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A Broader impact statement

The social impact and bioethics of genetics is a complex and well-studied subject. Here,
we briefly highlight some of the ways the methods presented in this article intersect with
major issues. Health: statistical genetics methods have been crucial in diagnosing disease
and dissecting its mechanisms, and we hope that the methods presented here will further this
research. On the other hand, a detailed understanding of personal genetic information can be
used as the basis for discrimination. Technology: as generative models, BEAR models may
be useful in designing new sequences such as therapeutics. Genetic engineering, however,
is a dual-use technology. Culture: popular understanding of genetics is often bound up in
the idea that genomes are relatively fixed and change only very slowly over time, which
feeds into concerns over the "naturalness" of genetic modification and beliefs about the static
nature of race and ethnicity. These public perceptions are likely partially a consequence
of scientific models and methods that often simply ignore complex genetic variation and
analyze individual genomic data by comparing it to "reference" individuals. BEAR models
contribute theoretical and statistical methods for working with complex variants without
relying on references.

B Overview of supplementary material

Sections C-H are our theoretical results. Section I describes our simulation experiments.
Section J details how we implemented scalable inference for BEAR models. Sections K-O
provide details on our empirical results based on real data. The Datasets.xlsx file contains
information on all the datasets, including links or accession numbers for public databases.
Code and documentation are available at https://github.com/debbiemarkslab/BEAR.

C Theory Introduction

BEAR models can be used to address a variety of di�erent estimation and testing problems,
and the theoretical questions that arise in each case are related but distinct. One crucial,
high-level distinction is between the “finite-lag case” (where we assume the model lag L is
finite) and the “infinite-lag case” (where we allow the model lag L to approach infinity). In
addressing nonparametric density estimation, it is crucial to consider the infinite lag case,
since it is likely in practice that the true distribution can only be matched in the infinite
L limit. On the other hand, when it comes to diagnosing misspecification or constructing
hypothesis tests, the finite lag case is more acceptable since it is likely in practice that any
di�erences between the model and the data, or between two datasets, will be reflected in
finite marginals of the data distribution. The finite lag case is complicated by the fact that it
is likely that many kmer-to-base transitions have extremely low probability in practice; even
on massive datasets, we observe many transitions with no counts whatsoever. To deal with
this case, we develop theoretical tools to accommodate the possibility that some transitions
truly have probability zero under the data generating distribution.
An essential and innovative aspect of our formalism is the focus on "subexponential" sequence
distributions that obey an exponential moment bound on their length. Our choice to consider
sequence distributions that have no upper bound on the lengths of sequences they produce
separates our theory from the theory of distributions on finite sets. On the other hand,
moment bound assumptions separate our theory from the theory of distributions on countable
sets.
The theory will be organized as follows. Section D describes basic theoretical properties
finite-lag Markov sequence models, including their expressiveness and subexponentiality.
Subexponential sequence models will be introduced in general here. Section E demonstrates
consistency of inference with a fixed lag and in model selection between lags. A connection is
established between e�ective model dimensions and topologies of de Bruijn graphs. Section F
describes the behavior of the model when inference proceeds by empirical Bayes. The
parameter h is established as a descriptor of misspecification. Section G describes theoretical
guarantees on the behavior of goodness-of-fit and two-sample tests. Finally, section H
demonstrates consistency in the infinite lag case. Later sections depend on definitions and
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results established in previous sections with the exception that section H may be read
immediately after reading the definitions at the top of section E.

C.1 Notation

We consider an alphabet B with more than one letter. Define B̃ = B fi {$} where $ is
interpreted as the stop symbol, i.e. $ may only appear as the last letter of a sequence. Also
define the set of strings of the alphabet B of length L that start with any number (including
0) of repeated ÿ symbols, Bo

L. For a sequence X of letters in B, possibly terminated by $,
we define |X| as its length, including the stop symbol $ but not any start symbols ÿ. For
two strings X, X

Õ define #X
Õ(X) the number of occurrences of X

Õ as a substring in X and,
if X is not terminated by $, define (X, X

Õ) as the concatenated string. We also define the
substring from index i to j (inclusive) of X as Xi:j .
Define the set S of all finite sequences terminated by a stop symbol and give it the discrete
topology. Note that S is countable. Say p is a distribution of S. We will use Ep, or E if
there is an unambiguous data-generating distribution, to denote taking an expectation; for
example, Ep#X

Õ is the expected number of occurrences of the substring X
Õ in sequences

drawn from p. For a sequence Y possibly not terminated by a stop symbol, we define
p(Y . . . ) = p({X œ S | Xi = Yi ’i Æ |Y |}). We also define subexponential moment bounds,
an assumption we will make great use of:
Definition 1 (Subexponential sequence distributions). We say a distribution p on S is
subexponential if for a t > 0, Ep exp(t|X|) < Œ.

For a random variable Z on a probability space with probability P , and a measurable set A

in the sample space, we define
E[Z; A] = E[Z A] = E[Z|A]P (A)

where A is the random variable with A = 1 on A and A = 0 outside of A. As well, for two
real sequences (an)nœN, (bn)nœN, both possibly undefined for small n, we write an . bn to
mean that there is a positive constant C such that eventually an Æ Cbn. We write an ≥ bn

when an . bn and an & bn. We define a · b as the minimum of a and b, and a ‚ b as the
maximum.

D Finite-lag Markov models

In this section we define finite-lag Markov models, and then study the expressiveness of
the model class. After defining finite-lag Markov models, this section will concern itself
with the expressiveness of the model class. We first show that while there are sequence
distributions over S that are not finite-lag Markov models, the set of finite-lag Markov
models is nevertheless dense in the space of distributions over S. We then show that finite-lag
Markov models are subexponential.
The class of finite-lag Markov models is defined to be

Parameters: lag L, transition probabilities {vk,b}kœBo
L,bœB̃

Xi = ÿ for i Æ 0
Xi+1 ≥ Categorical({vXi≠L+1:i,b}bœB̃

)
stopping generation when a $ symbol is drawn and with parameters picked so that |X| < Œ
a.s.. These models are equivalent to Markov processes on the set Bo

L fi {(X, $) | X œ Bo
L≠1}.

The requirement that generated sequences be finite length a.s. is equivalent to the requirement
that for every k œ Bo

L that is Markov-accessible, there is another k
Õ œ Bo

L that is Markov-
accessible from k such that vkÕ,$ > 0. Call pv a probability distribution generated this way
with parameters L, v. Call the set of such probability distributions with lag L ML. Define
the set of all finite lag Markov models M := fiŒ

L=1ML and note M1 µ M2 µ . . . . Defining
�

B̃
as the |B̃| ≠ 1-dimensional simplex with coordinates indexed by B̃, ML is parametrized

by transition probabilities in �B
o
L

B̃
. This parametrization is not defined everywhere on the

boundary and is not injective as if an L-mer k is not Markov-accessible by a distribution
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Figure S1: Example application of this construction to the distribution on the left. Transition
probabilities for kmers smaller than L = 2 are those defined by the original distribution,
while those for larger kmers are all 1/3. The thickness of each line denotes the probability of
the transition.

pv, the vector of probabilities vk does not a�ect pv’s distribution. This parametrization is
continuous in the sense of the topology described by proposition 2.
We first give some examples of simple sequence distributions that are not finite-lag Markov.
Proposition 1. Not all possible distributions over S are in M.

Proof. Let A œ B and p
ú be a distribution over finite sequences that puts probability ai on

the sequence A◊ i := A . . . A of length i with
q

Œ

i=0 ai = 1. Assume p
ú œ ML with transition

probabilities {vk,b}kœBo
L,bœB̃

.

For i Æ L, define vi := v(ÿ◊(L≠i),A◊i), i.e. the vector of transition probabilities from the
L-mer that is L ≠ i ÿ symbols followed by i A symbols. For i Ø L call vi := vL.
Notice that for any i, the $-component of the vector vi is p

ú(|X| = i | |X| Ø i) = ai
Si

where
Si :=

q

Œ

j=i aj . Thus the A-component is 1 ≠ ai
Si

= Si+1
Si

. By the definition of the sequence
(vi)Œ

i=1, it is constant for i Ø L. Call – := SL+1/SL = vL,A = vi,A = Si+1/Si for all i Ø L.
Thus for all i > L, ai = Sivi,$ = –

i≠L
SLvL,$ = –

i≠L
aL. Thus the sequence ai eventually

decays exponentially and, as examples, it is impossible that ai ≥ 1/i! or ai ≥ 1/i
2.

Next we show that M is dense in the set of probability distributions on S. To speak of
density, we review the topology and types of convergence on the set of distributions of S in
this next proposition.
Proposition 2. The topology of convergence in total variation, convergence in distribution,
and pointwise convergence of the probability of each X œ S are identical.

Proof. Pointwise convergence of the probability of each X œ S implies convergence in total
variation by Sche�é’s lemma. It is also known that the topology induced by the total
variation metric is stronger than the topology of convergence in distribution. Finally, since
for each X œ S, the set {X} is open and closed, so that the Portmanteau lemma shows that
convergence in distribution implies pointwise convergence.

Lemma 3. Say p is a distribution on S. There is a lag L Markov model, pL, such that for
all X œ S, if |X| Æ L, pL(X) = p(X), and if |X| > L, pL(X) = p(X1:L)|B̃|≠(|X|≠L).

Proof. For all k œ Bo
L, b œ B̃, if there is a start symbol ÿ in k, define vk,b = p((k,b)...)

p(k...) ,
otherwise, define vk,b = |B̃|≠1. It is clear pv satisfies the properties of pL (Fig S1).

Corollary 4. M is dense in the set of distributions of S.
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Proof. Define p to be a distribution on S with finite support, {Xn}N
n=1. Pick an L > |Xn|

for all n, so that with the definition of lemma 3, pL = p and thus p œ ML. Now note that
any distribution on S can be approximated at finitely many points in S arbitrarily well by
distributions with finite support. The result follows from proposition 2.

Proposition 5. Finite-lag Markov models are subexponential.

Proof. Say p œ ML for some L, with transition probabilities v. Every k œ Bo
L that is

Markov-accessible by p has a k
Õ œ Bo

L that is Markov-accessible from k in less than sk

transitions such that vkÕ,$ > 0. Thus, infi p(|X| Æ i+sk | |X| > i, Xi≠L+1:i = k) > 0. Define
s = maxk accessible sk, q = infi p(|X| Æ i+s | |X| > i) > 0. Now note, for any positive integer
m, p(|X| > ms) =

rm
i=1 p(|X| > is | |X| > (i ≠ 1)s) Æ (1 ≠ q)m. For a random variable

Z ≥ Geom(q),

Ep exp(t|X|) =
⁄

Œ

0
dyp

3

|X| > s

3

1
st

log(y)
44

Æ
⁄

Œ

0
dyp

3

|X| > s

3

Â 1
st

log(y)Ê
44

Æ
⁄

Œ

0
dyP

3

Z >

3

Â 1
st

log(y)Ê
44

Æ
⁄

Œ

0
dyP

3

Z >

3

1
st

log(y) ≠ 1
44

=E exp (ts(Z + 1))

(5)

The integral is finite for some t > 0 as geometric random variables are sub-exponential.

E Consistency in the finite L case

In this section we consider fitting to data BEAR models with fixed hyperparameters h and
◊ (that is, standard Bayesian Markov models). We first study the asymptotic behavior
of the posterior over v, the transition probability parameter, conditional on a particular
lag L. We prove a Wald-type consistency result, showing that the posterior concentrates
on a neighborhood of the true data-generating parameter value v

ú, if such a value exists;
when p

ú is not in the model class ML, the posterior over v concentrates at the point v
ú

corresponding to the distribution pvú œ ML closest in KL divergence to p
ú. We next study

the asymptotic behavior of the posterior over the lag L, building on the theory of nested
model selection since L is a discrete variable. We show that the posterior concentrates at the
true data-generating value L

ú when such a lag exists (i.e. when there is some L
ú such that

p
ú œ MLú), and otherwise diverges. At a high level, neither of these results are surprising,

and they would be expected to hold in general for well-behaved Bayesian models. The details
of the model’s asymptotic behavior, however, turn out to be somewhat unusual; as we shall
see, the fact that some transitions from a particular kmer k to a base b have probability
zero under the data-generating distribution p

ú can complicate the normal story of Bayesian
asymptotics.
To describe the possible kmer-base transitions, we define, for a distribution on S, p, and a lag
L, the set of accessible kmers accL(p) = {k œ Bo

L | p(#k > 0) > 0} and transitions suppL(p) =
{(k, b) |k œ Bo

L, b œ B̃, p(#(k, b) > 0) > 0}. Define also, for any particular a k œ Bo
L, the set

of allowed transitions suppL(p)|k := {b œ B̃ | (k, b) œ suppL(p)}. Define the restriction of the
parameter space �B

o
L

B̃
to the support of p

ú, �̃L(pú) =
r

kœaccL(pú) �suppL(pú)|k
. If v œ �B

o
L

B̃
,

we will often use the abbreviation supp(v) = suppL(pv) for convenience.
Say p

ú is a distribution on S and L is a lag. Define the transition probabilities v
ú, corre-

sponding to the closest model in ML to p
ú (as measured by KL), as

v
ú = arg min

vœ�
Bo

L
B̃

kl(pú||pv) = arg max
v

E log pv(X) = arg max
v

ÿ

k,b

E [#(k, b)] log vk,b.
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Unlike for many other statistical models studied in other contexts, here we can easily compute
the closest model to the data-generating distribution: using Lagrange multipliers, one may
see that for all k œ accL(pú), v

ú

k,b = E [#(k, b)] /E [#k]. We then define p
ú(L) = pvú as the

best approximation to p
ú in ML. Note supp(vú) = suppL(pú(L)) = suppL(pú).

We now ask whether Bayesian inference on ML is consistent, i.e., whether the posterior
converges to a point mass at p

ú(L), even in the case where suppL(pú) is not all of Bo
L ◊ B̃.

The result is a classic Wald-type argument, adapted from theorem 2.3 of Miller [47] and
theorem 1.3.4 in Ghosh and Ramamoorthi [24]. The primary di�culty in the proof is that
these previous theorems assume the true parameter value lies on the interior of the parameter
space and rely on uniform convergence of the mean log likelihood in a neighborhood around
the true value. In our case, we can have v

ú

k,b = 0, so that the true parameter value lies on
the boundary of its space �B

o
L

B̃
and the likelihood function diverges at this boundary point.

Theorem 6. Say p
ú is a distribution on S with E|X| < Œ. Say � is a prior on �B

o
L

B̃

that assigns probability 0 to the set of v with pv /œ ML. Say X1, X2, · · · ≥ p
ú iid. Call

V = {v œ �B
o
L

B̃
| pv = p

ú(L)} and assume that it is not disjoint from the support of �. Then
for all open sets U containing V ,

�(U |X1, . . . , XN ) æ 1

a.s.. As a probability distribution on the space of measures on S, �|X1, . . . , XN æ ”pú(L) .

Proof. Define v
ú as the transition probabilities of p

ú(L). Define lN (v) =
≠ 1

N

qN
n=1 log(pv(Xn)), which is continuous in v and ‹

ú = min(k,b)œsupp(vú) v
ú

k,b. Note that

E log p
ú(L)(X) = E

|X|
ÿ

i=1
log v

ú

Xi≠L:i≠1,Xi
Ø E|X| log ‹

ú
.

First we show that the likelihood of the data is eventually small in a neighborhood of the
boundary. Pick an ÷1 > 0. Say (k, b) œ supp(vú) = suppL(pú) and define qk,b = p

ú(#(k, b) >

0) which is positive. Pick a positive

‹k,b < exp
1

≠q
≠1
k,b(÷1 ≠ E|X| log ‹

ú)
2

· v
ú

k,b.

E sup
v s.t. vk,b<‹k,b

l1(vú) ≠ l1(v) =E
C

sup
v s.t. vk,b<‹k,b

log pv(X)
D

≠ E [log pvú(X)]

Æqk,b log ‹k,b + (≠ log ‹
ú)E|X| < ≠÷1.

(6)

Thus defining U1 = {v œ �B
o
L

B̃
| there exists (k, b) œ supp(vú) s.t. vk,b < ‹k,b}, a.s., for large

enough N , lN (vú) ≠ lN (v) < ≠÷1 for all v œ U1 by the SLLN.
Call the complement of U1 K. K is compact and for all v œ K, supp(vú) ™ supp(v).
Note that V is compact and in the interior of K. Pick a positive ‹K which has, for every
(k, b) œ supp(vú), ‹K < ‹k,b. Then

E sup
vœK

|l1(vú) ≠ l1(v)| Æ | log(‹K · ‹
ú)|E|X| < Œ.

Then by theorem 1.3.3 in Ghosh and Ramamoorthi [24], a.s., lN (vú) ≠ lN (v) converges
uniformly to kl(pú||pú(L)) ≠ kl(pú||pv) Æ 0 on K (note, for the application of theorem 1.3.3
in Ghosh and Ramamoorthi [24], this quantity is well defined even if pv is not a distribution
over finite strings).
Now pick an open neighborhood U of V . By the continuity of v ‘æ kl(pú||pv), since K \ U is
compact, infvœK\U kl(pú||pv) > kl(pú||pú(L)) otherwise there would be a v œ V \ K. Thus
we can pick a positive kl(pú||pú(L)) + ÷2 < infvœK\U kl(pú||pv). Since v ‘æ kl(pvú ||pv) is
continuous and K is a neighborhood of V , there is an open U2 µ K fl U containing V such
that one can pick an ÷3 with supvœU2 kl(pú||pv) ≠ kl(pú||pú(L)) < ÷3 < ÷1 · ÷2. Then a.s.
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eventually, lN (vú) ≠ lN (v) < ≠÷2 for all v œ K \ U and lN (vú) ≠ lN (v) > ≠÷3 for all v œ U2.
Thus, a.s. for large enough N ,

�(U |X1, . . . , Xn) =
s

U d�e
N(lN (vú)≠lN (v))

s

U d�eN(lN (vú)≠lN (v)) +
s

K\U d�eN(lN (vú)≠lN (v)) +
s

U1\U d�eN(lN (vú)≠lN (v))

Ø
A

1 +
s

K\U d�e
N(lN (vú)≠lN (v))

s

U2
d�eN(lN (vú)≠lN (v)) +

s

U1
d�e

N(lN (vú)≠lN (v))
s

U2
d�eN(lN (vú)≠lN (v))

B≠1

Ø
3

1 + �(K \ U)e≠N÷2

�(U2)e≠N÷3
+ �(U1)e≠N÷1

�(U2)e≠N÷3

4≠1

æ1.

(7)
Finally, as a probability distribution on the space of measures on S, �|X1, . . . , Xn æ ”pú(L) .
This follows from the fact that the prior and thus posterior probability of pv /œ ML is 0 and
so one may push forward the measure from �B

o
L

|B̃|
to the space of probability measures on

S. The image of V is a point pvú . Since this mapping is continuous, it preserves the weak
convergence of the measure, in this case to a point mass.

Next we will study the posterior distribution of the BEAR model over the lag L, showing
under general assumptions that the posterior concentrates on the true data-generating value
L

ú (when such a value exists). Our analysis builds o� of standard asymptotic analyses of
nested Bayesian model selection, since models with di�erent lags are nested, i.e. ML µ MLÕ

when L
Õ
> L. Typically, when a simpler model (e.g. ML) is nested inside a more complex

model (e.g. MLÕ), and the data-generating distribution p
ú is in the simpler model, the

log Bayes factor comparing the two models will asymptotically prefer the simpler model
and scale as 1

2 (dimÕ ≠ dim) log N where dimÕ is the dimension of the parameter space in the
more complex model and dim is the dimension in the simpler model [14]. This O(log N)
term, which is independent of the prior, can be thought of as originating from the Laplace
approximation to the marginal likelihood; it is the basis of such widely used model-selection
techniques as the Bayesian information criterion.
Somewhat surprisingly, the fact that some transitions may have probability zero (vú

k,b = 0)
changes the asymptotic behavior of the log Bayes factor, in particular by altering the
dimension factor dimÕ ≠ dim. In e�ect, dimensions of the parameter space corresponding
to kmers that occur with probability zero under p

ú do not contribute to the dimension
count, while dimensions for which v

ú

k,b = 0 do not count as full dimensions; this leads
to the notion of an “e�ective model dimension”, defined as dime�

L (pú) := |suppL(pú)| ≠
|accL(pú)| +

q

kœaccL(pú)
q

b/œsuppL(pú)|k
–k,b where –k,b is the concentration of the Dirichlet

prior. This e�ective dimension depends the data-generating distribution p
ú and on the

prior hyperparameters, not just on L. Note that the unusual asymptotic behavior of BEAR
models does not just come from their Markov structure; even in the everyday example
of a Dirichlet-Categorical model, if some outcomes of the Categorical distribution have
probability exactly zero under the true data-generating distribution, the standard Laplace
approximation does not hold, and the Dirichlet prior contributes O(log N) terms to the log
marginal likelihood [62].

