
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AURA: VISUALLY INTERPRETABLE AFFECTIVE UN-
DERSTANDING VIA ROBUST ARCHETYPES

Anonymous authors
Paper under double-blind review

A EXPERIMENTS

A.1 DATASETS

AffectNet-7/8 & AffectNet-VA Mollahosseini et al. (2017): AffectNet is an in-the-wild database
that contains around 400K images manually annotated for 6 basic expressions, as well as neutral
and contempt. For our work, we utilize the manually annotated images with the 7/8 expressions
category to ensure alignment with other expression datasets. AffectNet-VA provides VA annotations
in the range of [-1, 1], making it suitable for dimensional affect analysis. The training set of this
database consists of around 321K images and the validation of 5K. The validation set is balanced
across the different expression categories. RAF-DB (Real-world Affective Faces Database) Li
et al. (2017): RAF-DB is an in-the-wild database that contains approximately 15,000 facial images,
manually annotated for 7 basic expressions. DISFA (Denver Intensity of Spontaneous Facial
Action) Mavadati et al. (2013): DISFA is a lab controlled database consisting of videos from 27
subjects, each with approximately 5000 frames. Each frame is annotated with AU intensities on a
six-point discrete scale (0–5). For consistency in AU detection tasks, we binarize the annotations,
assigning a value of 1 to AU intensities greater than 2 and a value of 0 otherwise. The dataset includes
annotations for 8 AUs (1, 2, 4, 6, 9, 12, 25, 26). EmotioNetFabian Benitez-Quiroz et al. (2016)
consists of over 45K in-the-wild facial images, where we follow the official split and use the 11 most
frequent AUs for training and evaluation.

A.2 IMPLEMENTATION DETAILS

Our AURA framework is implemented in PyTorch and trained on an NVIDIA A100 GPU. For data
preprocessing, all input images are first cropped to facial regions and then resized to the CLIP-
supported resolution. The CLIP visual encoder is a frozen, pre-trained model from OpenAI. Image
or video frame features are extracted once using this encoder, after which all training and inference
are performed purely at the feature level, eliminating the need to repeatedly invoke CLIP during
optimization. We adopt the AdamW optimizer with a learning rate of 1× 10−4 across all datasets. To
enhance generalization, a dropout rate of 0.2 is applied to both the global-level and patch-level visual
projectors. For all datasets, the loss weights are set as λproj = λvpo = λrefine = 1, ensuring balanced
contributions from projection, visual archetype optimization, and refinement terms. Similarly, we
set β = 1 to assign equal importance to the archetype update and commitment penalty in the vector
quantization loss.

A.3 EVALUATION PROTOCOLS

We adopt task-specific evaluation metrics to ensure fair and meaningful performance comparisons.

Facial Expression Recognition (FER). For FER, we report the classification accuracy (ACC),
defined as:

ACC =
1

N

N∑
i=1

I (ŷi = yi) , (1)

where N is total number of samples, yi is the ground-truth label, ŷi is predicted label, and I(·) is the
indicator function.
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Valence-Arousal (VA) Estimation. For VA estimation, we use the Concordance Correlation
Coefficient (CCC) for both valence (v) and arousal (a), defined as:

CCC(x, y) =
2ρxyσxσy

σ2
x + σ2

y + (µx − µy)2
, (2)

where ρxy is the Pearson correlation coefficient between the predicted values x and ground truth
y, µx and µy are the means, and σx and σy are the standard deviations. The final CCC score is
computed as the average of CCCv and CCCa:

CCCVA =
CCCv +CCCa

2
. (3)

Action Unit Detection (AUD). For AUD, we compute the F1-score for each Action Unit (AU)
independently:

F1k =
2 · Precisionk · Recallk
Precisionk +Recallk

, (4)

where Precisionk = TPk

TPk+FPk
and Recallk = TPk

TPk+FNk
for AU k. We further report the average

F1-score across all K AUs:

F1avg =
1

K

K∑
k=1

F1k. (5)

B ARCHETYPE RESET MECHANISM.

