 := G2 (𝑋𝑚), and 𝛼𝑒𝑝 is the weight
that controls how much we are going to trust pseudo labels at 𝑒𝑝-th
epoch. Denote by 𝐸𝑃 the total number of training epochs, 𝛼𝑒𝑝 is
calculated by 𝛼𝑒𝑝 := 𝑒𝑝/𝐸𝑃 .

4 Experimental Validation
4.1 Implementation Details
We implement our network using PyTorch library on a RTX 3090
GPU. In detail, both of G1 (·) and G2 (·) are randomly initialized and
collaboratively trained for 80 epochs using AdamW optimizer. The
momentum and weight decay of the optimizer are set to 0.9 and
0.0001, respectively. The gradients of back-propagation are clipped
so that they are limited to the range of a closed interval [-0.5 0.5].
By doing so, the risk of gradient explosion can be reduced. The size
of the windowW in Eq. 2 is 31× 31. During training, we randomly
rotate the image between -180 and 180 degrees, randomly perturb
the brightness, contrast, saturation, and hue of images, from 50% to
150% of their original values, and randomly convert input images
to gray-scale images in a probability of 0.2, for data augmentation.
In this way, two differently augmented images will be produced as
the inputs of G1 (·) and G2 (·), respectively.
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Figure 3: Visual comparison with other fully-supervised COD methods. The red and blue regions represent false-positive and
false-negative predictions, respectively.

Table 2: Ablation studies on four datasets. The best results are highlighted in Bold, while the second best results are marked in
Italic. All the results are trained through selecting 40% from the training dataset as the labelled samples, and the remaining
data is unlabelled.

Method CAMO CHAMELEON COD10K NC4K
MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑ MAE↓ S𝑚 ↑ F𝑤

𝛽
↑ E𝑚 ↑

w/o D𝑢 .078 .793 .731 .836 .042 .840 .734 .921 .042 .796 .701 .868 .053 .809 .734 .886
w/o re-weighting .075 .801 .742 .856 .039 .846 .767 .927 .034 .819 .723 .889 .046 .844 .781 .897

w/o fusing models & moments .079 .784 .744 .842 .040 .839 .768 .919 .036 .817 .717 .873 .051 .815 .739 .895
w/o fusing models .074 .802 .741 .853 .037 .851 .776 .930 .032 .826 .728 .888 .047 .847 .785 .890
w/o fusing moments .076 .792 .739 .852 .039 .844 .774 .924 .033 .822 .725 .889 .045 .845 .783 .903

w/o high-level .073 .803 .738 .855 .034 .861 .781 .929 .032 .821 .729 .893 .043 .846 .793 .904
w/o SIM .077 .798 .735 .850 .036 .856 .780 .929 .030 .823 .726 .892 .047 .841 .795 .905
w/o CRFM .075 .800 .740 .854 .035 .860 .782 .927 .031 .825 .728 .894 .044 .844 .793 .906

Ours .071 .805 .746 .871 .032 .865 .787 .940 .029 .830 .735 .905 .041 .851 .802 .918

4.2 Datasets & Evaluation Criteria
Four datasets are employed in this paper, which include: CAMO
[33] having 2,500 samples with eight categories, CHAMELEON
[55] with 76 high-resolution images from the Internet, COD10K
[14, 15] containing 10,000 images, and NC4K [45] consisting of
4,121 images. Following previous works [14, 21, 25, 30, 51, 52], 3040
samples in COD10K [14] and 1000 samples from CAMO [33] are
used for training, while 76 images from CHAMELEON, 250 images
from CAMO, 2,026 images from COD10K, and 4,121 images from
NC4K, are used for testing.

As for the evaluation metrics, we evaluate all the COD models
in this paper with regard to four metrics: 1) mean absolute error
(MAE); 2) S-measure (S𝑚) [7]; 3) Weighted F-score (F𝑤

𝛽
) [47]; 4)

E-measure (E𝑚) [13].
Note that owing to the absence of a thoroughly clean and correct

test set, we are necessarily constrained to utilizing noisy labeled test
sets for evaluation purposes. This evaluation approach is deemed
equitable as we adhere to the utilization of identical evaluation
datasets as employed by other competitors.
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Table 3: Parameter study on COD10K. The best results are
highlighted in bold. All the results are trained through se-
lecting 40% from the training dataset as the labelled samples.