Theorem 7. Say p
ú is a distribution on S with E|X|2 < Œ and say X1, X2, · · · ≥ p

ú iid.
Given L, consider a Dirichlet(–k,b)bœB̃

prior on the simplex in �B
o
L

B̃
corresponding to the

L-mer k. For all L, assume –k,b > 0 for (k, b) œ suppL(pú) (otherwise p((Xn)N
n=1|ML) is

eventually 0 a.s.).
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Define kl(pú||ML) := infpœML kl(pú||p). Given L1 ”= L2, if 2 kl(pú||ML2) > kl(pú||ML1),

log p((Xn)N
n=1|ML1)

p((Xn)N
n=1|ML2)

= N (kl(pú||ML2) ≠ kl(pú||ML1)) + Op(
Ô

N). (8)

Otherwise, if p
ú œ ML1 , ML2 and, defining, for a lag L, dim

e�
L (pú) := |suppL(pú)| ≠

|accL(pú)| +
q

kœaccL(pú)
q

b/œsuppL(pú)|k
–k,b,

log p((Xn)N
n=1|ML1)

p((Xn)N
n=1|ML2)

= 1
2

!

dim
e�
L2(pú) ≠ dim

e�
L1(pú)

"

log N + Op(1). (9)

Proof. For a lag L, note dim(�̃L(pú)) = suppL(pú) ≠ accL(pú). Put a
Dirichlet(–k,b)bœsuppL(pú)|k

prior on each �suppL(pú)|k
. Call M̃L the set of probability distri-

butions described by �̃L(pú). We will show that kl(pú||p·) is maximized in the interior of
�̃L(pú) so that the asymptotics of the marginal likelihood

!

p(X|M̃L)
"

are well understood.
In �B

o
L

|B̃|
however, there are dimensions that correspond to k-mer - base transitions that

are impossible under p
ú. Using the symmetry of the Dirichlet prior, we can de-couple the

asymptotics of these excess dimensions from the asymptotics of the much more "natural"
space of �̃L(pú):

log
!

p((Xn)N
n=1|ML)

"

=
ÿ

kœaccL(pú)

Q

alog �(
q

b –k,b)
�(

q

b –k,b + #k) ≠
ÿ

suppL(pú)|k

log �(–k,b)
�(–k,b + #(k, b))

R

b

= log
!

p((Xn)N
n=1|M̃L)

"

+
ÿ

kœaccL(pú)

3

log �(
q

b –k,b)
�(

q

b –k,b + #k) ≠ log �(
q

Õ

b –k,b)
�(

q

Õ

b –k,b + #k)

4

(10)
where

q

Õ

b is a sum over the b œ suppL(pú)|k, and where #k in this case is
qN

n=1 #k(Xn)
and #(k, b) is similar. We will deal with each of these terms in turn.

To analyze the first of these terms, we first check regularity conditions. For v œ �̃L(pú) and
strings X1, . . . XN , define

lN (v) = ≠ 1
N

log
N

Ÿ

n=1
pv(Xn) = ≠ 1

N

ÿ

(k,b)œsuppL(pú)
#(k, b) log vk,b

l(v) = ≠E log pv(X) = ≠
ÿ

(k,b)œsuppL(pú)
E[#(k, b)] log vk,b.

Call vn the minimizer of lN and v
ú the minimizer of l. Note v

ú is also the minimizer of
v ‘æ kl(pú||pv) for v œ �̃L(pú) and has v

ú

k,b = E#(k, b)/E#k. In particular pvú = p
ú(L) so

that kl(pú||ML) = kl(pú||M̃L). One may check that lN is C
Œ, and, by seeing that it is a

sum of convex functions, convex. Calling D
m the m-th derivative operator (D0 the identity),

Î · Î some norm on Rdim(�̃L(pú))m , and E some set whose closure is in the interior of �̃L(pú)

E sup
vœE

ÎD
m

lN (v)Î Æ
ÿ

(k,b)œsuppL(pú)
E [#(k, b)] sup

vœE
ÎD

m log vk,bÎ < Œ

since E is relatively compact. Thus, by theorem 1.3.3 of Ghosh and Ramamoorthi [24],
D

m
lN æ ED

m
l1 = D

m
l locally uniformly where the last equality is by Leibniz’s rule due to

the local boundedness of all derivatives. In particular, D
3
lN are uniformly bounded across

2We do not need to assume E log p > ≠Œ as we may define in this case kl(pú||ML2 ) ≠
kl(pú||ML1 ) = ≠E log p

ú(L2)(X) + E log p
ú(L1)(X) which we will see is bounded by the moment

bound assumption E|X|2 < Œ.
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N on a neighborhood of v
ú and, sending E ¬ �̃L(pú), and noting lN is a.s. eventually ≠Œ

on the boundary of �̃L(pú), we see lN æ l pointwise a.s..
As in the analysis of Dawid [14], we write

log p((Xn)N
n=1|M̃L) = log p((Xn)N

n=1|M̃L)
pvN (Xn)N

n=1
+ log pvN (Xn)N

n=1
pú(L)(Xn)N

n=1
+ log p

ú(L)(Xn)N
n=1.

The above paragraph demonstrates that we satisfy conditions (2) of theorem 3.2 of Miller
[47] and thus we can write

log p((Xn)N
n=1|M̃L)

pvN (Xn)N
n=1

= ≠1
2 dim

!

�̃L(pú)
"

log N + O(1)

and say that vN æ v
ú. Now, using the mean value theorem,

log pvN (Xn)N
n=1

pú(L)(Xn)N
n=1

= ≠n(lN (vN ) ≠ lN (vú)) = ≠(
Ô

N(vú ≠ vN ))T
D

2
lN (vÕ)(

Ô
N(vú ≠ vN ))

for some v
Õ

N on the ray connecting v
ú and vN . Call ZN =



D2lN (vÕ

N )(
Ô

N(vú ≠ vN )). By
local uniform convergence, since vN æ v

ú, D
2
lN (vÕ

N ) æ D
2
l(vú). Satisfying the conditions

on a neighborhood of v
ú, since vN æ v

ú, by theorem 5.41 in van der Vaart [75],
Ô

N(vú ≠vN )
converges in distribution to N(0, D

2
l(vú)≠1). Thus, by Slutsky’s theorem, Zn converges

to N(0, I), and by the continuous mapping theorem log pvn (Xn)N
n=1

pv0 (Xn)N
n=1

= Z
T
n Zn converges in

distribution to ‰
2
dim(�̃L(pú)); thus this term is OP (1). Recall from the remark in the last

paragraph that kl(pú||M̃L) = kl(pú||ML) for all L; note in particular p
ú œ M̃L if and

only if p
ú œ ML. Then finally, by the analysis of Dawid [14], since E[log p

ú(L)(Xn)N
n=1]2 Æ

(log(mink,b v
≠1
k,b))2E|X|2 < Œ, log p

ú(L)(Xn)N
n=1 = log p

ú(Xn)N
n=1 if p

ú œ M̃L and

log p
ú(L)(Xn)N

n=1 = N [≠kl(pú||ML) + E log p(X)] + OP (
Ô

N)

otherwise.
By our analysis above we can say that given L1 ”= L2, if kl(pú||ML2) > kl(pú||ML1),

log p((Xn)N
n=1|M̃L1)

p((Xn)N
n=1|M̃L2)

= N (kl(pú||ML2) ≠ kl(pú||ML1)) + Op(
Ô

N). (11)

Otherwise, if p
ú œ ML1 , ML2 ,

log p((Xn)N
n=1|M̃L1)

p((Xn)N
n=1|M̃L2)

= 1
2

!

dim(�̃L2(pú)) ≠ dim(�̃L1(pú))
"

log N + Op(1). (12)
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Moving to the second term, for a k œ supp(vú), by Stirling’s formula,
A

log �(
q

b –k,b)
�(

q

b –k,b + #k) + log �(
q

Õ

b –k,b + #k)
�(

q

Õ

b –k,b)

B

=
A

ÿ

b

–k,b ≠ 1
2

B

log
A

ÿ

b

–k,b

B

≠
ÿ

b

–k,b

≠
A

#k +
ÿ

b

–k,b ≠ 1
2

B

log
A

#k +
ÿ

b

–k,b

B

+
A

#k +
ÿ

b

–k,b

B

≠
A

ÿ

b

Õ

–k,b ≠ 1
2

B

log
A

ÿ

b

Õ

–k,b

B

+
ÿ

b

Õ

–k,b

+
A

#k +
ÿ

b

Õ

–k,b ≠ 1
2

B

log
A

#k +
ÿ

b

Õ

–k,b

B

≠
A

#k +
ÿ

b

Õ

–k,b

B

+ O(1)

=
A

#k +
ÿ

b

Õ

–k,b ≠ 1
2

B

log
3

q

Õ

b –k,b + #k
q

b –k,b + #k

4

≠
A

ÿ

b

–k,b ≠
ÿ

b

Õ

–k,b

B

log
A

ÿ

b

–k,b + #k

B

+ O(1)

=
A

#k +
ÿ

b

Õ

–k,b ≠ 1
2

B

O

3

1
#k

4

≠
A

ÿ

b

–k,b ≠
ÿ

b

Õ

–k,b

B

log #k + O(1)

= ≠

Q

a

ÿ

b/œsupp(pú)|k

–k,b

R

b log #k + O(1)

(13)

Now note log #k = log N + log
! 1

N #k
"

= log N + O(1) by the strong law of large numbers.
Putting this together with 11, 12, 10, and 13 gives the result.

So far, we’ve studied pairwise comparisons between models with di�erent lags; we now study
the posterior over lags. We start with the case where there is no true data-generating lag, i.e.
p

ú
/œ M. In this case, we can apply theorem 7 to show that the posterior over lags diverges

to infinity.
Corollary 8. Let fi(L) denote a prior over lags, with fi(L) > 0 for all L. Choose for each
lag a Dirichlet prior on the simplex �B

o
L

B̃
that satisfies the conditions of Theorem 7. If p

ú is
subexponential but p

ú
/œ M, the posterior diverges in the sense that for any choice of lag L̃,

we have �(L > L̃|(Xn)N
n=1) æ 1 a.s..

Proof. It is shown in the proof of theorem 23 that as L æ Œ, we have kl(púÎML) æ 0.
Say L̃ is a lag, so, since p

ú
/œ ML̃, there exists some L̃

Õ
> L̃ such that kl(púÎML̃Õ) <

kl(púÎML̃) Æ kl(púÎML) for all L Æ L̃. Note we have

�(L Æ L̃|(Xn)N
n=1) Æ

q

LÆL̃ p((Xn)N
n=1|MLÕ)

q

LÆL̃ p((Xn)N
n=1|MLÕ) + p((Xn)N

n=1|ML̃Õ)
.

There are only finitely many L
Õ less than or equal to L̃, so we can apply theorem 7 and the

conclusion follows.
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We now consider the case where p
ú œ M. Pick L

ú to be the minimum lag such that p
ú œ MLú .

We will need to assume, for theoretical tractability, that the prior over lags has finite support.
Then we can establish su�cient conditions for the posterior to concentrate on the true value
L

ú.
Lemma 9. Let fi(L) be a prior over lags with fi(L) > 0 for all L less than some L̃ Ø L

ú, and
with fi(L) = 0 for all L > L̃. Then �(Lú|(Xn)N

n=1) æ 1 in probability if (dime�
L (pú))LØLú is

non-decreasing and dime�
Lú+1(pú) > dime�

Lú(pú).

Proof. Apply theorem 7.

If transition probabilities v
ú

k,b were always non-zero, the e�ective dimension of the model
would simply be the dimension of the parameter space �B

o
L

B̃
, and thus the dimension would

always increase with increasing lag, making lag selection consistent. Allowing for v
ú

k,b = 0
makes the situation more complicated, since in fact the e�ective dimension may not increase
with increasing lag. If this is indeed the case, the posterior will no longer be guaranteed to
determine the true L

ú from data, even asymptotically. In order to describe how the e�ective
dimension in fact scales with the lag, we will introduce the notion of a distribution’s de
Bruijn graph: for a distribution p on S, the L-mer de Bruijn graph is the directed graph
with nodes accL(p) and a directed edge connecting L-mers k æ k

Õ if k
Õ = (k2:L, b) for a

b œ suppL(p)|k. (De Bruijn graphs are a common data analysis tool in biological sequence
analysis, where they are typically constructed from an empirical distribution over observed
sequences; here, we are in e�ect studying the asymptotic de Bruijn graph, i.e. the de Bruijn
graph that we would have if an infinite amount of data were observed.) Call a de Bruijn
graph a tree if every node has at most one parent (since sequences must start and end with
start and stop symbols, there cannot be a loop where each kmer has just one parent). The
next two results show that we can only consistently infer the true lag if the the L

ú-mer de
Bruijn graph of p

ú is not a tree.
Proposition 10. Say p

ú œ MLú and for each L, consider a Dirichlet(–k,b)bœB̃
prior on the

simplex in �B
o
L

B̃
corresponding to the L-mer k. Say for L Ø L

ú, for all L-mers k and bases b,
–k,b = –kL≠Lú+1:L,b (i.e. the prior concentration depends only on the last L

ú letters of the
L-mer). There exists a L̃ (possibly infinity) such that for all L Ø L

ú, the L-mer de Bruijn
graph is a tree if and only if L > L̃. Then (dime�

L (pú))LØLú is a non-decreasing sequence,
strictly increasing until L̃, and constant past L̃.

Proof. Call v
ú the transition coe�cients of p

ú. Say L > L
ú, k œ accL(pú). Call k

Õ œ accLú(pú)
the last L

ú letters of k. If for some b œ B̃, p
ú(#(k, b) > 0) > 0 then clearly p

ú(#(kÕ
, b) > 0)

thus suppL(pú)|k ™ suppLú(pú)|kÕ . On the other hand, say b œ suppLú(pú)|kÕ = supp(vú)|kÕ

and Y is a string, not terminated with $, and with its last L characters equal to k and p
ú(Y . . . ).

p
ú((Y, b) . . . | Y . . . ) = v

ú

kÕ,b > 0 so, p
ú(#(k, b) > 0) > 0. Thus suppL(pú)|k = suppLú(pú)|kÕ .

Now write
dime�

L (pú) =
ÿ

kœaccL(pú)

ÿ

bœsuppL(pú)|k

#

bœsuppL(pú)|k + b/œsuppL(pú)|k–k,b

$

≠ 1

where, for a statement A, A = 1 if A is true and A = 0 if A is false. Thus, since in this
case suppL(pú)|k = suppLú(pú)|kÕ , and by the assumption on the prior coe�cients,

dime�
L (pú) =

ÿ

kÕœaccLú (pú)
|{k œ accLú(pú) | kL≠Lú+1:L = k

Õ}|

◊

Q

a

ÿ

bœsuppL(pú)|Õ

k

#

bœsuppL(pú)|kÕ + b/œsuppL(pú)|kÕ–kÕ,b

$

≠ 1

R

b .

(14)

Since for each k
Õ œ accLú(pú) there is a k œ accL(pú) that has its last L

ú letters equal to k
Õ,

dime�
L (pú) Ø dime�

Lú(pú). Since p
ú œ ML for all L Ø L

ú the argument may be repeated for
all pairs L1 > L2 Ø L

ú to conclude (dime�
L (pú))LØLú is non-decreasing.
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Note if for L
Õ

> L, dime�
LÕ (pú) = dime�

L (pú) then for all k
Õ œ accL(pú) there is a unique

k œ accLÕ(pú) with its last L letters equal to k. Thus if X1, X2 œ S with p
ú(X1), p

ú(X2) > 0
and X1, X2 end in the same last L letters (not including $), then X1, X2 end in the same
last L

Õ letters. Looking at positions |Xj | ≠ L
Õ : |Xj | ≠ L

Õ + L ≠ 1, one can also conclude
that X1, X2 end in the same last L

Õ + (LÕ ≠ L) letters. Continuing, one may conclude
X1 = X2. It can be seen that this is equivalent to the L-mer de Bruijn of p

ú being a tree.
On the other hand it is not di�cult to see that if the L-mer de Bruijn of p

ú is a tree then
dime�

LÕ (pú) = dime�
L (pú) for all L

Õ
> L.

Corollary 11. Say p
ú œ M and L

ú is the minimum lag such that p
ú œ MLú . Let fi(L) be

a prior over lags with fi(L) > 0 for all L less than some L̃ Ø L
ú, and with fi(L) = 0 for all

L > L̃. For each L, consider a Dirichlet(–k,b)bœB̃
prior on the simplex in �B

o
L

B̃
corresponding

to the L-mer k. Assume that for L Ø L
ú, for all L-mers k and bases b, –k,b = –kL≠Lú+1:L,b.

Then lag selection is consistent if and only if the L
ú-mer de Bruijn graph of p

ú is not a tree.
Remark 1. If p

ú(X) > 0 for infinitely many X œ S, as is the case if the transition coe�cients
of p

ú are all positive or there is a cycle in the L
ú-mer de Bruijn graph of p

ú, then no L-mer
de Bruijn graph of p

ú is a tree as sequences with p(X) > 0 cannot be identified by their
last L letters. As another example, pick a particular sequence X œ S and say X

Õ is one
letter away from X. For a 0 < q < 1, define p = q”X + (1 ≠ q)”XÕ . Pick L

ú the smallest lag
such that p

ú œ MLú . Then the L
ú-mer de Bruijn graph splits into two paths at the position

where X and X
Õ di�er. These paths may rejoin after L

ú nodes. Thus the L
ú-mer de Bruijn

graph is a tree if and only if the position at which X and X
Õ di�er is less than L

ú letters
away from the end symbol $.

F Misspecification detection

In this section, we turn from studying the parameter v and lag L in the BEAR model to
studying the hyperparameters h and ◊. Intuitively, we expect the empirical Bayes estimate
of h to behave as a diagnostic of misspecification, since h controls the extent to which the
prior predictive distribution of the BEAR model is concentrated at the embedded AR model.
Here we make this idea rigorous by examining the asymptotic behavior of the empirical
Bayes estimates of h and ◊.
We first briefly introduce the setup and some notation. We will assume p

ú is subexponential.
We will work with fixed lag L, though the results can be straightforwardly extended to the case
of a prior over a finite number of lags. The function f : � ‘æ �B

o
L

B̃
defines an autoregressive

model, with parameter space � some set. For any h > 0, ◊ œ �, define a prior fi(·|h, ◊) on
�B

o
L

B̃
consisting of independent Dirichlet( 1

h fk,b(◊))bœB̃
priors on each simplex corresponding

to k œ Bo
L. Define m((Xn)N

n=1|h, ◊) to be the marginal likelihood of the data (Xn)N
n=1 under

the prior fi(·|h, ◊), that is m((Xn)N
n=1|h, ◊) =

s

pv((Xn)N
n=1)fi(v|h, ◊). For our purposes we

may assume fk,b(◊) > 0 for all (k, b) œ suppL(pú); if this is not the case for some ◊ then the
marginal likelihood at ◊, for any choice of h, is a.s. eventually 0. We will study maximum
marginal likelihood/empirical Bayes estimates (hN , ◊N ) = argmaxh,◊m((Xn)N

n=1|h, ◊).