To avoid archetype collapse, we introduce a usage-aware reset mechanism that periodically reinitial-
izes underutilized archetypes based on their global selection frequency.

Global Usage Tracking: Let the codebook be denoted as C = {e1, . . . , eN}, where each ei ∈ Rd is
a learnable archetype. During training, we record the global usage count vector u = [u1, . . . , uN ] ∈
NN , where ui counts the total number of times ei was selected as the nearest archetype over all
training steps. We define the normalized usage ratio for each code vector as: αi =

ui∑N
j=1 uj

, ∀i =
1, . . . , N, We then define a fixed threshold τ ∈ (0, 1) (e.g., τ = 0.01), and identify the set of
underutilized codes: Preset = {i | αi < τ} .
Archetype Reset: For each i ∈ Preset, we sample a new feature vector fi ∈ Rd from the current
training batch and reinitialize the archetype as:

ei ← fi + ξi, where ξi ∼ N (0, σ2I),

with σ > 0 denoting a small Gaussian noise level used to encourage diversity. Alongside the update
of ei, we reset all related accumulators: ui ← 0, ci ← ei, ni ← 0, where ci denotes the
accumulated cluster mean for archetype i and ni is the cluster size (i.e., the count of features assigned
to ei). Once all underutilized archetypes are updated, we reset the entire usage counter to zero:
u ← 0. This reset mechanism ensures that the codebook dynamically adapts to the evolving data
distribution and avoids stagnation due to unused or outdated archetypes.

C ANALYSIS FOR LEARNED ARCHETYPES

We analyze the archetypes learned by AURA to understand their structure, distribution, and in-
terpretability across multiple affective tasks. Our study covers (i) comparison with conventional
classification model, (ii) error diagnosis and taxonomy refinement, (iii) spatial organization in
arousal–valence space, (iv) allocation patterns in Action Unit spaces, and (v) quantitative cross-task
statistics. The results show that AURA adaptively allocates representational capacity according to
data distribution and emotional complexity, yielding both higher performance and more interpretable
affective representations.
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AURA Archetype (AffectNet-7) AURA Archetype (AffectNet-8)

CLIP Feature (AffectNet-8) POSTER++ Features (AffectNet-8)

Ground Truth Label: Sadness
Archetype Category: Neutral

Ground Truth Label: Neutral

(a) Diagnosing Annotation Errors via AURA (b) Comparison of Feature and Archetype Distributions

Archetype Category: Sadness

Figure 1: UMAP visualization of archetypes, original CLIP visual features, and POSTER++ features
for the AffectNet-7/-8 facial expression recognition task. (a) Diagnosis of annotation errors using
AURA; (b) Visualization of feature distributions.

C.1 EMOTION REPRESENTATION ADVANTAGE OF AURA

AURA vs. Conventional Classification Models: To assess the advantages of AURA over conventional
label-supervised classification, which optimizes representations directly under ground-truth labels,
we visualize and compare three types of learned features on the AffectNet-8 test set (Fig. 3 (b)):
AURA archetypes, original CLIP features, and POSTER++ features. Our observations are as
follows: (i) Original CLIP features are highly entangled in the affective space, yielding poor
emotional separability. (ii) POSTER++ alleviates some entanglement and improves separability,
but many samples remain intertwined and the learned features still lack semantic interpretability.
(iii) AURA archetypes, in contrast, produce highly distinct and disentangled clusters with strong
semantic coherence. These results demonstrate that AURA not only surpasses conventional objectives
quantitatively but also yields qualitatively more interpretable and cognitively consistent affective
representations.