Window Size MAE↓ S𝑚 ↑ F𝑤
𝛽
↑ E𝑚 ↑

7 × 7 .033 .821 .717 .892
15 × 15 .031 .824 .720 .897
31 × 31 .029 .830 .735 .905
63 × 63 .030 .826 .724 .895

4.3 Comparison with State-of-the-arts
We randomly select 10%, 25%, and 40% of samples from the train-
ing datasets as described in Section 4.2, to constitute the labelled
training set D𝑙 , while the remaining samples are designated as the
unlabelled set D𝑢 . It can be seen from Tab. 1 that our proposed
method can achieve competitive accuracy compared with other
fully-supervised COD methods. For example, when only 40% sam-
ples of the total training data are labelled, our method demonstrates
a noteworthy performance, achieving the weighted F-score F𝑤

𝛽
of

0.735 on COD10K. Compared with the work for weakly-supervised
COD [25], we have a evident advantage in accuracy. We also show
the visual results in Fig. 3. Obviously, our method exhibits a re-
markable ability to accurately segment concealed objects while
minimizing redundant aesthetic predictions in regions exterior to
the objects. Please notice that, if all the data is fed into the network,
our method becomes fully-supervised. Under this setting, it attains
state-of-the-art accuracy over other fully-supervised approaches,
as demonstrated by the results indicated as “Ours-all” in Tab. 1.

4.4 Ablation Study
To verify the effectiveness of the proposed loss re-weighting and en-
semble learning, we report the results of five alternatives: 1)w/oD𝑢 .
Training a deep COD model using only the samples in the labelled
training set D𝑙 , without using any sample in the unlabelled D𝑢 ;
2) w/o re-weighting. Abandoning the proposed window voting
strategy for loss re-weighting, that is, the loss weights calculated in
Eq. 1 is abandoned; 3) w/o fusing models & moments. Generat-
ing the pseudo label 𝑌𝑚 neither based on knowledge from different
training moments nor different models. The knowledge learned by
a single model trained after the last epoch, are used to produce 𝑌𝑚 ;
4) w/o fusing models. Generating the pseudo label 𝑌𝑚 only based
on the knowledge across different training moments. In this setting,
only a back-propagation network and its corresponding momen-
tum network are maintained; 5)w/o fusing moments. Generating
𝑌𝑚 only based on the knowledge across different models without
maintaining momentum networks, where the knowledge learned
from the last epoch, are used to obtain 𝑂1

𝑚 and 𝑂2
𝑚 .

It can be seen from Tab. 2 that, the accuracy of training without
using the data in the unlabelled set D𝑢 is the worst one among all
the alternatives, due to the insufficient samples that the network can
access during training. Though slightly better than training without
using unlabelled data in D𝑢 , the accuracy of generating pseudo la-
bels using merely a single network at a particular moment, still lags
behind integrating the knowledge from either different moments or

different models. By amalgamating knowledge from both of these
two aspects, the best performance can be obtained, demonstrating
the necessity of integrating the knowledge from different sources.
Moreover, abandoning the proposed loss re-weighting technique
leads to a significant decrease in detection accuracy. This decrement
is attributed to the fact that the biased/noisy information present
in pixels whose annotations are discordant with their neighbors, is
highly prone to misleading the network.

We also discuss the design of our network structure, through
compare the performance with: 1) w/o high-level. Replacing the
features of the deepest transformer block with that of multiple
transformer blocks from bottom to top, to correspondingly interact
with the features of CNN. The features generated by the 1-st trans-
former block are taken to interact with the features generated by
the 1-st CNN blocks, and the features generated by the 2-nd, 3-rd,
and 4-th transformer blocks are taken to interact with the features
by the 2-rd, 3-th, and 4-th CNN blocks, respectively; 2) w/o SIM.
Replacing the designed SIM with a 1×1 convolution; 3)w/o CRFM.
Replacing the proposed cross receptive field fusion module with a
1 × 1 convolution. As shown in Tab. 2, these variants degrade the
detection accuracy, which performs worse than our method.

4.5 Parameter Study
This section reports the results of tuning the window size ofW
in Eq. 2, to discuss the influence of this hyper-parameter. We can
infer from Tab. 3 that, if the window size is small, e.g., 7 × 7, the
performance is poor, due to that a small window size approximates
the absence of a window in its functionality. When gradually in-
creasing the window size to 31 × 31, the performance increases
accordingly. But, when the window size is larger than 31 × 31, the
performance will not be further improved. The explanation for
this observation is that, some irrelevant and detrimental pixels are
involved for voting, if the window size is too large.

5 Conclusion
We customized a semi-supervised COD framework to relieve the
heavy annotation burden, which is helpful for the COD task being
difficult to annotate. To the best of our knowledge, this work is the
first attempt for developing a semi-supervised deep COD model.
For the sake of learning relative robust knowledge from a small
amount of noisy labelled data, a novel loss re-weighting scheme
and an ensemble learning algorithm were proposed. In addition,
we also carefully designed the network architecture to advance the
integration and interaction across different scales. Extensive exper-
iments have been conducted on several public datasets, to reveal
that our method can achieve competitive performance compared
to other fully-supervised deep COD models. In the future, we will
continue to explore the potential of our semi-supervised pipeline
on other dense prediction tasks, e.g., edge detection, salient object
detection, and semantic segmentation.
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