Our starting point is the analysis of empirical Bayes presented in Petrone et al. [54]. Here
is the (very heuristic) intuition behind their result: the Laplace approximation to the
marginal likelihood is proportional to the probability of the true data-generating parameter
under the prior, so asymptotically we expect m((Xn)N

n=1|h, ◊) Ã fi(vú|h, ◊). Then, roughly
speaking, the empirical Bayes estimate will be (hN , ◊N ) ¥ argmaxh,◊fi(vú|h, ◊); in other
words, the empirical Bayes estimate should asymptotically maximize the probability of
the true parameter parameter value under the prior. Petrone et al. [54] give conditions
under which this is indeed true, but BEAR models fail to meet them. There are two major
problems: (1) in the limit as h æ 0, the prior converges to a point mass, making the Laplace
approximation invalid (the “degenerate” case mentioned by Petrone et al. [54]) and (2)
when some transitions have probability zero, v

ú

k,b = 0, the standard Laplace approximation
does not hold regardless of the value of h. Our analysis in this section adjusts for both
these issues, and also provides more detailed insight such as convergence rates and intuitive
approximations for the optimal h.
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In analyzing extremum estimators, such as the maximum marginal likelihood estimator used
in empirical Bayes, uniform convergence results are particularly powerful. Ideally, we might
try to establish a Laplace-like approximation to the marginal likelihood that holds uniformly
for all h and ◊, but this is unavailable because of the degeneracy at h = 0. Our strategy will
be to first demonstrate a uniform Laplace approximation over all h, ◊ with some caveats: (1)
we ignore transitions that are not possible under p

ú and analyze their contribution to the
likelihood later; (2) if h æ 0 we assume it does not decrease too fast; and (3) we assume
similar control over the prior density at the "true" transition probabilities v

ú. In proposition
13 we prove that (3) must indeed hold for when hN , ◊N are the maximizers of the marginal
likelihood.
For any v œ �̃L(pú), define the negative average log likelihood lN (v) = ≠ 1

N log pv(Xn)N
n=1,

and let vN œ �̃L(pú) be the (a.s. eventually unique) maximizer of lN . Define a prior fĩ(·|h, ◊)
on �̃L(pú) consisting of independent Dirichlet( 1

h fk,b(◊))bœsuppL(pú)|k
priors on each simplex

corresponding to k œ accL(pú) (for a scalar –, Dirichlet(–) is just defined as the point mass
on the 0-dimensional simplex {1}). Let m̃((Xn)N

n=1|h, ◊) denote the marginal likelihood
under the prior fĩ(·|h, ◊) and define

log rN (h, ◊) =
ÿ

kœaccL(pú)

A

log
�(

q

b
1
h fk,b(◊))

�(
q

b
1
h fk,b(◊) + #k)

≠ log
�(

q

Õ

b
1
h fk,b(◊))

�(
q

Õ

b
1
h fk,b(◊) + #k)

B

where
q

Õ

b is a sum over the b œ suppL(pú)|k. So, as shown in theorem 7,
log m((Xn)N

n=1|h, ◊) = log m̃((Xn)N
n=1|h, ◊) + log rN (h, ◊). define B(v, ÷) to be the ball

of radius ÷ around v in some norm; finally, define Bkl(÷) = {v œ �̃L(pú) | E log pú(L)(X)
pv(X) < ÷}

and, for convenience B(÷) = B(vú
, ÷), for any ÷ > 0.

Theorem 12. With probability 1, for any sequence (hN )N and (◊N )N , possibly dependent on
the data, if hN N

1/4≠‘ æ Œ for an 1/4 > ‘ > 0 and lim inf(log fĩ(vú|hN , ◊N ))/
Ô

N ”= ≠Œ,
then
-

-

-

-

log m̃((Xn)N
n=1|hN , ◊N ) ≠

3

≠NlN (vN ) ≠ 1
2 dim �̃L(pú) log N + log fĩ(vú|hN , ◊N ) + Cvú

4
-

-

-

-

æ 0

for a fixed Cvú dependent only on v
ú.

Proof. First note, calling ek,b the indicator vector at position k, b for some k œ accL(pú), b, b
Õ œ

suppL(pú)|k, the directional derivatives with respect to v

Dek,b≠ek,bÕ
log fĩ(v|h, ◊) =

1
h fk,b(◊) ≠ 1

vk,b
≠

1
h fk,bÕ(◊) ≠ 1

vk,bÕ

are bounded by J/h, for some J > 0 in a neighborhood of v
ú for all ◊.

For an ÷ > 0, define the KL ball

B̂kl(÷) = {v œ �̃L(pú) | vk,b Ø v
ú

k,b(1 ≠ ÷/E|X|) ’k, b}.

Note if v œ B̂kl(÷), then the KL divergence is bounded,

E log p
ú(L)(X)
pv(X) Æ (E|X|) sup

k,b
log

v
ú

k,b

vk,b
Æ ÷

so v œ Bkl(÷). Note

(wk,b)(k,b)œsuppL(pú) ‘æ
3

÷

E|X|wk,b + v
ú

k,b

3

1 ≠ ÷

E|X|

44

(k,b)œsuppL(pú)

is a di�eomorphism from �̃L(pú) to B̂kl so by the change of variables theorem the volume
of B̂kl is (÷/E|X|)dim �̃L(pú) (which comes from the factor multiplying wk,b) times the
volume of �̃L(pú). Finally note that by an application of the triangle inequality, B̂kl(÷) µ
B(2÷diam(�̃L(pú))/E|X|).
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Define the information matrix at ṽ
ú, I = E[D2

l1(ṽú)], and an ‘
Õ
> 0 less than the smallest

eigenvalue of I (I is positive definite by the strict convexity of l0 described in theorem 7).
Also pick an ‘

ÕÕ
<

1
8 ‘

Õ such that B̂kl(‘ÕÕ
÷

2) µ B(÷) for all small ÷. Now define a sequence
÷N = N

≠(1/4≠‘) noting ÷N /hN æ 0. Let |I| denote the determinant of the information
matrix.
-

-

-

-

logm̃((Xn)N
n=1|hN , ◊N ) ≠

3

≠NlN (vN ) ≠ 1
2 dim �̃L(pú) log(2fiN) ≠ 1

2 log |I| + log fĩ(vú|hN , ◊N )
4

-

-

-

-

Æ

-

-

-

-

-

log
A

⁄

�̃L(pú)
e

≠NlN (v)
fĩ(v|hN , ◊N )

B

≠ log
A

⁄

B(÷N )
e

≠NlN (v)
fĩ(v|hN , ◊N )

B
-

-

-

-

-

+

-

-

-

-

-

log
A

⁄

B(÷N )
e

≠NlN (v)
fĩ(v|hN , ◊N )

B

≠ log
A

⁄

B(÷N )
e

≠NlN (v)
fĩ(vú|hN , ◊N )

B
-

-

-

-

-

+

-

-

-

-

-

log
A

⁄

B(÷N )
e

≠NlN (v)
fĩ(vú|hN , ◊N )

B

≠ log
A

⁄

B(vN ,÷N )
e

≠NlN (v)
fĩ(vú|hN , ◊N )

B
-

-

-

-

-

+

-

-

-

-

-

log
A

⁄

B(vN ,÷N )
e

≠NlN (v)
fĩ(vú|hN , ◊N )

B

≠
3

≠NlN (vN ) ≠ 1
2 dim �̂L(pú) log(2fiN) ≠ 1

2 log |I| + log fĩ(vú|hN , ◊N )
4

-

-

-

-

-

Æ log
A

1 +
A

⁄

�̃L(pú)\B(÷N )
e

NlN (vN )≠NlN (v)
fĩ(v|hN , ◊N )

B

/

A

⁄

B(÷N )
e

NlN (vN )≠NlN (v)
fĩ(v|hN , ◊N )

BB

-

-

-

-

-

log
AA

⁄

B(÷N )
e

≠NlN (v) fĩ(v|hN , ◊N )
fĩ(vú|hN , ◊N )

B

/

A

⁄

B(÷N )
e

≠NlN (v)

BB
-

-

-

-

-

+ log
AA

⁄

B(vN ,÷N +ÎvN ≠vúÎ)
e

≠NlN (v)

B

/

A

⁄

B(vN ,÷N ≠ÎvN ≠vúÎ)
e

≠NlN (v)

BB

+

-

-

-

-

-

log
A

(2fi)≠
1
2 dim �̂l(pú)|I|≠1/2

⁄

ÎyÎ<÷N

Ô
N

e
N(lN (vN )≠lN (vN +y/

Ô
N))

B
-

-

-

-

-

Æ exp
A

N sup
Îvú≠vÎ>÷N

(lN (vú) ≠ lN (v))
B

/

A

⁄

B̂kl(‘ÕÕ÷2
N )

e
NlN (vú)≠NlN (v)

fĩ(v|hN , ◊N )
B

+ sup
vœB(÷N )

|log fĩ(v|hN , ◊N ) ≠ log fĩ(vú|hN , ◊N )|

+
A

⁄

B(vN ,÷N +ÎvN ≠vúÎ)\B(vN ,÷N ≠ÎvN ≠vúÎ)
e

≠NlN (v)

B

/

A

⁄

B(vN ,÷N ≠ÎvN ≠vúÎ)
e

≠NlN (v)

B

+

-

-

-

-

-

log
A

(2fi)≠
1
2 dim �̂l(pú)|I|≠1/2

⁄

ÎyÎ<÷N

Ô
N

e
N(lN (vN )≠lN (vN +y/

Ô
N))

B
-

-

-

-

-

.

(15)
The third line in this inequality follows since B(vN , ÷N ≠ ÎvN ≠ v

úÎ) ™ B(vN , ÷N ) fl B(÷N )
and B(vN , ÷N )fiB(÷N ) ™ B(vN , ÷N +ÎvN ≠v

úÎ). First note that the second term is bounded
by J÷N /hN and thus vanishes a.s.. We will show the rest of these terms also vanish a.s..
To analyze the last term, we will use a simplified proof of a Laplace approximation. First
note, given the regularity conditions established in the proof of theorem 7, a.s. vN æ v

ú, and
D

2
lN æ D

2
ElN locally uniformly. Thus, for each y, since ÷N

Ô
N æ Œ, and and ÷N æ 0

(so that if ÎyÎ < ÷N

Ô
N then y/

Ô
N Æ ÷N æ 0), a.s.

ÎyÎ<÷N

Ô
N e

N(lN (vN )≠lN (vN +y/
Ô

N)) =
ÎyÎ<÷N

Ô
N e

≠
1
2 yT D2lN (vÕ

N )y æ e
≠

1
2 yT

Iy
,
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where v
Õ

N is on a ray connecting vN to vN + y/
Ô

N . As well, eventually,

ÎyÎ<÷N

Ô
N e

N(lN (vN )≠lN (vN +y/
Ô

N)) =
ÎyÎ<÷N

Ô
N e

≠
1
2 yT D2lN (vÕ

N )y Æ e
≠

1
4 yT

Iy
.

The right hand side is integrable and takes the form of a Gaussian pdf. Thus, integrating
the Gaussian pdf, the last term of equation 15 goes to 0 a.s. by the dominated convergence
theorem.
To analyze the third term of equation 15, recall from the proof of 7 that lN is convex, so,
the value of ≠NlN is less on the annulus B(vN , ÷N + ÎvN ≠ v

úÎ) \ B(vN , ÷N ≠ ÎvN ≠ v
úÎ)

than on B(vN , ÷N ≠ ÎvN ≠ v
úÎ). Thus, to demonstrate that this term vanishes, it su�ces

to show that ÎvN ≠ v
úÎ/÷N æ 0 a.s.. Recall from the proof of 7 that we showed that a.s.

vN æ v
ú and D

2
lN converges to ED

2
l1 uniformly in a neighborhood of v

ú. Thus, eventually,
recalling the definition of ‘

Õ as less than the minimal eigenvalue of I, and defining t ‘æ vt as
a linear path from vN to v

ú,

ÎDlN (vú)Î = ÎDlN (vú) ≠ DlN (vN )Î =
.

.

.

.

3
⁄ 1

0
dtD

2
lN (vt)

4

(vú ≠ vN )
.

.

.

.

Ø 1
2‘

ÕÎv
ú ≠ vN Î.

On the other hand, defining ek,b as above, |Dek,b≠ek,bÕ
l1(vú)| Æ |X|/ infk,b v

ú

k,b and so,
Dek,b≠ek,bÕ

l1(vú) is subexponential. Recalling EDl1(vú) = DEl1(vú) = 0, using Bernstein’s
inequality (theorem 2.8.1 in Vershynin [76]),

p
ú(|Dek,b≠ek,bÕ

lN (vú)| > ÷
2
N ) Æ C exp(≠C

Õ
N÷

4
N ) Æ C exp(≠C

Õ
N

4‘).

Since
q

Œ

N=1 C exp(≠C
Õ
N

4‘) .
s

Œ

0 dx exp
!

≠C
Õ
x

4‘
"

< Œ, by the Borel-Cantelli lemma,
a.s. eventually, ÎDlN (vú)Î Æ C÷

2
N for some C > 0. Finally, since ÷N æ 0, we have

ÎvN ≠ v
úÎ/÷N æ 0 a.s..

To analyze the first term of equation 15 first note that for small enough ÷N , recalling that
ElN is convex with maximum at v

ú, and by the definition of ‘
Õ, we can Taylor expand around

v
ú and find

sup
Îvú≠vÎ>÷N

(ElN (vú) ≠ ElN (v)) = sup
Îvú≠vÎ=÷N

(ElN (vú) ≠ ElN (v)) Æ ≠1/2‘
Õ
÷

2
N .

We will also show below that a.s. eventually, for all v away from the boundary (i.e. outside a
fixed neighborhood of the boundary), |lN (v) ≠ ElN (v)| <

1
16 ‘

Õ
÷

2
N . For now, assume that this

is the case. So, a.s. eventually, supÎvú≠vÎ>÷N
(lN (vú) ≠ lN (v)) < ≠3/8‘

Õ
÷

2
N , by the triangle

inequality. Having bounded the numerator, we now turn to the denominator. Note that by
equi-continuity, since J÷N /hN is eventually less than log 2, fĩ(v|hN , ◊N ) Ø 1

2 fĩ(vú|hN , ◊N ) for
all v œ B(÷N ). As well, again, by a triangle inequality, a.s. eventually, for all v œ Bkl(‘ÕÕ

÷
2
N ),

lN (vú) ≠ lN (v) Ø ≠‘
ÕÕ
÷

2
N ≠ 1

8 ‘
Õ
÷

2
N Ø ≠ 1

4 ‘
Õ
÷

2
N . Recall that the volume of B̂kl(‘ÕÕ

÷
2
N ) is equal

to C(C Õ
÷

2
N )dim �̂L(pú) for some C, C

Õ
> 0. Then the first term of equation 15 is bounded

above by

2C exp
3

≠1
8‘

Õ
N÷

2
N + 2 dim �̃L(pú) log

!

÷
≠1
N

"

≠ log fĩ(vú|hN , ◊N )
4

for some C > 0. This expression goes to 0 as log fĩ(vú|hN , ◊N )/
Ô

N is bounded below and
thus lim inf log fĩ(vú|hN , ◊N )/N

1/2+2‘ = 0.
We now show that a.s. eventually, for all v away from the boundary, |lN (v)≠ElN (v)| <

1
16 ‘

Õ
÷

2
N .

First write
Dek,b≠ek,bÕ

lN (v) = 1
N

#(k, b)v≠1
k,b ≠ 1

N
#(k, b

Õ)v≠1
k,bÕ

which is almost surely eventually bounded by the strong law of large numbers for all v

away from the boundary of �̃L(pú). The derivatives of ElN with respect to v are similarly
bounded away from the boundary; say the derivatives of both functions are eventually
bounded by J

Õ. Also note that the random variables |l1(v)(X)| Æ C
ÕÕ|X| are uniformly

sub-exponential for all v away from the boundary. The covering number of �̃L(pú) by balls
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of radius 1
64 J

Õ≠1
‘

Õ
÷

2
N is . ÷

≠2 dim �̂L(pú)
N . Say (vi)i are centers of the balls of such a covering.

By uniform sub-exponentiality and Bernstein’s inequality (theorem 2.8.1 in Vershynin [76]),
for small enough ÷N , P (|lN (vi) ≠ ElN (vi)| >

1
32 ‘

Õ
÷

2
N ) . exp(≠CN÷

4
N ) = exp(≠CN

4‘) for
some C > 0. Now, for some C, C

Õ
> 0,

Œ
ÿ

N=0
P (there is a vi such that |lN (vi) ≠ ElN (vi)| >

1
32‘

Õ
÷

2
N )

Æ
Œ

ÿ

N=0

ÿ

i

P (|lN (vi) ≠ ElN (vi)| >
1
32‘

Õ
÷

2
N )

.
Œ

ÿ

N=0
exp

1

≠CN
4‘ ≠ 2 dim �̂L(pú) log ÷N

2

.
Œ

ÿ

N=0
exp

!

≠C
Õ
N

4‘
"

.
⁄

Œ

0
dx exp

!

≠C
Õ
x

4‘
"

< Œ.

(16)

By the Borel-Cantelli lemma, |lN (vi) ≠ ElN (vi)| Æ 1
32 ‘

Õ
÷

2
N for all i a.s. eventually. Thus,

eventually, by the triangle inequality and the a.s. eventual boundedness of the derivatives of
lN and ElN , |lN (v) ≠ElN (v)| Æ 1

16 ‘
Õ
÷

2
N for all v away from the boundary a.s. eventually.

We now focus on the behavior of not just any sequence of hN , ◊N , but rather specifically on
hN , ◊N which maximize the marginal likelihood.3 The next two results both use a proof by
contradiction strategy that relies on the following logic.
Remark 2. Fix h, ◊. We showed in theorem 7 that log rN (h, ◊) = O(log N) a.s. and
we can conclude from theorem 12 that log m̃((Xn)N

n=1 | h, ◊) = ≠NlN (vN ) ≠ O(log(N)).
Thus, m((Xn)N

n=1 | h, ◊) = ≠NlN (vN ) ≠ O(log(N)). On the other hand, for any h
Õ
, ◊

Õ,
log rN (hÕ

, ◊
Õ) Æ 0 and log m̃((Xn)N

n=1 | h
Õ
, ◊

Õ) Æ ≠NlN (vN ). Thus for the maximizers of
m, hN , ◊N , it is a contradiction if log rN (hN , ◊N ) . ≠N

— or log m̃((Xn)N
n=1 | hN , ◊N ) Æ

≠NlN (vN ) ≠ CN
— for any — > 0: say log m̃(hN , ◊N ) Æ ≠NlN (vN ) ≠ N

— . Then, for
some C > 0, ≠C log(N) Æ m((Xn)N

n=1 |h, ◊) + NlN (vN ) Æ m((Xn)N
n=1 |hN , ◊N ) +

NlN (vN ) Æ log m̃((Xn)N
n=1 |hN , ◊N ) + NlN (vN ) Æ ≠CN

— , a contradiction. On the other
hand, say log rN (hN , ◊N ) . ≠N

— . Then ≠C log(N) Æ m((Xn)N
n=1 |h, ◊) + NlN (vN ) Æ

m((Xn)N
n=1 |hN , ◊N ) + NlN (vN ) Æ log rN (hN , ◊N ) Æ ≠C

Õ
N

— , also a contradiction.
Proposition 13. Say (hN )N and (◊N )N are sequences maximizing log m((Xn)N

n=1|hN , ◊N )
for each N . Then a.s. there is no subsequence (hNj )j and (◊Nj )j such that for some ‘ > 0,
hNj N

1/4≠‘
j æ Œ and for some — > 0, lim log fĩ(vú|hNj , ◊Nj )/N

—
j < 0.

Proof. Assume the opposite. Define (vN )N and pick (÷N )N , ‘
Õ as in theorem 12 such that

a.s. eventually, for all v away from the boundary, |lN (v) ≠ ElN (v)| <
1

16 ‘
Õ
÷

2
N , ÷Nj /hNj æ 0,

and infÎvú≠vÎ>÷N
ElN (v) Ø ElN (vN ) + 1

2 ‘
Õ
÷

2
N . Then, eventually,

⁄

B(÷Nj )C

e
≠Nj lNj (v)

fĩ(v|hNj , ◊Nj ) Æ exp
3

≠Nj inf
Îvú≠vÎ>‘

lNj (v)
4

Æ exp
3

≠Nj(lNj (vNj ) + 3
8‘

Õ
÷

2
Nj

)
4

Æ exp
3

≠Nj lNj (vNj ) ≠ 3
8‘

Õ
Nj

1/4
4

.