C.2 DIAGNOSING ANNOTATION ERRORS AND REFINING EMOTION TAXONOMY VIA AURA

We conducted an in-depth examination of the learned AURA archetypes and their associated emotion
images, and found that, beyond offering inter- and intra-class interpretability (as illustrated in Fig. 3
of the main paper), AURA also serves as an effective tool for diagnosing annotation errors (as
illustrated in Fig. 3 (a)). Upon thorough inspection, we observe that the AffectNet dataset contains
a substantial number of compound expressions, which are inherently challenging to differentiate
during the annotation process and therefore susceptible to mislabeling. Thanks to our semantic
interpretability of AURA, we are able to systematically probe the samples assigned to each archetype,
enabling precise analysis, explanation, and error diagnosis.

As illustrated in Fig. 3(a), we identify two closely related archetypes corresponding to “sadness”
and “neutral”. Closer inspection of the images assigned to the “sadness” archetype, despite being
labeled as “neutral” in the ground truth, reveals consistently sorrowful expressions characterized by
knitted brows with pronounced glabellar lines, drooping eyelids, a dull gaze, and downward-turned,
compressed lips. Conversely, the images mapped to the “neutral” archetype, though annotated as
“sadness”, clearly exhibit neutral facial cues, including level eyebrows, relaxed eyelids, a steady
forward gaze, and lips at rest without curvature.

Notably, AURA refines the conventional seven-class emotion taxonomy into finer, semantically
coherent subsets, enabling more accurate grouping of visually similar expressions. Such refinement
allows AURA to capture subtle variations within a single emotion class, distinguishing, for example,
between mild and intense expressions or between pure and compound emotions. This finer-grained
partitioning not only improves the structural organization of the affective space but also facilitates the
identification of borderline or ambiguous cases that are often misclassified under rigid categorical
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schemes. By transcending the limitations of hard class boundaries, AURA provides a more continuous
and interpretable representation of emotions, thereby enhancing both the semantic clarity of the
learned features and the reliability of emotion annotations in large-scale datasets.

C.3 ARCHETYPE ANALYSIS IN AROUSAL–VALENCE SPACE

AffectNet-Arousal AffectNet-Valence

Figure 2: Valence and Arousal Prototye distribution visualization for AffectNet-VA.

AURA For Arousal: A detailed examination of the AURA archetypes in the arousal dimension
reveals a distinct spatial clustering pattern that aligns well with the underlying distribution of
emotional intensities in the dataset. Specifically, the archetypes aggregate into four primary clusters:
those corresponding to arousal values between −1.0 and −0.5 are concentrated in the lower right
region (depicted by orange to yellow-green hues) comprising 9 archetypes; the range −0.5 to −0.1
forms a cluster in the mid-right region (yellow-green to cyan) containing 48 archetypes; arousal
values from −0.1 to 0.3 cluster in the upper left area (cyan to deep blue) with 23 archetypes; finally,
values from 0.0 to 1.0 group near the central bottom area, comprising 20 archetypes.

This distribution reflects the natural emotional landscape captured in the dataset, where the majority
of arousal values fall within the moderate range of approximately [−0.3, 0.3]. Emotions beyond this
range correspond to intensely high or low arousal states, which are less frequently represented in
the data and therefore require fewer archetypes for effective modeling. Conversely, the [−0.3, 0.3]
interval encompasses typical human emotional intensity, exhibiting rich intra-class variability that
necessitates a denser population of archetypes to capture subtle distinctions. For instance, within
this moderate arousal range, expressions may vary from calm attentiveness to mild agitation, each
distinguished by nuanced facial cues that AURA archetypes effectively encode.

AURA For Valence: Turning to the valence dimension, the archetypes are distributed almost
uniformly across the entire [−1, 1] spectrum, with notable concentration in the intervals [0.6, 1.0] and
[−0.5, 0.0], which are represented by 31 and 23 archetypes respectively. This allocation corresponds
closely with the empirical distribution of valence in the dataset, where highly positive and mildly
negative emotional states are more prevalent. The uniform spread and selective densification of
archetypes indicate that AURA adapts dynamically to the data’s statistical properties, providing finer
granularity in emotionally significant regions while maintaining coverage across the full valence
range.