(17)

3It is not crucial that maximizers of the marginal likelihood exist for any of the result
below: the results below hold assuming only that hN , ◊N are approximate maximizers, i.e.
log m((Xn)N

n=1 | hN , ◊N ) = suph,◊ log m((Xn)N
n=1 | h, ◊) + o(1) or in slightly altered form swapping

the o(1) for oP (1).
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where B(÷Nj )C denotes the complement of B(÷Nj ). On the other hand, by equi-continuity
of the prior density, since ÷Nj /hNj becomes small, for some C > 0
⁄

B(÷Nj )
e

≠Nj lNj (v)
fĩ(v|hNj , ◊Nj ) . exp

!

≠Nj lNj (vNj ) + log fĩ(vú|hNj , ◊Nj ) + dim �̃L(pú) log(÷Nj )
"

Æ exp
1

≠Nj lNj (vNj ) ≠ CNj
— + O(log Nj))

2

(18)
for some C > 0. By remark 2, this completes the proof.

We have so far explored what happens to the marginal likelihood when hN does not converge
quickly to 0, showing that it satisfies a Laplace-like approximation in this case. Next we
show that hN will in fact converge to zero quickly only if the estimated autoregressive model
f(◊N ) converges to the optimal parameter value v

ú.
For a sequence (◊N )N define, for k œ accL(pú), ‡N,k =

q

bœsuppL(pú)|k
fk,b(◊N ) and ⁄N,k =

1 ≠ ‡N,k.
Proposition 14. Say (hN )N and (◊N )N are sequences maximizing log m({Xn}N

n=1|hN , ◊N ).
Then a.s., lim sup hNj N

—
j < Œ for some — > 0 along a subsequence (Nj)j only if fk,b(◊Nj ) æ

v
ú

k,b for all k, b œ suppL(pú).

Proof. Take a subsequence such that: hNj æ 0; hNj N
—
j and hNj Nj both converge, the latter

possibly to Œ; fk,b(◊Nj ) converges for all k, b; and fk,b(◊Nj )/hNj converges, possibly to
Œ, for all k, b. Note since [0, Œ] is compact, every subsequence with lim sup hNj N

—
j < Œ

has a further subsequence with these properties. Thus it will be su�cient to show that
fk,b(◊Nj ) æ v

ú

k,b for all k œ accL(pú), b œ B̃. Now define ⁄k = lim ⁄Nj ,k and ‡k similarly for
all k œ accL(pú).
The proof will proceed in two parts. First we will show that if ⁄k ”= 0 for some k œ acc(pú),
then log rNj (hNj , ◊Nj ) . ≠N

—Õ

j for some —
Õ

> 0. This is a contradiction by remark 2 so
that ⁄k = 0 and ‡k = 1 for all k. Then we will show that if fk,b(◊Nj ) ”æ v

ú

k,b for any
k, b œ suppL(pú), eventually supvœB(÷) log fĩ(v|hNj , ◊Nj ) . ≠N

—ÕÕ

j

!

Îf(◊Nj ) ≠ v
úÎ ≠ ÷

"2
. for

some —
ÕÕ

> 0 for small ÷. Assume this is the case for now. By similar logic to that in equation
17 of proposition 13, for small fixed ÷, it can be seen that for some —

ÕÕÕ
, C, C

Õ
> 0,

log
⁄

B(÷)C

e
≠Nj lNj (v)

fĩ(v|hNj , ◊Nj ) Æ ≠Nj lNj (vNj ) ≠ CN
—ÕÕÕ

.

As well,

log
⁄

B(÷)
e

≠Nj lNj (v)
fĩ(v|hNj , ◊Nj ) Æ ≠ Nj lNj (vNj ) + sup

Îvú≠vÎ<÷
log fĩ(v | hNj , ◊Nj )

Æ ≠Nj lNj (vNj ) ≠ C
Õ
Nj

—ÕÕ

.

using the fact that log fĩ(v|hNj , ◊Nj ) . ≠Nj
—ÕÕ

. This is also a contradiction by remark 2 and
the statement of the theorem follows.
Part one: Assume that for some k

Õ, ⁄kÕ > 0. Performing the Stirling approximation on
the terms of log rNj depends on the behavior of ‡Nj ,k/hNj . Based on the properties of the
subsequence we chose, this quantity converges. If it converges to a number greater than or
equal to 1 we can perform the usual Stirling approximation with O(1) error. On the other
hand, if ‡Nj ,k/hNj has limit less than 1, using the properties of the Gamma function we
write

log �
3

‡Nj ,k

hNj

4

= ≠ log
3

‡Nj ,k

hNj

4

+ log �
3

1 +
‡Nj ,k

hNj

4

=
3

‡Nj ,k

hNj

≠ 1
4

log
3

‡Nj ,k

hNj

4

≠
‡Nj ,k

hNj

+ O(1)
(19)
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where additional O(1) terms were added explicitly in the second line so that the approximation
is similar in form to the usual Stirling approximation with the exception of a 1 in the first
term instead of 1/2. Define “k = 1/2 if the limit of ‡Nj ,k

hNj
is greater than or equal to 1 and 1

otherwise. Finally recall that hNj æ 0 and write

log rNj (hNj , ◊Nj ) =
ÿ

kœaccL(pú)

S

Ulog
�

1

1
hNj

2

�
1

1
hNj

+ #k

2 ≠ log
�

1

‡Nj ,k

hNj

2

�
1

‡Nj ,k

hNj
+ #k

2

T

V

=
ÿ

kœaccL(pú)

C

3

1
hNj

≠ 1
2

4

log
3

1
hNj

4

≠
3

1
hNj

+ #k ≠ 1
2

4

log
3

1
hNj

+ #k

4

≠
3

‡Nj ,k

hNj

≠ “k

4

log
3

‡Nj ,k

hNj

4

+
3

‡Nj ,k

hNj

+ #k ≠ 1
2

4

log
3

‡Nj ,k

hNj

+ #k

4

D

+ O(1)

=
ÿ

kœaccL(pú)

C

≠
⁄Nj ,k

hNj

log(1 + hNj #k)

≠
3

‡Nj ,k

hNj

≠ 1
2

4

log
!

‡Nj ,k

"

+
3

‡Nj ,k

hNj

+ #k ≠ 1
2

4

log
3

‡Nj ,k + #khNj

1 + #khNj

4

D

+
ÿ

kœaccL(pú)
(“k ≠ 1/2) log

3

‡Nj ,k

hNj

4

+ O(1)

=
ÿ

kœaccL(pú)

1
hNj

C

≠ ⁄Nj ,k log(1 + #khNj ) ≠ ‡Nj ,k log(‡Nj ,k)

+
!

‡Nj ,k + #khNj

"

log
3

‡Nj ,k + #khNj

1 + #khNj

4

D

+
ÿ

‡Nj ,k/hNj æ0
(“k ≠ 1/2) log

3

‡Nj ,k

hNj

4

+ O(1)

Æ
ÿ

kœaccL(pú)

1
hNj

C

≠ ⁄Nj ,k log(1 + #khNj ) ≠ ‡Nj ,k log(‡Nj ,k)

+
!

‡Nj ,k + #khNj

"

log
3

‡Nj ,k + #khNj

1 + #khNj

4

D

+ O(1)

(20)

The function

x ‘æ ≠⁄Nj ,k log(1 + x) ≠ ‡Nj ,k log(‡Nj ,k) +
!

‡Nj ,k + x
"

log
3

‡Nj ,k + x

1 + x

4

has intercept 0, and derivative log
1

‡Nj ,k+x

1+x

2

, and is thus convex since the derivative is
increasing (Fig S2). As x æ Œ, the function is ≠⁄Nj ,k log x + O(1) while the function has
tangent x ‘æ x log ‡Nj ,k at x = 0. In our case, we evaluate at x = hNj Nj , which, based on
the chosen subsequence, is either bounded or goes to infinity. First assume hNj Nj is bounded,
say by M , and recall that we assumed ⁄kÕ > 0 for some k

Õ, so ‡kÕ < 1. Then, because the
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Figure S2: Graph of the function evaluated at hNj Nj in black when ‡Nj ,k < 1. The red
line shows the tangent at 0 with slope log(‡Nj ,k) < 0. The blue line shows that in this case,
where ‡Nj ,k < 1, the function may be dominated by some line for all values less than M .
The green line shows that as hNj Nj æ Œ, the function is ≠⁄Nj ,k log(hNj Nj) + O(1).

function is decreasing and eventually has negative derivative at 0, we can eventually bound
it on [0, M ] by a line with negative slope and intercept 0 (Fig S2), so eventually, for some
C, C

Õ
> 0,

log rNl(hNj , ◊nl) Æ ≠C
1

hNj

NjhNj + C
Õ . ≠Nj .

Otherwise hNj Nj æ Œ so, by the above remark about the limits of the function as x æ Œ,

log rNl(hNj , ◊nl) Æ ≠ 1
2hNj

log(hNj Nj)
ÿ

kœaccL(pú)
⁄Nj ,k + C

for some C > 0 eventually. Recalling that hNj N
—
j is eventually bounded above, and by

assumption log(hNj Nj) æ Œ,

log rNl(hNj , ◊Nl) . ≠N
—
j

log(hNj Nj)
hNj N

—
j

max
k

⁄k . ≠N
—
j max

k
⁄k.

This completes part one of the proof.
Part two: Assume Îfk,b(◊Nj ) ≠ ṽkÎ ”æ 0. We will perform the same technique to allow a
Stirling approximation of the prior: define “k,b = 1/2 if the limit of fk,b(◊Nj )/hNj is greater
than or equal to 1 and 1 otherwise. Then, for all v œ �̃L(pú) away from the boundary,
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recalling that we showed in part 1 ‡Nj ,k æ 1 for all k, if fk(◊Nj )
‡Nj ,k

”= vk for some k,

log fĩ(v|hNj , ◊Nj ) =
ÿ

k

log �
3

‡Nj ,k

hNj

4

≠
ÿ

bœsuppL(pú)|k

5

log �
3

1
hNj

fk,b(◊Nj )
4

≠ 1
hNj

fk,b(◊Nj ) log vk,b

6

+ O(1)

=
ÿ

k

3

‡Nj ,k

hNj

≠ 1/2
4

log
3

‡Nj ,k

hNj

4

≠
ÿ

bœsuppL(pú)|k

5 3

1
hNj

fk,b(◊Nj ) ≠ “k,b

4

log
3

1
hNj

fk,b(◊Nj )
4

≠ 1
hNj

fk,b(◊Nj ) log vk,b

6

+ O(1)

=1
2 dim �̃L(pú) log

3

1
hNj

4

≠ 1
hNj

ÿ

k

‡Nj ,kkl
A

fk(◊Nj )
‡Nj ,k

.

.

.

.

.

vk

B

+
ÿ

k,b s.t. “k,b=1

3

“k,b ≠ 1
2

4

log
3

1
hNj

fk,b(◊Nj )
4

+ O(1)

. ≠ 1
hNj

ÿ

k

kl
A

fk(◊Nj )
‡Nj ,k

.

.

.

.

.

vk

B

.

(21)
Now note hNj . N

≠— and for any norm | · |, by Pinsker’s inequality,

ÿ

k

kl
A

fk(◊Nj )
‡Nj ,k

.

.

.

.

.

vk

B

&
ÿ

k

.

.

.

.

fk(◊Nj )
‡Nj ,k

≠ vk

.

.

.

.

2
.

One may check that
!

q

k Î · Î2"1/2 is also a norm and ‡Nj ,k æ 1 for all k, so

ÿ

k

kl
A

fk(◊Nj )
‡Nj ,k

.

.

.

.

.

vk

B

&
.

.f(◊Nj ) ≠ v
.

.

2 + o(1)

for any norm Î · Î. Now note if ÷ < Îf(◊Nj ) ≠ v
úÎ,

sup
vœB(÷)

log fĩ(v|hNj , ◊Nj ) . ≠N
—
j

!

Îf(◊Nj ) ≠ v
úÎ ≠ ÷

"2
.

This concludes part two.

We now have the tools to determine the behavior of hN and f(◊N ) in the well and misspecified
cases.

F.1 The well-specified case

We now examine the asymptotic behavior of empirical Bayes inference for the BEAR model
in the well-specified case, or, more precisely, when the model is well-specified “at resolution
L”, in the sense that there are ◊̃N such that for all k, b œ suppL(pú), fk,b(◊̃N ) æ v

ú

k,b (we say
the model is misspecified at resolution L otherwise). We first show that the misspecification
diagnostic is guaranteed to converge to zero (hN æ 0), correctly indicating that the model is
well-specified, and that the embedded AR model converges to the true transition probabilities
(f(◊N ) æ v

ú). We also give a bound on the rate for the convergence of hN , a power of the
dataset size. We then establish additional weak conditions under which ◊N also converges to
the true value ◊

ú.
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Proposition 15. Say the model is well-specified and (hN )N and (◊N )N are sequences
maximizing log m({Xn}N

n=1|hN , ◊N ). Then hN N
1/4≠‘ æ 0 for every ‘ > 0 and fk,b(◊N ) æ

v
ú

k,b for all k, b œ suppL(pú) with both sequences converging in probability.

Proof. If U is a neighborhood of v
ú and — > 0, proposition 14 shows that

p
ú(hN < N

≠—
, f(◊N ) /œ U) æ 0

(otherwise p
ú(hN < N

≠—
, f(◊N ) /œ U for infinitely many N) > 0). We show below that

p
ú(hN Ø N

≠1/4+‘) æ 0 for any ‘ > 0 and it will thus follow that we also get f(◊) æ v
ú in

probability.
Proposition 13 shows that

p
ú(hN Ø N

≠1/4+‘
, log fĩ(vú|hN , ◊N ) < ≠

Ô
N) æ 0

as hN Æ N
≠1/4+‘ if and only if hN N

1/4≠‘/2 Ø N
‘/2. Thus it is su�cient to show that

p
ú(hN Ø N

≠1/4+‘
, log fĩ(vú|hN , ◊N ) Ø ≠

Ô
N) æ 0.

On this set, we may apply theorem 12, but we will need to control log fĩ(vú|h, ◊).
For any h, ◊, defining “k,b = 1 if 1

h fk,b(◊) < 1 and 1/2 otherwise, and “̂k = 1 if ‡k
h < 1 (where

recall ‡k =
q

bœsuppL(pú)|k
fk,b(◊)) and 1/2 otherwise, by the same derivation as equation 21,

log fĩ(vú|h, ◊) =1
2 dim �̃L(pú) log

3

1
h

4

≠ 1
h

ÿ

k

‡kkl
A

fk(◊)
‡Nj ,k

.

.

.

.

.

v
ú

k

B

+
ÿ

k,b s.t. “k,b=1

3

“k,b ≠ 1
2

4

log
3

1
h

fk,b(◊)
4

≠
ÿ

k, s.t. “̂k=1

3

“̂k ≠ 1
2

4

log
1

‡k

h

2

+ O(1)

(22)

where O(1) is uniform over h or ◊. Since “̂k = 1 only if “k,b = 1 for all b œ suppL(pú)|k, by
the concavity of the log function, the sum of these last two terms is negative. Thus,

log fĩ(vú|h, ◊) Æ 1
2 dim �̃L(pú) log

3

1
h

4

+ C (23)

for all h, ◊ for some C > 0.
Now we derive a lower bound for m̃((Xn)N

n=1|hN , ◊N ). Pick ◊̃j such
that for all k, b œ suppL(pú), fk,b(◊̃j) æ v

ú

k,b. Thus, fĩ(·|h, ◊̃j) æ
r

kœaccL(pú) Dirichlet( 1
h v

ú

k,b)bœsuppL(pú)|k
for any h > 0 in distribution. And as h æ 0,

we also have
r

kœaccL(pú) Dirichlet( 1
h v

ú

k,b)bœsuppL(pú)|k
æ ”vú . So, pick a sequence ◊̃

Õ

j , h̃j

such that fĩ(·|h̃j , ◊̃
Õ

j) æ ”vú in distribution.4 Then log m((Xn)N
n=1|h̃j , ◊̃

Õ

j) æ ≠NlN (vú).
Thus, log m((Xn)N

n=1|hN , ◊N ) Ø ≠NlN (vú). Also recall that from the proof of theorem 7
that, defining ZN = NlN (vn) ≠ NlN (vú), ZN converges in distribution (to a chi-squared
distribution). Since log rN Æ 0 we can write

log m̃((Xn)N
n=1|hN , ◊N ) Ø ≠NlN (vN ) + ZN . (24)

Now, when both hN Ø N
≠1/4+‘

, log fĩ(vú|hN , ◊N ) Ø ≠
Ô

N , applying theorem 12, we’ve
shown that with probability going to 1, for some fixed C > 0,

log m̃((Xn)N
n=1|hN , ◊N ) Æ ≠NlN (vN ) ≠ 1

2 dim �̂L(pú) log N + 1
2 dim �̃L(pú) log

3

1
h

4

+ C.

4Since �̃L(pú) is compact, the set of polynomials with rational coe�cients, (gi)Œ
i=1 is

dense in the space of continuous functions under the infinite norm. Pick h̃j to have
|gi(vú) ≠

s

gid
r

kœaccL(pú) Dirichlet( 1
h v

ú
k,b)bœsuppL(pú)|k

| < 1/j for all i Æ j and then ◊̃
Õ
j to have

|
s

gid
r

kœaccL(pú) Dirichlet( 1
h v

ú
k,b)bœsuppL(pú)|k

≠
s

gidfĩ(·|hj , ◊̃
Õ
j)| < 1/j for all i Æ j.
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Thus, as hN Ø N
≠1/4+‘,

≠1
4 dim �̂L(pú) log N + C Ø ≠ 1

2 dim �̂L(pú) log N + (1/4 ≠ ‘)1
2 dim �̃L(pú) log N + C

Ø log m̃((Xn)N
n=1|hN , ◊N ) + NlN (vN )

ØZN .

(25)
Since ZN converges in distribution, this occurs with vanishing probability.

We have thus far discussed the asymptotic behavior of hN and f(◊N ). To draw conclusions
about ◊N itself, we need to place some assumptions on the autoregressive function f . Here
we provide an example of such assumptions, drawn from the theory of M-estimators, which
say in essence that f must have an isolated peak at ◊

ú. These assumptions are enough to
guarantee that the empirical Bayes estimate of the AR model parameter ◊ converges to the
true value ◊

ú.
Corollary 16. Say ◊

ú œ � and d is a metric on � such that fk,b(◊ú) = v
ú

k,b for all
k, b œ suppL(pú) and for all ” > 0,

0 < inf
d(◊,◊ú)>”

Îf(◊) ≠ v
úÎ.

Then ◊N æ ◊
ú in probability.

Proof. Since by proposition 15 we have Îf(◊N ) ≠ v
úÎ = oP (1), we may apply theorem 5.7 of

van der Vaart [75] to get the result.

Taking a step back, a perhaps surprising aspect of these results is the weak conditions
on f . Were we, instead of trying to diagnose misspecification in the AR model, simply
trying to analyze uncertainty in the AR model’s parameter estimate, we might proceed by
putting a prior on ◊ and performing Bayesian inference for the AR model. In this case, to
guarantee asymptotic normality and well-calibrated frequentist coverage, we would in general
need strong conditions on f , such as bounded third derivatives [47]. Intuitively, the task of
diagnosing misspecification might seem to be harder than describing parameter uncertainty,
but our conditions on f in this section and the next are in fact much weaker, involving no
restrictions on the derivatives of f whatsoever.

F.2 The misspecified case

We now consider the case where the AR model is misspecified at resolution L. In this case,
we can rewrite the marginal likelihood of the BEAR model (using propositions 13 and 14 to
apply theorem 12) as

log m((Xn)N
n=1|hN , ◊N ) = ≠NlN (vN ) ≠ 1

2 dim �̃L(pú) log N + Cvú ≠ LN (hN , ◊N ) + o(1)

where we define LN (hN , ◊N ) = ≠ log fĩ(vú|h, ◊) ≠ rN (h, ◊).5 This expression for the marginal
likelihood takes the form of a modified Laplace approximation where, instead of the original
prior fi evaluated at the true parameter value, we have the prior over the support of the
data, fĩ(vú|h, ◊), as well as the additional term rN , which is O(log N) rather than O(1)
and depends on the concentration of the prior outside the support of the data. Instead of
the standard empirical Bayes behavior described by Petrone et al. [54], wherein the prior
probability of the true parameters is maximized, we instead heuristically expect that the
objective function LN (h, ◊) is minimized. The following result makes this intuition formal,
showing that hN and ◊N indeed behavior similarly to the minimizers of LN .
Corollary 17. If the model is misspecified at resolution L, a.s. LN (hN , ◊N ) =
suph,◊ LN (h, ◊) ≠ o(1).

5LN is stochastic due to rN , but since hN N
— æ Œ for any — > 0, using the expansion in

equation 20, one may show that the #k in rN can be replaced with NE#k incurring only a penalty
of OP (N≠1/2+‘).
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Proof. Say ĥN , ◊̂N are sequences such that LN (ĥN , ◊̂N ) = suph,◊ LN (h, ◊) ≠ o(1). For
fixed h, ◊, we have LN (h, ◊) = O(log N). Thus, for any — > 0 we clearly have
lim inf(log fĩ(vú | ĥN , ◊̂N ))/N

— Ø 0 and since we are in the misspecified case, following
the logic of proposition 14, equation 20 may be used to see that we also have ĥN N

— æ Œ.
Thus theorem 12 may be applied to ĥ, ◊̂ and a comparison of the Laplace approximations of
m((Xn)N

n=1|ĥN , ◊̂N ) and m((Xn)N
n=1|hN , ◊N ) gives the result.

We next examine in greater detail the behavior of the misspecification diagnostic hN , along
with the AR parameter estimate ◊N . There are two cases to consider. First, if the support of
the AR model matches the support of the data-generating distribution (that is, supp(f(◊)) =
suppL(pú) for all ◊), then rN = 0 and LN = ≠ log fĩ(vú|h, ◊); we thus recover the standard
empirical Bayes behavior of Petrone et al. [54], with hN and ◊N asymptotically maximizing
the prior probability of the true parameter value. In this case we find that hN converges to
a finite positive value. The second case to consider is when suppL(pú) ( supp(f(◊)). Here,
we have rN ”= 0, and in particular rN (h, ◊) ¥ ≠ 1

h log(N)
q

k ⁄k(◊). In this case we find that
hN æ Œ. Thus, in either case, hN ”æ 0, and so hN will correctly diagnose misspecification
in the AR model.
Corollary 18. If the model is misspecified at resolution L but supp(f(◊)) = suppL(pú) for
all ◊, hN is eventually bounded above and below.

Proof. Recall from proposition 14 that if h æ 0, log fĩ(vú|h, ◊) Æ ≠C
1
h inf◊ Îf(◊) ≠ v

úÎ for
some C > 0. This expression diverges to ≠Œ as h æ 0. We also showed in proposition
15 that log fĩ(vú|h, ◊) Æ 1

2 dim �̃L(pú) log(1/h) + C for some C > 0. This expression also
diverges as h æ Œ. Combining these two observations along with corollary 17 we get the
result.

To say something about ◊N , due to corollary 17, we may use the theory of extremum
estimators we can apply theorem 5.7 of van der Vaart [75], replacing limits in probability
with a.s. limits to get
Corollary 19. Say the model is misspecified at resolution L but supp(f(◊)) = suppL(pú)
for all ◊. Say also that ◊

ú œ �, h
ú

> 0 and d is a metric on � such that for every ” > 0,

log fĩ(vú|hú
, ◊

ú) > sup
|h≠hú|‚d(◊,◊ú)>”

log fĩ(vú|h, ◊).

Then ◊N æ ◊
ú and hN æ h

ú a.s..

Now we consider the case where the support do not match, i.e. inf◊ maxk ⁄k(◊) > 0, where
⁄k(◊) =

q

b/œsuppL(pú)|k
fk,b(◊).

Proposition 20. If the model is misspecified at resolution L, suppL(pú) ( supp(f(◊)) for
all ◊, and inf◊ maxk ⁄k(◊) > 0, then hN æ Œ.

Proof. We first show hN is a.s. bounded below. Since hN N
— æ Œ for all — > 0, if

hNj æ 0 for some subsequence, we showed in proposition 14 that a.s. log rNj (hNj , ◊Nj ) Æ
≠C

log(hNj Nj)
2hNj

inf◊ maxk ⁄k,◊ + C
Õ Æ ≠C

ÕÕ log(Nj)
2hNj

inf◊ maxk ⁄k,◊ + C
Õ for some C, C

Õ
, C

ÕÕ
> 0.

In particular, log rNj . ≠O(log(N)) but log rNj ”≥ ≠O(log(N)) if hNj æ 0. Thus, since
log rN (h, ◊) Ø ≠C log(N) for fixed h, ◊, for some C > 0 dependent on h, ◊ and fĩ also diverges
as h æ 0, the assumption that hN maximizes the marginal likelihood is contradicted. Thus,
hN ”æ 0. In particular, we showed in proposition 15 (equation 23) that log fĩ(vú|h, ◊) Æ
1
2 dim �̃L(pú) log(1/h) + C for some C > 0 so we get that log fĩ(vú|hN , ◊N ) is bounded above
a.s..
Assume hN is bounded above; we will show that this leads to a contradiction. Define
“N,k = 1/2 if ‡k(◊N )/hN Ø 1 and “N,k = 1 otherwise. Define “̂N,k similarly for 1/hN alone.
We next perform the same trick as in proposition 14, expanding �( 1

hN
) in the form of a
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Stirling approximation, to analyze rN further. Noting that log(hN N) æ Œ, we have a.s.,

log rN (hN , ◊N ) =
ÿ

kœaccL(pú)

1
hN

C

≠ ⁄k(◊N ) log(1 + #khN ) ≠ ‡N,k log(‡k(◊N ))

+ (‡k(◊N ) + #khN ) log
3

‡k(◊N ) + #khN

1 + #khN

4

D

+
ÿ

kœaccL(pú)
(“N,k ≠ 1/2) log

3

‡k(◊N )
hN

4

≠
ÿ

kœaccL(pú)
(“̂N,k ≠ 1/2) log

3

1
hN

4

+ O(1)

= ≠ log(hN N)
hN

ÿ

kœaccL(pú)

C

⁄k(◊N ) + o(1)
D

+
ÿ

kœaccL(pú)
(“N,k ≠ 1/2) log

3

‡k(◊N )
hN

4

≠
ÿ

kœaccL(pú)
(“̂N,k ≠ 1/2) log

3

1
hN

4

+ O(1).

(26)

Note “̂N,k = 1 only if “N,k = 1 so that the the sum of these last two terms is negative. So, since
hN is bounded above, log rN (hN , ◊N ) Æ ≠C log(N) inf◊ maxk ⁄k(◊) for some C > 0. Thus,
since we also have that log fĩ(vú|hN , ◊N ) is bounded above a.s., we get that LN (hN , ◊N ) &
log(N) a.s.. On the other hand, with fixed ◊, if ĥN æ Œ (so we still have log(hN N) æ Œ),
then

log rN (ĥN , ◊) = ≠ log(N)
ĥN

ÿ

kœaccL(pú)

C

⁄k(◊) + o(1)
D

+ 1
2

ÿ

kœaccL(pú)
log (‡k(◊)) + O(1)

which is ≠o(log N), where we wrote log(ĥN )/ĥN = o(1). Now pick ĥN increasing slowly
so that LN (ĥN , ◊) = o(log(N)). This is eventually less than LN (hN , ◊N ), a contradiction.
Thus, hN æ Œ.

We can also study the behavior of ◊N in this mismatched supports case, using again the
theory extremum estimators. We briefly outline the strategy, omitting details. Further
analysis of equations 22 and 26 gives an objective, as h æ Œ, 6

L(h, ◊) = ≠ log(N)
h

A

ÿ

k

⁄k + o(1)
B

≠dim �̃L(pú) log h+(1+o(1))
ÿ

k,bœsuppL(pú)
log(fk,b(◊))+C+o(1)

for some fixed C > 0. Careful analysis of the o(1) terms shows that h approaches log(N)
q

k
⁄k

dim �̃L(pú) .
Plugging this value of h in, the objective becomes

L(h, ◊) = ≠ dim �̃L(pú) log
ÿ

k

⁄k +
ÿ

k,bœsuppL(pú)
log(fk,b(◊)) + CN + o(1)

for some constant CN dependent only on N and p
ú. One can then see that ◊N is an M-

estimator of dim �̃L(pú) log
q

k ⁄k +
q

k,bœsuppL(pú) log(fk,b(◊)) and apply a similar analysis
as in corollary 19.
So far we have seen that hN ”æ 0 when the AR model is misspecified at resolution L, but
exactly what value will hN take and what can it tell us about the amount of misspecification?

6Note that the KL term in fĩ can be dominated by
q

k,bœsuppL(pú) log(fk,b(◊)).
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Here we analyze the objective LN heuristically to address these questions. From the
expansions in proposition 14, we can write, for reasonable values of h, ◊, assuming not too
much misspecification,

log fĩ(vú|h, ◊) ¥ 1
2 dim �̃L(pú) log

3

1
h

4

≠ 1
h

ÿ

kœaccL(pú)
kl(fk(◊)Îv

ú

k)

log rN (h, ◊) ¥ ≠ log(N)
h

ÿ

kœaccL(pú)
⁄k(◊).

We see, then, that ◊N and hN depend on an unconventional but valid divergence between
the AR model and p

ú(L): the sum of the KL divergence between the AR model transition
probabilities (from kmers that occur with non-zero probability) and the true transition
probabilities, plus a penalty proportional to log(N) when the support of the AR model
does not match the support of p

ú. We can thus interpret hN not only as a diagnostic of
misspecification, but also as a measurement of the amount of misspecification, and make
comparisons between di�erent AR models on the basis of their hN values.

G Hypothesis testing

In this section we use the results of the above sections to develop goodness-of-fit and two
sample tests.

G.1 Goodness-of-fit test

Say p
ú is a distribution on S with E|X|2 < Œ and say X1, X2, · · · ≥ p

ú iid. Say p̃ is another
distribution on S with E log2

p̃(X) < Œ where the expectation is with respect to p
ú. We are

interested in testing whether or not p
ú = p̃, so we will consider the Bayes factor

BFL = p̃(Xn)N
n=1

p((Xn)N
n=1 | ML)

.

This test asks whether or not p̃ approximates p
ú at least as well as the optimal model in

ML. We can use it in particular to test whether p̃ matches the data-generating distribution
p

ú at resolution L, that is, whether p̃ matches p
ú(L).

Proposition 21. Given L, consider a Dirichlet(–k,b)bœB̃
prior on the simplex in �B

o
L

B̃

corresponding to the L-mer k. For all L, assume –k,b > 0 for (k, b) œ suppL(pú) (otherwise
p((Xn)N

n=1|ML) is eventually 0 a.s.). Then if p̃ ”= p
ú(L),

log BFL = N(kl(pú||pú(L)) ≠ kl(pú||p̃)) + OP (
Ô

N),

which goes to Œ in probability if kl(pú||pú(L)) > kl(pú||p̃) and to ≠Œ in probability if
kl(pú||pú(L)) < kl(pú||p̃). If p̃ = p

ú(L)

log BFL = 1
2 dimeff

L (pú) log N + OP (1),

which goes to Œ in probability.

Proof. Note that as shown in the proof of theorem 7, kl(pú||ML) = kl(pú||pú(L)), and

log p((Xn)N
n=1|ML) = log p

ú(L)((Xn)N
n=1) ≠ 1

2 dimeff
L (pú) log N + OP (1). (27)

As well, p̃(Xn)N
n=1 = NE log p̃(X) + OP (

Ô
N) and a similar expression can be written for

p
ú(L). These two facts prove the result.

Remark 3. One may also consider a Bayes factor that integrates over many L:

BF = p̃(Xn)N
n=1

qL̃
L=1 fi(L)p((Xn)N

n=1 | ML)
=

Q

a

L̃
ÿ

L=1
fi(L)BF≠1

L

R

b

≠1
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for a prior fi with fi(L̃) > 0. By proposition 21, this Bayes factor goes to 0 if kl(púÎp
ú(L̃)) <

kl(púÎp̃) and goes to Œ if kl(púÎp
ú(L̃)) > kl(púÎp̃) or p̃ = p

ú(L̃) (this later condition is
implied by p̃ = p

ú(L) for some L Æ L̃ and kl(púÎp
ú(L)) = kl(púÎp̃)). Thus this Bayes factor

has the same asymptotics as BFL̃.

G.2 Two-sample test

To set up the two-sample testing problem, consider two distributions p1 and p2 on S such
that Epj |X|2 < Œ for j œ {1, 2}. We will assume that the two groups of datapoints are
sampled together according to a mixture model with observed labels. That is, let j1, j2, . . .

be observed Bernoulli iid random variables indicating the group, with jn = 1 with probability
— and jn = 2 with probability 1 ≠ — for a 0 < — < 1. Then, let Xn ≥ pjn independently. The
pooled dataset thus follows the generative process X1, X2, · · · ≥ p

ú = —p1 + (1 ≠ —)p2 iid.
We are interested in whether or not p1 ”= p2. To make this question theoretically tractable,
we will fix the lag L, and attempt only to discern whether p

(L)
1 ”= p

(L)
2 where p

(L)
j is the

best approximation to pj in ML (as defined in section E). In other words, we attempt to
distinguish between p1 and p2 only up to a "resolution", in analogy to Holmes et al. [30]. We
thus consider the Bayes factor

BFL = p((Xn)N
n=1|(jn)N

n=1, p1 = p2 and p1, p2 œ ML)
p((Xn)N

n=1|(jn)N
n=1, p1 ”= p2 and p1, p2 œ ML)

= p((Xn)N
n=1|ML)

p((Xn)nÆN,jn=1|ML)p((Xn)nÆN,jn=2|ML) .

(28)

In the subsequent remark, we also extend the theory to Bayes factors that integrate over all
L up to some fixed maximum.

Consider independent Dirichlet(–k,b)bœB̃
priors on the simplexes in �B

o
L

|B̃|
corresponding to

the L-mers k. Assume –k,b > 0 for (k, b) œ suppL(pú) = suppL(p1) fi suppL(p2).

Proposition 22. If p
(L)
1 ”= p

(L)
2 ,

log BFL = N

C

—Ep1 log p
ú(L)(X)

p
(L)
1 (X)

+ (1 ≠ —)Ep2 log p
ú(L)(X)

p
(L)
2 (X)

D

+ OP (
Ô

N)

æ ≠Œ as N æ Œ.

(29)

Otherwise p
(L)
1 = p

(L)
2 and

log BFL = 1
2 dimeff

L (pú) log N + OP (1)

æ Œ as N æ Œ.

(30)

Proof. First note that as shown in the proof of theorem 7, noting |{n|jn = j}| /N = OP (1),

log p((Xn)N
n=1|ML) = log p

ú(L)((Xn)N
n=1) ≠ 1

2 dimeff
L (pú) log N + OP (1)

log p((Xn)nÆN,jn=j |ML) = log p
(L)
j ((Xn)nÆN,jn=j) ≠ 1

2 dimeff
L (pj) log N + OP (1)

(31)

for j œ {1, 2}. As well, log p
ú(L)((Xn)N

n=1) = NE log p
ú(L)(X) + OP (

Ô
N) by our assumption

on the moments Epj |X|2 < Œ and similar expressions exist for p1 and p2. Finally note that

arg min
vœ�

Bo
L

B̃

kl(pú||pv) = arg maxEpú log pv(X)

= arg max —Ep1 log pv(X) + (1 ≠ —)Ep2 log pv(X).
(32)

Thus, if p
(L)
1 = p

(L)
2 then p

(L)
1 = p

(L)
2 = p

ú(L).
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First assume p
(L)
1 ”= p

(L)
2 . So, we have

log BFL = NEpú log p
ú(L) ≠ —NEp1 log p

(L)
1 (X) ≠ (1 ≠ —)NEp2 log p

(L)
2 (X) + OP (

Ô
N)

= N

C

—Ep1 log p
ú(L)

p
(L)
1

+ (1 ≠ —)Ep2 log p
ú(L)

p
(L)
2

D

+ OP (
Ô

N).

(33)
Note Ep1 log pú(L)

p(L)
1

= kl(p1||p(L)
1 ) ≠ kl(p1||pú(L)) Æ 0 by the definition of p

(L)
1 . Since p

(L)
1 ”=

p
(L)
2 , at least one of Ep1 log pú(L)

p(L)
1

,Ep2 log pú(L)

p(L)
2

must be negative and so log BFL æ ≠Œ.

Now say p
(L)
0 = p

ú(L) = p
(L)
1 . In this case,

log BFL = 1
2 dimeff

L (pú) log N + OP (1).

Clearly log BFL æ Œ.

Remark 4. One may also consider a Bayes factor that integrates over many lags:

BF =
qL̃

L=1 fi(L)p((Xn)N
n=1|ML)

1

qL̃
L=1 fi(L)p((Xn)nÆN,jn=1|ML)

2 1

qL̃
L=1 fi(L)p((Xn)nÆN,jn=2|ML)

2 .

By theorem 7, for all three sums, eventually either (a) assuming the condition for consistency
in corollary 11 the term corresponding to the smallest L such that p

ú œ ML will dominate, if
p

ú œ ML̃, or (b) the term corresponding to L̃ will dominate, if p
ú

/œ ML̃. Thus, by analysis
similar to that of proposition 22, in any case, we have equation 29 with L replaced by L̃, so
that the Bayes factor goes to 0 if p

(L̃)
1 ”= p

(L̃)
2 . If, on the other hand, we have p

(L̃)
1 = p

(L̃)
2 ,

then there are two cases: p1 = p2 œ MLú for some L
ú Æ L̃ (and L

ú is picked to be the
smallest such lag), or p1, p2 /œ ML̃. In the first case, p

ú œ MLú so the asymptotics of BF are
identical to that of BFLú and we can refer to proposition 22 to see that the Bayes factor goes
to Œ. In the second case, we may still have p

ú œ MLú for some minimal L
ú Æ L̃; if p

ú is not
a Markov model with lag Æ L̃, call L

ú = L̃. In this case, by the analysis of proposition 22,

log BF =
3

dime�
L̃ (pú) ≠ 1

2 dime�
Lú(pú)

4

log N + OP (1) æ Œ.

Thus the asymptotics of this integrated Bayes factor are identical to that of BFL̃.

H Consistency in the infinite L case

So far we have only studied consistency in the finite lag L case, that is, our results only show
that we can approximate p

ú up to some finite resolution L (corresponding to the largest
available lag). In this section, we develop frequentist and Bayesian consistency results for
the fully nonparametric model, that is, we allow for priors with support over all lags L

up to infinity, and show that we can approximate p
ú itself even if p

ú
/œ M. The Bayesian

consistency result is our main result, and the most practically useful, but the frequentist
result is a natural first step toward the Bayesian result, and an opportunity to develop novel
constructions (such as the projection algorithm in section H.2) useful in proving the Bayesian
result.

H.1 Frequentist consistency

We first show that maximum likelihood estimation is consistent, using the method of sieves
described in Geman and Hwang [22]. The idea is to increase the size of the model class
with the amount of data N slowly enough to avoid over-fitting. We define the model
class considered for N data points first with the lag L, but also by restricting transition
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probabilities to be bounded below by a ‹: In particular, when there are N datapoints, the
model class we consider, or the N -th "sieve", is SN = {v œ �

B
o
LN

B̃
| ’k, b, vk,b Ø ‹N } where

(‹N )Œ

N=1, (LN )Œ

N=1 are sequences with LN æ Œ, ‹N æ 0.
Theorem 23. Say X1, X2, · · · ≥ p

ú iid where p
ú is a subexponential distribution on S. Say

pvN is a maximum likelihood distribution with vN œ SN given (Xn)N
n=1. pvN æ p

ú and
kl(pú||pvN ) æ 0 a.s. if for some ‘ > 0,

|suppLN
(pú)|(log

!