Collectively, these findings underscore AURA’s capacity to model the continuous valence-arousal
affective space with both granularity and efficiency. By allocating archetypes in accordance with the
natural distribution and complexity of emotional expressions, AURA achieves a balance between
representational compactness and discriminative power, thereby enhancing interpretability and
supporting nuanced emotion analysis.
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Table 1: Statistics of assigned archetypes across different datasets and tasks. Each row reports the
number of assigned archetypes (Assigned Prot.), their usage range (min–max, Prot. Usage), the
total number of samples matched to these archetypes (Prot. Sample Num.), and the total number of
samples in the dataset (Sample Num.).

RAF-DB

Expression Assigned Prot. Prot. Usage Prot. Sample Num. Sample Num.
anger 11 12–566 710 705

disgust 9 17–288 751 717
fear 6 18–169 287 281

happiness 28 19–1788 4735 4772
neutral 19 8–1288 2417 2524
sadness 12 11–999 2009 1982
surprise 15 14–841 1362 1290

AffectNet-VA (Arousal / Valence)

Bin Range Assigned Prot. Prot. Usage Prot. Sample Num. Sample Num.
−1.0 –−0.7 1 / 3 2341 / 1739–6783 2341 / 10522 3716 / 17989
−0.7 –−0.4 3 / 8 1013–5795 / 6741–7719 9206 / 36362 12372 / 31838
−0.4 –−0.1 28 / 13 1733–8666 / 1258–7383 63836 / 54243 52069 / 36753
−0.1 – 0.1 34 / 20 1389–7014 / 949–6734 71999 / 36927 99781 / 50891
0.1 – 0.4 22 / 17 1113–12569 / 154–3948 92903 / 20537 74212 / 29866
0.4 – 0.7 7 / 15 1178–3846 / 747–8513 21585 / 45156 30415 / 66280
0.7 – 1.0 5 / 24 5370–9079 / 1255–5565 28220 / 86343 21845 / 60793

DISFA (AU12 / AU25)

Bin Range Assigned Prot. Prot. Usage Prot. Sample Num. Sample Num.
0.0 – 0.3 32 / 29 471–5819 / 538–7391 62970 / 54047 65819 / 550540.3 – 0.5 1 / 2 1226 / 141–2440 1226 / 2581
0.5 – 0.7 2 / 0 111–963 / 0 1074 / 0 21391 / 321560.7 – 1.0 9 / 13 411–6869 / 769–4588 21940 / 30582

C.4 ANALYSIS OF ARCHETYPES IN AU SPACES

In this section, we visualize the learned AURA archetypes for four representative Action Units:
AU4, AU12, AU25, and AU26. Across these AUs, a consistent pattern emerges whereby strong
activations are associated with relatively few archetypes, while weak or absent activations correspond
to a larger number of archetypes. This distribution aligns well with established domain knowledge:
strongly activated AUs tend to exhibit more distinctive facial patterns, warranting compact and
focused archetype representation, whereas weakly activated or inactive AUs reflect greater variability
in appearance, thus requiring a more diverse set of archetypes to capture the underlying heterogeneity.

Despite this general trend, notable differences arise among the four AUs. For AU25, archetypes
corresponding to strong activation levels (0.8–1.0) cluster densely in the upper-right region of
the latent space, whereas weaker activations (0.1–0.4) concentrate in the lower-right region. This
clear spatial segregation validates the discriminative power of AURA archetypes, as AU25’s strong
activation typically signifies expressions of happiness, while its weaker activation corresponds to
distinct emotional states such as disgust or contempt, underscoring AURA’s capacity to capture
fine-grained affective differences.

Similarly, for AU4 and AU26, strongly activated archetypes (activation levels between 0.6 and 1.0)
are tightly clustered in the upper-left region, contrasting with other activation levels aggregated in
the lower-right region. This spatial dichotomy reflects AURA’s robust ability to sharply distinguish
between active and inactive AU states.