‹
≠1
N

"

)1+‘

N
æ 0. (34)

Proof. The proof follows that of theorem 3 of Geman and Hwang [22].
First note that SN is compact and the likelihood function is continuous so a maximum
likelihood vN always exists. This satisfies condition C1 of theorem 2 of Geman and Hwang
[22].
Next, to satisfy condition C2 (b) of theorem 2 of Geman and Hwang [22] we show that
there are ṽN œ SN such that kl(pú||pṽN ) æ 0. First, for each L, pick a distribution p

L on
S such that for all |X| Æ L, p

L(X) > 0 and kl(pú||pL) æ 0 as L æ Œ (for example, pick
p

L(|X| > L) = p
ú(|X| > L), p

L(·||X| > L) = p
ú(·||X| > L) and p

L(·||X| Æ L) positive with
kl(pú(·||X| Æ L)||pL(·||X| Æ L)) < 1/L). p

L
L as defined in proposition 3 is a lag L Markov

model with positive transition probabilities. Thus, for large N , its transition probabilities
are in SN . Now notice,

kl(pú||pL
L) =E

5

log
3

p
ú(X)

pL
L(X)

4

; |X| Æ L

6

+ E
5

log
3

p
ú(X)

pL
L(X)

4

; |X| > L

6

=E
5

log
3

p
ú(X)

pL(X)

4

; |X| Æ L

6

+ E
5

log
3

p
ú(X)

pL(X1:L . . . )|B̃|≠(|X|≠L)

4

; |X| > L

6

ÆE
5

log
3

p
ú(X)

pL(X)

4

; |X| Æ L

6

+ E
5

log
3

p
ú(X)

pL(X)|B̃|≠(|X|≠L)

4

; |X| > L

6

=kl(pú||pL) +
!

log |B̃|
"

E [|X| ≠ L; |X| > L]
æ0 as L æ Œ as E|X| < Œ.

(35)

Now we can pick ṽN œ Sn such that kl(pú||pṽN ) æ 0.
That kl(pú||pN ) æ 0 implies pN æ p for distributions pN on S follows from Pinsker’s
inequality. This satisfies condition C2 (a) of theorem 2 of Geman and Hwang [22]. However,
note that the proof of theorem 2 of Geman and Hwang [22] also shows that if vN is an MLE
in SN and the conditions of the theorem hold, then kl(pú||pvN ) æ 0 a.s..
Finally, we define a partition of each SN that satisfies conditions i-iii of theorem 2 of Geman
and Hwang [22] to get the result. Pick a sequence flN æ 0 with log

!

‹
≠1
N

"

> (log(1 + flN ))≠1

eventually. Call N the set of positive integers and for a ’ œ NsuppLN
(pú), define

ÔN (’) := {v œ SN | ’(k, b) œ suppLN
(pú), (1 + fln)’k,b‹N > vk,b Ø (1 + flN )’k,b≠1

‹N }

so that fi
’œNsuppLN

(pú)ÔN (’) = SN (Fig. S3). Call “N =
3

log(‹≠1
N )

log(1+flN ) + 1
4

and note (1 +

flN )“N ≠1
‹N = 1. Thus the number of choices of ’ that give non-empty sets, call this #ÔN ,

is bounded above by “
|suppLN

(pú)|

N . Now notice eventually

“N =
log

!

‹
≠1
N

"

log(1 + flN ) + 1 Ø
!

log
!

‹
≠1
N

""2 + 1 Ø
!

log
!

‹
≠1
N

""4
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Figure S3: Sieves SN are broken up into subsets ÔN (’), each a Cartesian product of subsets
of �

B̃
, and these subsets in turn are indexed by ’k for each k. Here we illustrate one such

subset of �
B̃

, when |B̃| = 3 and suppLN
(pú)|k = B̃. The region included in ÔN (’) when

’k = (2, 3, 3) is shown in solid gray, while all other possible subsets for di�erent values of
’k are shown in white. The region adjacent to the border of the simplex (hatched lines)
corresponds to those transition vectors that have components less than ‹N and are therefore
not part of the sieve SN .

so that #ÔN Æ exp
!

4
!

log log
!

‹
≠1
n

""

|suppLn
(pú)|

"

.

Say ÷ > 0 and, picking a ’ œ NsuppLN
(pú), define

ON (’) = {v œ ÔN (’)| kl(pú||pṽN ) ≠ kl(pú||pv) = E log
3

pv(X)
pṽN (X)

4

Æ ≠÷}

„’(t) = E exp
3

t log
3 supvœON (’) pv(X)

pṽN (X)

44

.

Note „’(t) Æ E exp(t|X|(log
!

‹
≠1
N

"

)) which is finite for small enough t by assumption. „’

and the bound E exp(t|X|(log
!

‹
ú≠1
n

"

)) are partition functions for exponential families so,
since they are finite for small t, they are C

Œ with derivatives obtained by exchanging
di�erentiation and integration for small t by theorem 4.5 of van der Vaart [75]. In particular,
for t < Cpú/(log

!

‹
≠1
N

"

) for some Cpú that depends on p
ú, defining another constant that

depends on p
ú, C

Õ
pú < Œ,

„
ÕÕ

’ (t) =E
C

3

log
3 supvœON (’) pv(X)

pṽN (X)

442

exp
3

t log
3 supvœON (’) pv(X)

pṽN (X)

44

D

Æ(log
!

‹
≠1
N

"

)2E
#

|X|2 exp
!

t|X|(log
!

‹
≠1
N

"

)
"$

ÆC
Õ

pú(log
!

‹
≠1
N

"

)2
.

(36)
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As well, for any v1, v2 œ ÔN (’), for all (k, b) œ suppLN
(pú), | log (v1,k,b/v2,k,b) | < log(1 +

flN ) < flN . Thus, for all v œ ON (’), since if p
ú(X) > 0 then all LN -mer-base transitions in

X are in suppLN
(pú), E log

1 supvœON (’) pv(X)
pv(X)

2

< flNE|X|. So, defining C
ÕÕ
pú = E|X|,

„
Õ

’(0) = E log
3 supvœON (’) pv(X)

pv(X)

4

+ E log
3

pv(X)
pṽN (X)

4

< flN C
ÕÕ

pú ≠ ÷. (37)

Putting things together we get, for small t,

„’(t) Æ 1 + t(flN C
ÕÕ

pú ≠ ÷) + 1
2 t

2
C

Õ

pú(log
!

‹
≠1
N

"

)2
. (38)

Picking t = 2(log
!

‹
≠1
N

"

)≠(1+‘) for some ‘ > 0 gives, for large enough N , for any ’, „’(t) Æ
1 ≠ ÷/(log

!

‹
≠1
N

"

)1+‘ Æ exp(≠÷/(log
!

‹
≠1
n

"

)1+‘). Finally note that

(log
!

‹
≠1
N

"

)1+‘

N1≠‘Õ
=

A

(log
!

‹
≠1
N

"

)(1+‘)/(1≠‘Õ)

N

B1≠‘Õ

æ 0

by equation 34 if ‘, ‘
Õ are small enough. Now write, for large N

Õ and positive constants
‘

ÕÕ
, C, C

Õ
, C

ÕÕ,

Œ
ÿ

N>N Õ

1

#ÔN

2

A

sup
’

inf
t>0

„’(t)
BN

Æ
ÿ

N

exp
A

4
!

log log
!

‹
≠1
N

""

|suppLN
(pú)| ≠ N÷

!

log
!

‹
≠1
N

""1+‘

B

Æ
ÿ

N

exp
A

≠ N÷
!

log
!

‹
≠1
N

""1+‘

Q

a1 ≠ C
|suppLN

(pú)|
!

log
!

‹
≠1
N

""1+‘ÕÕ

N

R

b

B

Æ
ÿ

N

exp
A

≠ N
‘Õ

C
Õ

B

Æ
⁄

Œ

0
dx exp

1

≠C
ÕÕ
x

‘Õ
2

=‘
Õ≠1

C
ÕÕ≠1/‘Õ

⁄

Œ

0
dxx

1/‘Õ
≠1 exp (≠x)

=‘
Õ≠1

C
ÕÕ≠1/‘Õ

�(1/‘
Õ)

<Œ
(39)

using the assumptions of the theorem and replacing ‘ by ‘
ÕÕ to absorb log log

!

v
≠1
n

"

(note
one can make ‘, ‘

Õ
, ‘

ÕÕ as close to 1 as desired). This shows that all conditions of theorem 2
of Geman and Hwang [22] are satisfied.

Remark 5. To pick viable (LN )N , (‹N )N , note |suppLN
(pú)| Æ |B̃||Bo

LN
|, so, since

|Bo
N | =

Ln
ÿ

l=0
|B|l = |B|LN +1 ≠ 1

|B| ≠ 1 Æ |B|LN +1
,

we have |suppLN
(p)| . |B|LN . Thus, as an example, for c1, c2 > 0 such that 1 > c1 + c2,

LN = Ác1 log N/ log |B|Ë and ‹N = e
≠Nc2 satisfy condition 34. We can see that without

any a priori knowledge of |suppLN
(pú)| we are forced to pick a very slow growing sequence

(LN )N , and thus it is likely that are model class is too conservative for p
ú whose support

have cardinality far from the upper bound. By adapting LN to the content of the data in
addition to its cardinality, the Bayesian approach described in section H.3 does not su�er
from this conceptual issue.

45



H.2 The projection algorithm

Fix L and ‹ for this section and define S = {v œ �B
o
L

B̃
| vk,b Ø ‹ ’ k, b}. Given data

X1, . . . , XN , any maximum likelihood estimate (MLE) in ML, v, has, for every L-mer k that
is seen in the data, vk,b = #(k, b)/

!

q

bÕœB̃
#(k, b

Õ)
"

where #(k, b) is the number of times k

is seen in the data immediately preceding b. If v̄ is a MLE in S, it will be shown that for
each L-mer k that is seen in the data, (v̄k,b)bœB̃

is equal to a "projection" of (vk,b)bœB̃
onto

the smaller simplex {vk œ �
|B̃|

| vk,b Ø ‹ ’b}. This projection is defined in algorithm 2, and
the rest of this section will be devoted to its properties, including continuity, bounds, and
proof of the above statement in proposition 28. Some of these bounds will be used to prove
the consistency of nonparametric Bayesian inference in section H.3. For ease of exposition,
we will first present a conceptually simpler version of the projection algorithm, algorithm 1.

Algorithm 1 Projection algorithm I
Input : Non-negative numbers (ub)bœB̃

, with
q

bœB̃
ub > 0, and a positive number ‹ Æ 1/|B̃|.

Output: (ūb)bœB̃
such that

q

bœB̃
ūb = 1 and ūb Ø ‹ for all b.

1: ū
(0)
b Ω ub/(

q

bÕœB̃
ubÕ)

2: B
(0) Ω |{b | ū

(0)
b Æ ‹}|

3: i Ω 1
4: while there exists a b with ū

(i≠1)
b < ‹ do

5: for b œ B̃ do
6: if ū

(i≠1)
b Æ ‹ then

7: ū
(i≠1)
b Ω ‹

8: else
9: ū

(i≠1)
b Ω

!

1 ≠ B
(i≠1)

‹
"

ub/(
q

bÕ | ū(i≠1)
bÕ

>‹
ubÕ).

10: B
(i) Ω |{b

Õ | ū
(i)
bÕ Æ ‹}|

11: i Ω i + 1
12: for b œ B̃ do
13: ūb Ω ū

(i≠1)
b

Proposition 24. Say algorithm 1 is applied to non-negative numbers (ub)bœB̃
with

q

b ub > 0.
Define (ūb)b, ((ū(i)

b )b)i and (B(i))i as in the algorithm. Say the algorithm terminates at step
I.

1) For all i,
q|B̃|

b=1 ū
(i)
b = 1.

2) If (ub)b are scaled by a positive constant, the output (ūb)b remains the same.

3) Say (v̄(i)
b )b is the i-th iteration of algorithm 1 with input (ū(j)

b )b. (v̄(i)
b )b = (ū(j+i)

b )b.

4) I < |B̃|. The algorithm remains unchanged if the while loop were replaced by "for
i = 1, . . . , |B̃| ≠ 1 do".

5) ūb Ø (1 ≠ (|B̃| ≠ 1)‹)ū(0)
b .

Proof. Results 1 and 2 are clear. For 3, note that if both ū
(j)
b and ū

(j)
bÕ are greater than ‹,

then ū
(j)
b /ū

(j)
bÕ = ub/ubÕ . Thus, if ū

(j)
b > ‹,

ū
(j+1)
b =

1

1 ≠ B
(j)

‹

2

ū
(j)
b /

Q

c

a

ÿ

bÕ | ū(j)
bÕ

>‹

ū
(j)
bÕ

R

d

b

= v̄
(1)
b .

Similar logic may be used to show (v̄(2)
b )b = (ū(j+2)

b )b and so on.

To see 4, notice that for every i Æ I, at least one b has ū
(i)
b = ‹ while ū

(i≠1)
b < ‹. Thus,

(B̂(i))I
i=0 := (|{b

Õ | ū
(i)
bÕ Æ ‹}|)I

i=0 is a strictly increasing sequence. B̂
(i) Æ |B̃| as ‹ Æ 1/|B̃|.
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If B̂
(I) = |B̃| then ‹ = 1/|B̃| and, by property 1, B̂

(i) ”= |B̃| ≠ 1 for every i. In any case,
the sequence (B̂(i))I

i=0 may take on at most |B̃| values (including 0) and thus I < |B̃|. The
second statement of 4 follows from the fact that for all b, ūb Ø ‹ and thus would remain
unaltered by the procedure in the while statement.
Finally, for 5, first say ūb > ‹ and note that B

(I≠1)
< |B̃| (otherwise the algorithm is

terminated or property 1 is violated).

ūb = (1 ≠ B
(I≠1)

‹) ub
1

q

bÕ | ū(I≠1)
bÕ

>‹
ubÕ

2 Ø (1 ≠ B
(I≠1)

‹) ub

(
q

bÕ ubÕ) Ø (1 ≠ (|B̃| ≠ 1)‹)ū(0)
b .

Now say ūb = ‹. Call i
Õ the first step such that ū

(iÕ)
b = ‹. If i

Õ = 0 or i
Õ = 1 then

ūb = ‹ Ø (1 ≠ (|B̃| ≠ 1)‹)‹ Ø (1 ≠ (|B̃| ≠ 1)‹)ū(0)
b . Finally, if i

Õ
> 1 then

ūb = ‹ Ø ū
(iÕ

≠1)
b =

1

1 ≠ B
(iÕ

≠2)
‹

2

ub/

Q

c

a

ÿ

bÕ | ū(iÕ≠2)
bÕ

>‹

ubÕ

R

d

b

Ø
!

1 ≠ (|B̃| ≠ 1)‹
"

ū
(0)
b .

Thus in all cases ūb Ø (1 ≠ (|B̃| ≠ 1)‹)ū(0)
b .

We now turn to the main projection algorithm.

Algorithm 2 Projection algorithm II
Input : Non-negative numbers (ub)|B̃|

b=1, with
q|B̃|

b=1 ub > 0, and a positive number ‹ Æ 1/|B̃|.
Output: (ūb)|B̃|

b=1 such that
q|B̃|

b=1 ūb = 1 and ūb Ø ‹ for all b.

1: ū
(0)
b Ω ub/(

q|B̃|

bÕ=1 ubÕ)
2: C(0) Ω ÿ
3: i Ω 1
4: while there is a b /œ C(i≠1) with ū

(i≠1)
b Æ ‹ do

5: Pick b
(i≠1) œ {b | ū

(i≠1)
b Æ ‹} \ C(i≠1)

6: C(i) Ω C(i≠1) fi {b
(i≠1)}

7: for b = 1, . . . , |B̃| do
8: if b œ C(i) then
9: ū

(i)
b Ω ‹

10: else
11: ū

(i)
b Ω (1 ≠ i‹) ub/

!

q

bÕ /œC(i) ubÕ

"

12: i Ω i + 1
13: for b = 1, . . . , |B̃| do
14: ūb Ω ū

(i≠1)
b

An example run of algorithm 2 is visualized in figure S4 (top row). Clearly this algorithm
returns ūb = ‹ if ‹ = 1/|B̃| and all the following results are trivial. Thus below we will
assume ‹ < 1/|B̃|.
Remark 6. We will first consider an alternative representation of the algorithm.
Given a C µ B̃, call

u
C = ‹

q

b/œC
ub

1 ≠ |C|‹
and if u

C
> 0, define

ū
C

b := (1 ≠ |C|‹)ub/

A

ÿ

bÕ /œC

ubÕ

B

= ‹ub/u
C

for b /œ C and ū
C

b = ‹ for b œ C; so one gets ū
(̃i)
b = ū

C
(ĩ)

b at each iteration ĩ. If b /œ C, ū
C

b Æ ‹ if
and only if ub Æ u

C .
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Figure S4: Example application of algorithm 2. (ū(i)
b )b at the end of each step of the

algorithm is shown on the top row with ‹ in green and those elements in C(i) in grey. (ub)|B̃|

b=1
is shown as black bars in the plots in the bottom row with u

C
(i) shown as a red line. u

C
(j)

for previous steps j < i are also shown on the bottom row as grey lines. The scale of the
inputs (ub)|B̃|

b=1 is of no consequence for the algorithm.

Say b /œ C and call CÕ := {b} fi C.

u
C

Õ

≠ u
C = ‹

‹
!

q

bÕ /œC
ubÕ

"

≠ ub (1 ≠ |C|‹)
(1 ≠ |CÕ|‹) (1 ≠ |C|‹) = ‹

1 ≠ |CÕ|‹
!

u
C ≠ ub

"

.

Thus u
C

Õ Ø u
C if and only if ub Æ u

C with equality if and only if ub = u
C .

We can see that at iteration i the next b
(i≠1) is chosen from {b | ū

(i≠1)
b Æ ‹} \ C(i≠1) =

{b |ub Æ u
C

(i≠1)} \ C(i≠1), i.e. from those b with ub below the threshold u
C

(i≠1) . Thus,
u

C
(0) Æ u

C
(1) Æ . . . . This is reflected in figure S4 (bottom row).

By induction (or from inspection of figure S4), one may show that all the elements b of C(i)

must have ub below the threshold u
C

(i≠1) and the algorithm is complete only when all b with
ub below the threshold u

C
(i) are inside C(i). In other words, for i < I (where I is the final

iteration) we have C(i) ( {b | ub Æ u
C

(i)}, and C(I) = {b | ub Æ u
C

(I)}.

The important points from the above remark are summarized as:
Lemma 25. 1) Given a C µ B̃, say b /œ C and call CÕ := {b} fi C. u

C
Õ Ø u

C if and only if
ub Æ u

C with equality if and only if ub = u
C.

2) u
C

(0) Æ u
C

(1) Æ . . . .

3) If the algorithm ends on step I, C(i) ™ {b | ub Æ u
C

(i≠1)} for all i Æ I, C(i) ( {b | ub Æ
u

C
(i)} for i < I, and C(I) = {b | ub Æ u

C
(I)}.

Proposition 26. Say algorithm 2 is applied to non-negative numbers (ub)bœB̃
with

q

b ub > 0.
Define (ūb)b, ((ū(i)

b )b)i and (C(i))i as in the algorithm. Say the algorithm terminates at step
I.
1) The output of the algorithm is the same regardless of the choice of (b0, b1, . . . ).
2) The output of the algorithm is the same as that of algorithm 1.
3) we can replace lines 4 and 5 of algorithm 2 with

4: while there is a b /œ C(i≠1) with ū
(i≠1)
b < ‹ do

5: Pick b
(i≠1) œ {b | ū

(i≠1)
b < ‹} \ C(i≠1)

and receive the same output. With this adjustment, I < |B̃|.
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4) Say b /œ C(i). ū
(i≠1)
b ≠ ū

(i)
b Æ |B̃|(‹ ≠ ū

(i≠1)
b(i≠1)) so that ū

(i≠1)
b is close to ū

(i)
b if ū

(i≠1)
b(i≠1) is close

to ‹.

Proof. 1) Say the choices (b(0)
, . . . , b

(I)) were made when running the algorithm. Consider
a di�erent sequence of choices (bÕ(0)

, . . . , b
Õ(IÕ)) to produce CÕ(IÕ). Note that by lemma 25,

C := C(I) = {b |ub Æ u
C

(I)} and CÕ := CÕ(IÕ) = {b | ub Æ u
C

Õ(IÕ)}. Without loss of generality
assume C ) CÕ so u

C
> u

C
Õ . We will show that this leads to a contradiction. Pick the smallest

i Æ I such that u
C

(i)
> u

C
Õ . Then u

C
(i≠1) Æ u

C
Õ , so by lemma 25, C(i) ™ CÕ.

Pick an enumeration (b̃1, . . . , b̃J) = (CÕ \ C(i)). ub̃1
Æ u

C
Õ Æ u

C
(i) so u

C
(i)

fi{b̃1} Ø u
C

(i) . By
induction, one may show that u

C
Õ = u

C
(i)

fi(C
Õ
\C

(i)) Ø u
C

(i)
fi{b̃1,...,b̃J≠1} Ø · · · Ø u

C
(i)

fi{b̃1} Ø
u

C
(i) . This contradicts the choice of i above. Thus, C = CÕ and I = |C| = |CÕ| = I

Õ. Moreover,
since the final output (ūb)|B̃|

b=1 of the algorithm can be defined purely in terms of the final set
C(i), the output must be identical among runs of the algorithm.

2) Consider choosing (b(0)
, . . . , b

(i)) as such: first pick {b
(0)

, . . . , b
(i1≠1)} = {b | ū

(0)
b Æ ‹},

which we know can be done since by lemma 25, ū
(0)
b Æ ‹ if and only if ub Æ u

C
(i1) and

u
C

(i1) Æ u
C

(i1+1) Æ . . . . This is equivalent to one step of the while loop of algorithm 1. Then
choose {b

(i1)
, . . . , b

(i2≠1)} = {b | ū
(i1)
b Æ ‹} \ C(i1), which we can do by similar logic. This is

equivalent to the second step of the while loop of algorithm 1. Continuing the construction
in the same way, by conclusion (1) above, we get that the outputs of algorithms 1 and 2 are
identical.
3) Note, by lemma 25, picking a b

(i≠1) with ū
(i≠1)
b(i≠1) = ‹ gives u

C
(i) = u

C
(i≠1) and ū

(i)
b = ū

(i≠1)
b

for all b. Say (b0, . . . , bi), i < I are selected in the algorithm such that ū
(j)
bj

< ‹ for each
j Æ i and all b œ {b | ū

(i)
b Æ ‹} \ C(i) have ū

(i)
b = ‹, then (ū(i+1)

bÕ )bÕ = (ū(i)
bÕ )bÕ and all

b œ {b | ū
(i+1)
b Æ ‹} \ C(i+1) have ū

(i)
b = ‹. Continuing by induction demonstrates property

(3). That I < |B̃| follows by the same logic as conclusion (4) in proposition 24 on algorithm
1.
4) Say b /œ C(i),

ū
(i≠1)
b ≠ ū

(i)
b =‹ub

1

1/u
C

(i≠1)
≠ 1/u

C
(i)

2

= ub
q

bÕ /œC(i) ubÕ

‹(
q

bÕ /œC(i≠1) ubÕ) ≠ ub(i≠1)(1 ≠ (i ≠ 1)‹)
q

bÕ /œC(i≠1) ubÕ

=ū
(i)
b (1 ≠ i‹)≠1(‹ ≠ ū

(i≠1)
b(i≠1))

Æ|B̃|(‹ ≠ ū
(i≠1)
b(i≠1))

(40)

with the last inequality since i Æ |B̃| ≠ 1 and ‹ Æ 1/|B̃|.

Next we show that the projection defined by algorithm 26 is continuous.

Lemma 27. Say 0 < ‹ Æ 1/|B̃| and ((uj,b)|B̃|

b=1)Œ

j=1 is a sequence of sets of non-negative
numbers, each with at least one positive element, with uj,b æ ub for each b as j æ Œ, where
(ub)|B̃|

b=1 is set of non-negative numbers with at least one positive element. Apply algorithm
1 or 2 to each set ((uj,b)|B̃|

b=1)Œ

j=1 to get ((ūj,b)|B̃|

b=1)Œ

j=1 and to (ub)|B̃|

b=1 to get (ūb)|B̃|

b=1. Then
ūj,b æ ūb for all b.

Proof. Define ū
(i)
j,b as in the steps of algorithm 2, with b

(0)
, b

(1)
, . . . to be defined below. Say

ū
(0)
b(0) < ‹. Eventually, ū

(0)
j,b(0) < ‹ and thus it becomes possible to pick b

(0) in the first step
of the algorithm for all large enough j. Then, we get ū

(1)
j,b(0) = ‹ = ū

(1)
b(0) . For b ”= b

(0),
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ū
(1)
j,b = ‹uj,b/u

C
(1)

j as defined as part of lemma 25. u
C

(1) is a continuous function of (ub)|B̃|

b=1
so that ū

(1)
j,b æ ū

(1)
b for all b. Using the same logic, for large enough j, we may pick an b

(1)

with ū
(1)
b(1) < ‹ and see ū

(2)
j,b æ ū

(2)
b for all b. We may continue as such until the algorithm

terminates for (ub)|B̃|

b=1 by property (3) in proposition 26. Thus, for some i, we have that
ū

(i)
j,b æ ūb for all b.

Note each (u(i)
j,b)

|B̃|

b=1 may require another |B̃| ≠ i ≠ 1 steps for the algorithm to complete.
For large enough j, we have the implication ūb > ‹ =∆ ū

(i)
j,b > ‹ for all b so that if for

a b, ū
(i)
j,b < ‹, then ū

(i)
j,b æ ūb = ‹. Applying property (4) in proposition 26 to each of the

remaining steps of the algorithm applied to (uj,b)|B̃|

b=1 for high enough j, considering ū
(i)
j,b æ ūb

for all b, we can see that ūj,b æ ūb for all b.

Finally, we can show that the projection algorithms 1 and 2 indeed return the MLE on the
sieve S, given observed kmer transition counts.
Proposition 28. Given data X1, . . . , XN , a lag L, and a positive number ‹ < 1/|B̃|, say
v̄ is an MLE in S := {v œ �B

o
L

|B̃|
| ’k, b, vk,b Ø ‹}. For every L-mer k that has been seen in

the data, (v̄k,b)bœB̃
is equal to the output of algorithm 1 or 2 applied to (#(k, b))bœB̃

where
#(k, b) is the number of times k is seen in the data immediately preceding b.

Proof. The likelihood of the data under a pv œ ML is
ÿ

k

ÿ

b

#(k, b) log(vk,b).

Thus, the MLE in S can be found by finding, for each k with #k > 0,
argmaxvkœ�(0)

ÿ

b

#(k, b) log(vk,b)

where �(0) := {vk œ �
B̃

| for all b, vk,b Ø ‹}.

Say k has been seen in the data, so the MLE on �
B̃

, v
(0)
k , is unique and satisfies v

(0)
k,b Ã #(k, b).

Call v̂k an MLE on �(0). Say v
(0)
k /œ �(0) so that for some b, v

(0)
k,b < ‹n. By the uniqueness

of the MLE, the likelihood of the data under v
(0)
k must be strictly greater than under v̂k.

Connecting v̂k and v
(0)
k by a line, considering the concavity of the log likelihood function,

the likelihood must be decreasing from v
(0)
k to v̂k. As the likelihood function is analytic and

not constant on the line, it must be strictly decreasing. Thus the line cannot intersect �(0)

except at v̂k. For every b, ⁄v̂k,b + (1 ≠ ⁄)v(0)
k,b Ø ‹ for all ⁄ œ [0, 1] if v

(0)
k,b Ø ‹; for all ⁄ œ [c, 1]

for a c < 1 if v
(0)
k,b < ‹n and v̂k,b > ‹; and only for ⁄ = 1 if v

(0)
k,b < ‹n and v̂k,b = ‹. Therefore,

for some b
(0) such that v

(0)
k,b(0) < ‹ we have v̂k,b(0) = ‹.

Call v
(1)
k the MLE on {vk œ �

B̃
| vk,b(0) = ‹}. Using Lagrange multipliers again, one may

see that
v

(1)
k,b = (1 ≠ ‹) (k, b)

q

b ”=b(1) #(k, b)
for b ”= b

(0). Note that v
(1)
k is the result of one step of applying algorithm 2 to v

(0)
k using b

(0).
Call �(1) := {vk œ �

B̃
| for all b, vk,b Ø ‹ and vk,b(1) = ‹} so v̂k œ �(1). One may perform

the same analysis as above to see that if for some b, v
(1)
k,b < ‹, then there is a b

(1) such that
v

(1)
k,b(1) < ‹ and v̂k,b(1) = ‹.

We may then construct v
(2)
k , v

(3)
k , . . . by applying algorithm 2, picking b

(i). Defining �(i) in
analogy to �(0) and �(1), the algorithm stops at step i when v

(i)
k œ �(i) and v̂k = v

(i)
k = v̄k.

That v̄k is unique follows from property (2) in remark 26.
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H.3 Bayesian consistency

In this section we take a Bayesian approach to inferring a subexponential p
ú from data

X1, X2, · · · ≥ p
ú iid. We put a prior on L, with support over all L > 0, to construct

a nonparametric Bayesian model and then study the consistency and concentration rate
of its posterior. Recall that the Bernstein von-Mises theorem states that given some
regularity conditions, for a Bayesian parametric model, the posterior concentrates in a
neighborhood centered at the data-generating distribution, with radius proportional to
1/

Ô
N . For nonparametric models in general, and (as we shall see) the BEAR model in

particular, the concentration rate of the posterior can be strictly slower than
Ô

N [23, 61].
In order to guarantee consistency and derive a concentration rate, we will, instead of placing
a prior directly on L, place a prior on sieves constructed similarly to those in section H.1. In
particular, define for all L, ‹

Õ
> 0 and ‹ > 0 the sieve

S(‹Õ
, ‹, L) = {v œ �B

o
L

B̃
| ’k, vk,$ Ø ‹ and vk,b Ø ‹

Õ ’b œ B}

where ‹ is a lower bound on the stop transition probability and ‹
Õ is a lower bound on all

other transitions. In particular, we will define a prior over the sieves that depends on how
well a distribution from each sieve can match p

ú. Define the sieve approximation mismatch

›(‹Õ
, ‹, L) = min

vœS(‹Õ,‹,L)
E log2

3

p
ú(X)

pv(X)

4

.

In the next section, we will show that we can guarantee › is su�ciently small by using the
fact that p

ú is subexponential. Here, we define the prior.
We may now define our prior:
Condition 29. Assume, for monotonic sequences (‹m)m, (Lm)m, and a distribution on the
natural numbers fi,

log
!

‹
≠1
m

"

≥ m
c1

|B|Lm ≥ m
c2

›(‹m, ‹m, Lm) . m
≠c3

log fi(m) ≥ ≠m
Ê

with c1, c2, c3 > 0 and 1 > c1 + c2. c3 must obey the following condition: calling ” =
1 ≠ 1≠(c1+c2)

c3/2 , ” > 0 and (1 ≠ ”)≠1(c1 + c2) Ø Ê > c1 + c2. Consider positive numbers
(–k,b)LØ1,kœBo

L,bœB̃
such that sup –k,b < Œ and inf –k,b > 0. Consider a prior � on the

disjoint union ÛŒ
m=1S(0, ‹m, Lm) that factorizes as such:

�(pv) = fi(m)
Ÿ

kœBo
Lm

�k(vk) if pv œ Sm.

where for a k œ Bo
Lm

, �k is a restricted and renormalized Dirichlet(–k,b)bœB̃
prior on the

simplex in S(0, ‹m, Lm) corresponding to transition coe�cients out of k.

Note as well the di�erence between the sieve we approximate p
ú with (S(‹m, ‹m, Lm)) and

the one our prior is defined over (S(0, ‹m, Lm)). It is best to consider the constraints on
c1, c2, Ê with the fact that c3 is limited in the values it may take on by how well p

ú can be
approximated by finite lag Markov models. Our main result will be the consistency of the
posterior under this prior and the calculation of its concentration rate.
Remark 7. Using the techniques in section H.2, we can see that the maximum a posteriori
estimate on each sieve S(0, ‹m, Lm) has, for every k that has been seen in the data,

vk,b Ã #(k, b) + –k,b

if #(k,$)+–k,$
q

bÕ ”=$(#(k,bÕ)+–k,bÕ) Ø ‹m; otherwise, vk,$ = ‹m but we still have vk,b Ã #(k, b) + –k,b for

b œ B. One may then compare the densities of the maximum a posteriori estimators in each
sieve across L to get the maximum a posteriori estimator of the entire posterior.
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We now discuss two interpretations of this prior. On the one hand, � =
q

Œ

L=1
q

m | Lm=L filag(m)�(· | S(0, ‹m, Lm)) and thus, since S(0, ‹m, Lm) µ MLm , and
the fact that multiple m correspond to the same Lm, the prior can be interpreted as similar
to putting a prior on the lag, with the standard Dirichlet priors on each ML, but with the
prior having a "staircase" shape for very small stopping probabilities. On the other hand, we
have carefully chosen the values of ‹m and Lm in order to balance the size of Sm against the
amount of information about p

ú received from m datapoints. How this works will become
clear in the proof of theorem 35.
In section H.3.1 we will show that there exists a c3 such that ›(‹m, ‹m, Lm) . m

≠c3 , i.e., p
ú

may be e�ciently approximated by the sieves. Then we will derive our main result with the
concentration rate in section H.3.2. Finally we describe how to use this result in practice on
real data in section H.3.3. Throughout we will consider a data generating distribution p

ú

and all expectations will be with respect to the data generating distribution unless otherwise
stated.

H.3.1 Approximating subexponential sequence distributions

In this section we will be interested in finding an asymptotic upper bound for ›(‹m, ‹m, Lm)
of the form m

≠c3 , thus showing that a prior as in Condition 29 exists (proposition 32).
The result relies on the assumption that p

ú is subexponential; our main consistency result
(theorem 35) would only require E|X|2 < Œ if Condition 29 were somehow otherwise satisfied.
In its essence, this section is about constructing approximations to subexponential sequence
distributions, with control not only over the expected log ratio of p

ú and the approximating
distribution p – the KL divergence, E log(pú(X)/p(X)) – but also over the variance of this log
ratio – i.e. control of E log2 (pú(X)/p(X)). We will make use of lemma 3 but need another
construction and technical lemma.
Note that if p

ú is a distribution on S and X œ S,
p

ú(X) = p
ú(X1 . . . )pú(X1:2 . . . |X1 . . . ) . . . p

ú(X1:|X||X1:|X|≠1 . . . )
where, recall, for a sequence Y , possibly not terminated by $, p

ú(Y . . . ) = p
ú({X œ S | Xi =

Yi ’i Æ |Y |}). Thus a probability distribution on S may be described by its infinite-lag
transition probabilities p

ú((Y, b) . . . |Y . . . ) for sequences Y not terminated by $ and b œ B̃,
ignoring those Y with p

ú(Y . . . ) = 0. Infinite-lag transition probabilities were considered in
the construction of p

ú

L in proposition 3. Below we will be interested in constructing another
distribution from p by projecting, for some L, the transition probabilities at each Y with
|Y | < L onto {v œ �

|B̃|
| vb Ø ‹

ú ’ b}. This first lemma will be used to guarantee the
existence of this distribution.
Lemma 30. Say p

ú is a probability distribution on S. Given a lag L and positive numbers
((vX,b)bœB̃

)lœ{0,...,L≠1},XœBl with
q

b vX,b = 1 for all X, there is a p
úL such that for all

sequences Y not terminated by $,

p
úL((Y, b) . . . |Y . . . ) =

;

vY,b if |Y | < L

p
ú(Y b . . . |Y . . . ) if |Y | Ø L and p

ú(Y . . . ) > 0.
(41)

Proof. For X œ S, |X| Æ L define

p
úL(X) =

|X|
Ÿ

i=1
vX1:i≠1,Xi .

For Y œ BL with p(Y . . . ) = 0, define

p
úL((Y, $)) =

L
Ÿ

i=1
vY1:i≠1,Yi

and p
úL(X) = 0 for X œ S with X1:L = Y and XL+1 ”= $. Finally, if p

ú(Y . . . ) > 0 define,
for all X œ S with X1 · · · XL = Y ,

p
úL(X) =

A

L
Ÿ

i=1
vY1:i≠1,Yi

B

p
ú(X|Y . . . ).
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B$ $ $ $

$

Figure S5: Example application of this construction to the distribution p
ú on the left, with

the v represented in the center. Transition probabilities for kmers smaller than L = 2 are
those defined by v while those after are those of the original distribution. Thickness of lines
denote probability of particular transition.

It is not di�cult to check that p
úL is well defined and satisfies the requirements in the

statement (Fig. S5).

Finally, we write a technical lemma:
Lemma 31. There exists a positive constant C such that for any p

ú and p that are distribu-
tions over S,

Epú log2
3

p
ú(X)
p(X)

4

Æ Epú

5

log2
3

p
ú(X)
p(X)

4

; p
ú(X) > p(X)

6

+ Ckl(pú||p)1/2
.

Proof. x ‘æ (log x)2 is di�erentiable with derivative 2x
≠1 log x. The derivative is bounded

above on [1, Œ), say by C. Thus, for all x Ø 1, (log x)2 Æ (log 1)2 + C(x ≠ 1) = C(x ≠ 1).
Now,

Epú

5

log2
3

p(X)
pú(X)

4

; p
ú(X) Æ p(X)

6

ÆCEpú

53

p(X)
pú(X) ≠ 1

4

; p
ú(X) Æ p(X)

6

=C (p(p(X) > p
ú(X)) ≠ p

ú(p(X) > p
ú(X)))

ÆCÎp
ú ≠ pÎTV

.kl(pú||p)1/2
.

(42)

Proposition 32. If E exp(t|X|) < Œ for some t > 0 then ›(‹m, ‹m, Lm) . m
≠

c2
log |B̃|

t.

Proof. To approximate p
ú with a distribution in S(‹m, ‹m, Lm) we will use the construction

in lemma 3, however we must make sure that the transition probabilities are not less than
‹m. To do so, for sequences X without $, with |X| < Lm, define (vX,b)bœB̃

to be the
output of the application of algorithm 1 or 2 to (pú((X, b) . . . |X . . . ))bœB̃

if p
ú(X . . . ) > 0.

For X with p
ú(X . . . ) = 0, make any choice of (vX,b)b with vX,b Ø ‹m for all b. Thus,

for all X, b, vX,b Ø ‹m. Now, by lemma 30, there is a distribution p
úLm with the same

infinite-lag transition probabilities as p
ú for |X| Ø Lm and infinite-lag transition probabilities

(vX,b)bœB̃
for |X| < Lm. Finally perform the construction in lemma 3 to p

úLm to produce a
p

úLm
Lm

œ S(‹m, ‹m, Lm).
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By lemma 31

E log2
A

p
ú(X)

p
úLm
Lm

(X)

B

. E
C

log2
A

p
ú(X)

p
úLm
Lm

(X)

B

; p
ú(X) > p

úLm
Lm

(X)
D

+
C

E log
A

p
ú(X)

p
úLm
Lm

(X)

BD1/2

.