In the case of AU12, the archetypes corresponding to moderate (0.4–0.7) and strong (0.7–1.0)
activations form a contiguous cluster. This pattern is consistent with the known physiological
characteristics of AU12, which often manifests with subtle gradations of activation due to the
underlying facial muscle movements involved. Such nuanced clustering illustrates AURA’s sensitivity
to the fine-scale variations inherent in AU12 activation levels.

Overall, these findings demonstrate that AURA archetypes effectively model the complex distribution
of AU activations, balancing compactness for strongly activated units with diversity for weaker
activations, thereby capturing both the discriminative and variable nature of facial action units in a
semantically meaningful manner.

C.5 QUANTITATIVE ANALYSIS OF ARCHETYPE DISTRIBUTION ACROSS TASKS

We present a quantitative analysis of archetype allocation patterns across three representative affective
tasks: categorical facial expression recognition (RAF-DB), continuous arousal–valence estimation
(AffectNet-VA), and action unit detection (DISFA). The statistics in Table 1 summarize the number
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DISFA-AU4 DISFA-AU12

DISFA-AU25 DISFA-AU26

Figure 3: DISFA Archetypes distribution visualization.

of assigned archetypes (Assigned Prot.), their usage ranges (Prot. Usage), the total number of
samples matched to these archetypes (Prot. Sample Num.), and the total dataset sample counts
(Sample Num.). This quantitative view allows us to interpret how the AURA mechanism distributes
representational capacity across different affective states, intensities, and data densities.

RAF-DB (Expression Recognition): Archetype allocation varies substantially across the seven ex-
pression categories. High-frequency and visually diverse categories such as happiness (28 archetypes,
usage range: 19–1788) and neutral (19 archetypes, 8–1288) receive a larger number of archetypes
with broad usage spans, indicating high intra-class variability. Conversely, categories such as fear (6
archetypes, 18–169) and disgust (9 archetypes, 17–288) have fewer archetypes and narrower ranges,
reflecting lower diversity and sample counts. Sadness and surprise fall in between, with moderate
archetype counts but concentrated usage, suggesting more homogeneous visual patterns.

AffectNet-VA (Arousal / Valence Estimation): In the continuous affective space, archetype allo-
cation strongly correlates with data density. Extreme affective regions (e.g., −1.0–−0.7, 0.7–1.0)
exhibit fewer archetypes (1–5 for arousal, 3–24 for valence) and lower matched sample counts, due
to the scarcity of highly polarized emotions in the dataset. In contrast, the central regions (e.g.,
−0.1–0.1, 0.1–0.4) receive the largest number of archetypes (up to 34 for arousal, 20 for valence)
and significantly higher sample counts, capturing subtle variations in near-neutral affective states.
This aligns with AffectNet’s known bias toward mild or mixed emotions.

DISFA (Action Unit Detection): For AU-based modeling, archetype allocation distinguishes between
inactive/low-intensity and highly active facial muscle states. In AU12, the 0.0–0.3 range dominates
with 32 archetypes and 62,970 matched samples, while the mid-intensity range (0.3–0.5) is covered
by only a single archetype, indicating rare occurrences. High-intensity activations (0.7–1.0) have
fewer archetypes (9 for AU12, 13 for AU25) but disproportionately high sample counts, suggesting
these expressions, while less visually diverse, are relatively frequent in the dataset. Notably, AU25
has no archetypes in the 0.5–0.7 range, implying low occurrence or ambiguity in this activation
intensity.

This quantitative view highlights that archetype allocation in AURA is inherently data-adaptive. Tasks
and affective states with high visual diversity or dense sample distributions receive more archetypes
with wider usage ranges, while homogeneous or rare states are represented by fewer archetypes with
concentrated usage. This property ensures both representation efficiency and strong discriminative
capacity across heterogeneous affective modeling scenarios.
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