To achieve our result, we will show the first of these terms is . m
≠

c2
log |B̃|

t and one may use a
similar proof to make the same deduction about the second term.
First we will split the term into two that represent the "distance" from p

ú to p
úLm and that

from p
úLm to p

úLm
Lm

:

E
C

log2
A

p
ú(X)

p
Lm
Lm

(X)

B

; p
Lm
Lm

(X) < p
ú(X)

D

=E
5

log2
3

p
ú(X)

pLm(X)

4

; |X| Æ Lm, p
Lm
Lm

(X) < p
ú(X)

6

+ E
5

log2
3

p
ú(X)

pLm((X1, . . . , XLm) . . . )|B̃|≠(|X|≠Lm)

4

; |X| > Lm, p
Lm
Lm

(X) < p
ú(X)

6

ÆE
5

log2
3

p
ú(X)

pLm(X)

4

; |X| Æ Lm, p
Lm
Lm

(X) < p
ú(X)

6

+ E
5

log2
3

p
ú(X)

pLm(X)|B̃|≠(|X|≠Lm)

4

; |X| > Lm, p
Lm
Lm

(X) < p
ú(X)

6

ÆE
5

log2
3

p
ú(X)

pLm(X)

4

; |X| Æ Lm, p
Lm
Lm

(X) < p
ú(X)

6

+ 4E
5

log2
3

p
ú(X)

pLm(X)

4

; |X| > Lm, p
Lm
Lm

(X) < p
ú(X)

6

+ 4 log2 !

|B̃|
"

E [(|X| ≠ Lm); |X| > Lm]

.E
5

log2
3

p
ú(X)

pLm(X)

46

+ E
#

(|X| ≠ Lm)2; |X| > Lm

$

.

(43)

Now we will show each of these two terms . m
≠

c2
log |B̃|

t in turn.
We will first consider E

#

(|X| ≠ Lm)2; |X| > Lm

$

.

p
ú((|X| ≠ Lm)2

> l) =p
ú(et|X|

> e
t(

Ô
l+Lm))

Æe
≠tLmE

Ë

e
t|X|

È

e
≠t

Ô
l

(44)

by Markov’s inequality, so

E
#

(|X| ≠ Lm)2; |X| > Lm

$

=
⁄

Œ

Lm

p
ú((|X| ≠ Lm)2

> l)dl

Æe
≠tLmE

Ë

e
t|X|

È

⁄

Œ

Lm

e
≠t

Ô
l
dl

Æe
≠tLmE

Ë

e
t|X|

È

2t
≠2(t



Lm + 1)e≠t
Ô

Lm

= exp
3

≠ tLm ≠ t



Lm ≠ 2 log t

+ log
1

t



Lm + 1
2

+ const.
4

. exp (≠tLm)

≥m
≠

c2
log |B̃|

t

(45)

as desired.
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For the other term in equation 43, again by lemma 31,

E log2
3

p
ú(X)

púLm(X)

4

. E
5

log2
3

p
ú(X)

púLm(X)

4

; p
ú(X) > p

úLm(X)
6

+
5

E log
3

p
ú(X)

púLm(X)

461/2
.

In this case, we will show that the first of these terms is . e
≠Cmc1 for some positive constant

C, and by a similar proof one may show the same for the second. This will complete the
proof of part 2.
If p

ú(X) > p
Lm(X) Ø 0, by the definition of p

úLm ,

p
ú(X)

púLm(X) =
Lm‚|X|

Ÿ

i=1

p
ú(X1:i . . . |X1:i≠1 . . . )

vX1:i≠1,Xi

Æ
!

1 ≠ (|B̃| ≠ 1)‹m

"Lm

with the inequality by property (5) in proposition 24. Thus,

E
5

log2
3

p
ú(X)

púLm(X)

4

; p
ú(X) > p

úLm(X)
6

. L
2
m‹

2
m . log2(m)e≠2Cmc1 . e

≠CÕmc1

for two positive constants C, C
Õ.

H.3.2 Consistency and rate

The proof of theorem 35 relies on a consequence of theorem 2.1 of Ghosal et al. [23], which is
stated in a simplified form herein as theorem 33. Intuitively, the key challenge in establishing
nonparametric consistency is that the size of the space of probability measures P (infinite
dimensional) may overwhelm the evidence provided by the data, leading to a posterior that
is too spread out. To establish consistency, theorem 2.1 of Ghosal et al. [23] requires that the
prior over probability measures is su�ciently large on a neighborhood of p

ú (denoted B÷),
and su�ciently small on the complement of an e�ectively parametric (finite dimensional)
subset of P (denoted PN ).
Theorem 33. Say P is a set of probability measures, p

ú œ P. X1, . . . , XN ≥ p
ú iid, d is

the Hellinger distance, � is a distribution on P, (÷N )Œ

N=1 is a sequence of positive numbers
such that ÷N æ 0 and N÷

2
N æ Œ, and (PN )Œ

N=1 are a sequence of subsets of P. Define,
for positive ÷,

B÷ = {p œ P | kl(pú||p) < ÷
2
, Var[log(pú(X)/p(X))] < ÷

2}.

Then if

i) log N (÷N /2, PN , d) . N÷
2
N

ii) log �(B÷N ) & ≠N÷
2
N

iii) For an ‘ > 0, �(P \ PN )�(B÷N )≠1
e

(1+‘)N÷2
N æ 0

Then for large enough M ,
�(B(pú

, M÷n)|X1, . . . , XN ) æ 1
in probability, where B(pú

, ”) is a Hellinger ball of radius ” centered at p
ú

Proof. For some C,
CN÷

2
N Ø logN (÷N /2, SN , d) Ø log D(÷N , SN , d).

Defining ÷
Õ

N =
Ô

C÷N , condition 2.2 in theorem 2.1 of Ghosal et al. [23] is satisfied for the
sequence (÷Õ

N )Œ

N=1. Note condition 2.4 is also satisfied by the above condition ii.
Note by lemma 8.1 in Ghosal et al. [23]

DN =
⁄ N

Ÿ

n=1

p(Xn)
pú(Xn)d�(p)

Ø�(B÷Õ

N
)

Q

a

1
�(B÷Õ

N
)

⁄

B÷Õ

N

N
Ÿ

n=1

p(Xn)
pú(Xn)d�(p)

R

b

Ø�(B÷Õ

N
)e≠(1+‘)N÷Õ2

N

(46)
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with probability 1 ≠
!

‘
2
N÷

Õ2
N

"≠1 æ 1. Call the set where this occurs A. As in the proof of
theorem 2.1 of Ghosal et al. [23], for large enough M, C

Õ, we may then use condition i to
write

1 ≠ Epú [�(B(pú
, M÷

Õ

N )|X1, . . . , XN )] Æ2e
≠CÕN‘Õ

N + (1 ≠ p
ú(A))

+ Epú

Ë

D
≠1
N

1

�(P \ PN ) + e
≠CÕNM2‘Õ2

N

2

; A

È

.

(47)
By conditions ii and iii, this last term æ 0 for large enough M . Finally, write M÷

Õ

N =
1

M
Ô

C

2

÷N to get the result in terms of ÷N .

To work with sieves without restrictions on transition probabilities to b œ B we need the
following technical lemma.
Lemma 34. Assume for positive numbers (–k,b)L>0,kœBo

L,bœB̃
, supL>0,kœBo

L,bœB̃
–k,b < Œ

and infL>0,kœBo
L,bœB̃

–k,b > 0. Consider independent Dirichlet(–k,b)bœB̃
priors on each sim-

plex of �B
o
L

B̃
indexed by k œ Bo

L. Call the joint distribution �. Then, for some C, ‘ > 0, for
all ‹ > ‹

Õ small, L,
log �(S(‹Õ

, ‹, L))
�(S(0, ‹, L)) Ø ≠C|B|L‹

Õ‘

.

Proof. Define –
· Æ infL,k,b –k,b. Let Zk ≥ Dirichlet(–k,b)b for some k. As a property of the

Dirichlet distribution,
3

Zk,$,

q

bÕœB
Zk,bÕ

q

bÕœB̃
Zk,bÕ

4

‹‹
3

Zk,bÕ

q

bÕœB
Zk,bÕ

4

bÕœB

Call this later variable Yk, and note Yk ≥ Dirichlet(–k,b)bœB. Now for any b œ B, v < ‹,
since (Yk,b,

q

bÕ ”=b YbÕ) ≥ Beta(–k,b,
q

bÕ ”=b –k,bÕ),

P (Yk,b < ‹
Õ
/(1 ≠ v)) =

�(
q

bÕœB̃
–k,bÕ)

�(–k,b)�(
q

bÕ ”=b –k,bÕ)

⁄ ‹Õ/(1≠v)

0
x

–k,b≠1
b (1 ≠ xb)(

q

bÕ ”=b
–k,bÕ )≠1

=O(1)
⁄ ‹Õ/(1≠v)

0
x

–k,b≠1
b

=O((‹Õ
/(1 ≠ v))–k,bÕ ).

(48)

Thus, using a union bound, for some C, regardless of the choice of k,
P (Yk,b < ‹

Õ
/(1 ≠ v) for some b œ B) Æ C(‹Õ

/(1 ≠ v))–·

.

Thus, for some C
Õ
> 0, calling Fk,$ the density of Zk,b, noting P (Zk,$ > ‹) = O(1) for small

‹,

P (Zk,b < ‹
Õ for some b œ B | Zk,$ > ‹) .

⁄ 1

‹
P (Yk,b < ‹

Õ
/(1 ≠ v) for some b œ B)dFk,$(v)

.‹
Õ–·

⁄ 1

‹
dvv

–k,$≠1(1 ≠ v)
q

bœB
–k,b≠1≠–·

.

(49)
The integral is equal to the probability of a (Beta)(–k,$,

q

bœB
–k,b ≠ –

·) distribution being
greater than ‹ and is thus O(1). For small enough ‹, ‹

Õ, for some C
Õ
> 0,

log �(S(‹Õ
, ‹, L))

�(S(0, ‹, L)) =
Ÿ

kœBo
L

log P (Zk,b Ø ‹
Õ for all b œ B | Zk,$ > ‹)

Ø log
1

(1 ≠ C‹
Õ–·

)|B
o
L|

2

Ø ≠ C
Õ|Bo

L|‹Õ–·

Ø ≠ C
ÕÕ|B|L‹

Õ–·

.

(50)
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We can now prove the main result, establishing posterior consistency and the posterior
convergence rate. We show that the prior in condition 29 satisfies the conditions of 33. In
particular, we use sieves S to define the e�ectively parametric subset PN of the infinite
dimensional space of probability measures P, and then condition 29 controls the prior
probability over the B÷N and PN .
Theorem 35. Assume p

ú is sub-exponential and thus we can choose a prior as in condition
29. For any large enough M ,

�(B(pú
, MN

≠
1
2 (1≠(c1+c2)))|X1, . . . , XN ) æ 1

in probability where B(pú
, ”) is a Hellinger ball of radius ” centered at p

ú.

Proof. The proof will proceed by checking the conditions of theorem 33. First define
a monotonic sequence (‹Õ

m)Œ
m=1 with log ‹

Õ≠1
N ≥ N

Ê, ›N = ›(‹N , ‹N , LN ), P the set of
distributions on S, and

PN = {pv | v œ fiN
n=1S(‹Õ

n, ‹n, Ln)} = {pv | v œ S(‹Õ

N , ‹N , LN )}.

Throughout we will use ÷N = N
≠

1
2 (1≠(c1+c2)) and so checking the conditions of theorem 33

will demonstrate a posterior concentration rate of 1
2 (1 ≠ (c1 + c2)).

First we will check condition i. Define, for ’ œ NB
o
LN

◊B̃, flN > 0,

ÔN (’) = {v œ S(‹Õ

N , ‹N , LN )| ’(k, b), (1 + flN )’k,b‹
b
N > vk,b Ø (1 + flN )’k,b≠1

‹
b
N }

(where ‹
b
N = ‹

Õ

N if b ”= $ and equal to ‹N otherwise) so that fi’ÔN (’) = S(‹Õ

N , ‹N , LN ) (Fig.
S3).

Note that for v1, v2 œ ÔN (’), kl(pv1 ||pv2) Æ log(1 + flN )Ev1 |X| Æ flN ‹
≠1
N the last inequality

as p(|X| > L||X| Ø L) Ø ‹N where the last inequality comes from p(|X| = L||X| Ø L) Ø ‹N

and a geometric sum (this is where a distinction between ‹N and ‹
Õ

N is necessary). Defining
d as the Hellinger metric,

d(pv1 , pv2) Æ 1Ô
2

Îpv1 ≠ pv2Î1/2
1 Æ kl(pv1 ||pv2)1/4 Æ (flN ‹

≠1
N )1/4

so picking flN = ‹N (÷N /2)4, for v1, v2 œ ÔN (’), d(pv1 , pv2) Æ ÷N /2. Call “
b =

3

log
!

(‹b
N)≠1"

log(1+flN ) + 1
4

and note (1+flN )“b
≠1

‹
b
N = 1. Thus the number of choices of ’ œ NB

o
LN

◊B̃

that give non-empty ÔN (’), is bounded above by
r

bœB̃

!

“
b
"|B

o
LN

|. Note also that since

flN æ 0, “
b . log

!

(‹b
N)≠1"

flN
. Now we can establish condition i of theorem 33:

log N (÷N /2, SN , d) Æ log #{’ | ÔN (’) ”= ÿ}

Æ|Bo
LN

|
ÿ

b

log
!

“
b
"

.|B|LN
ÿ

b

1

log log
1

!

‹
b
N

"≠12

≠ log(‹N (÷N /2)4)
2

.|B|LN
!

log(‹≠1
N ) + log(N)

"

.N
c1+c2

.N÷
2
N .

(51)

Now we will demonstrate condition ii. Define, as in theorem 33,

B÷ ={p œ M | kl(pú||p) < ÷
2
, Var[log(pú(X)/p(X))] < ÷

2}
´{p œ M | E log2(pú(X)/p(X)) < ÷

4 · 1}
(52)
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since Var[log(pú(X)/p(X))] ‚ kl(pú||p)2 Æ E log2(pú(X)/p(X)).
Fix N . First we will delineate a volume in S(‹m, ‹m, Lm) for any m > 0 that is
within B÷N . Using the definition of ›, we can label a v

ú
m œ S(‹m, ‹m, Lm) such that

E[log(pú(X)/pvú
m

(X))2] Æ 2›m. Note that if there exists a v œ S(‹m, ‹m, Lm) such that for
some flm > 0 and all k, b, (1 + flm) Ø vk,b

vú

m,k,b
Ø (1 + flm)≠1 then

E[log(pú(X)/pv(X))2] Æ8›m + 4E log2(pvú
m

(X)/pv(X))
Æ8›m + 4 log2(1 + flm)E|X|2.

(53)

Now pick, for large enough m,

flm =

Û

÷4
N ≠ 8›m

4E|X|2 Æ exp
A

Û

÷4
N ≠ 8›m

4E|X|2

B

≠ 1

so that if (1 + flm) Ø vk,b

vú

m,k,b
Ø (1 + flm)≠1 for all k, b, then pv œ B÷m .

Fixing k, the probability under a Dirichlet(–k,b)b distribution of Wm,k = {vk | (1 + flm) Ø
vk,b

vú

m,k,b
Ø (1 + flm)≠1 ’ b} (depicted in Fig. S6(A)) is, considering the case where v

ú
m is on

one of the corners of the simplex {vk | vk,b Ø ‹m}, at least

Vm,k =
3

C1‹
(
q

b
(–b·1≠1))

m

4

1

C2(‹mflm)|B̃|≠1
2

where the first term is a lower bound on the density and the second on the volume of
Wm,k and C1, C2 are constants depending on |B̃|. C1 > 0 as infk,b –k,b > 0. As well, one
may check that the volume is minimized should v

ú

m,k,b = ‹m for all but one b; in this
case, the volume forms a particular diamond-like shape with side-lengths scaled as ‹mflm

and dimensionality |B̃| ≠ 1 (Fig. S6(B)), (if v
ú

m,k,b = 1 ≠ (|B̃| ≠ 1)‹m, then the condition
vk,b Ø (1 + flm)≠1

v
ú

m,k,b & flm does not a�ect the Wm,k for large m as ‹m æ 0) (Fig. S6).

Now we will lower bound the probability of B÷N by the probability of the above defined
volume for a particular m, mN . Call ” = 1 ≠ 1≠(c1+c2)

c3/2 > 0 and define

mN =
G

3

÷
4
N

16C

4≠1/c3
H

. N
1≠”

so that 8›mN Æ 1
2 ÷

4
N for all m Ø mN , and mN æ Œ. Now,

log(�(B÷N )) Ø log

Q

c

a

fi(mN )
Ÿ

kœBo
LmN

VmN ,k

R

d

b

& log(fi(mN )) +

Q

a|Bo
LmN

| ≠
ÿ

k,b

–k,b · 1

R

b log(‹≠1
mN

)

≠ |Bo
LmN

|(|B̃| ≠ 1) log(fl≠1
mN

)

& log(fi(mN )) ≠ |B|LmN log(‹≠1
mN

) ≠ |B|LmN log(fl≠1
mN

).

(54)

For the first term, due to condition 29, (c1 + c2) > (1 ≠ ”)Ê > (1 ≠ ”)(c1 + c2), so,

log fi(mN ) ≥ ≠m
Ê
N & ≠N

(1≠”)Ê & ≠N
c1+c2 .

The second term has
|B|LmN log(‹≠1

mN
) . mN

(c1+c2) . N
(1≠”)(c1+c2)

.

Finally, for the third, note that since 8›mN Æ 1
2 ÷

4
N ,

log(fl≠1
mN

) . ≠ log(÷4
N ≠ 8›mN ) . ≠ log(÷4

N ) . ≠ log(N).
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A

B

Figure S6: (A) Example of a set Wm,k (solid gray) where (1+flm) Ø vk,b

vú

m,k,b
Ø (1+flm)≠1 ’ b

on �
B̃

for a particular k and m when |B| = 3. (B) Depiction of minimum volume possible.
The dashed region represents those transition probabilities that have components less than
‹m.
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Thus,
log(�(B÷N )) & ≠N

(1≠”)(1+Ê)c2 & ≠N
(c1+c2) = ≠N÷

2
N .

Finally, for condition iii, note

�(P \ PN ) = fi(m > N) +
N

ÿ

m=1
fi(m)(1 ≠ �(S(‹Õ

N , ‹m, Lm) | S(0, ‹m, Lm))).

From lemma 34, we have, for C, C
Õ
, ‘ > 0, the second term is dominated by

N
ÿ

m=1
fi(m) log �(S(0, ‹m, Lm))

�(S(‹Õ

N , ‹m, Lm)) .
N

ÿ

m=1
|B|Lm‹

Õ‘
N

.‹
Õ‘
N LN |B|LN

. exp(≠2‘CN
Ê)

(55)

for some C > 0. On the other hand, since one may check that fi(m + 1)/fi(m) < 1/2 for all
L, we have fi(m > N) Æ fi(N). Thus,

log �(P \ PN ) . ≠N
Ê

.

Now we may write, for any ‘ > 0, since Ê > c1 + c2

log(log �(P \ PN )e(1+‘)N÷2
N �(B÷N )≠1) . ≠N

Ê + N
c1+c2 + N

(1≠”)Ê æ ≠Œ.

H.3.3 Use in practice

Theorem 35 reveals that the choice of prior controls a kind of bias-variance tradeo� in the
model’s posterior. In particular, from condition 29 we have

c3 > 2(1 ≠ (c1 + c2)) (56)
Decreasing the prior hyperparameters c1 and c2 decreases the width of the posterior dis-
tribution (which plays the role of variance). However, reducing c1 and c2 forces down c3
(by the definition of ›), and this reduces the weight that the prior places on larger sieves
that can match the data distribution better (i.e. sieves with lower ›(‹, ‹, L) values), conse-
quently increasing the model’s bias. When c1 and c2 become low enough, the bias becomes
overwhelming, equation 56 is violated, and consistency is no longer guaranteed.
In practice it is often sensible heuristically to set ‹m = 0. In the case, for instance, of
short-read sequencing data, there’s relatively little correlation between the letters of the read
and where it terminates. The probability of stopping is thus often similar across di�erent
kmers, even when comparing among kmers of di�erent length. As the posterior concentrates
at a roughly constant stopping probability, even a low one, ‹m quickly becomes irrelevant as
it decays to zero exponentially. When ‹m = 0, the prior simplifies: it can be written as a
distribution over lags fi(L) times independent Dirichlet priors on each ML for L œ {1, 2, . . .}.
The prior over lags takes the form

log fi({m | Lm = L}) ≥ ≠|B|
Ê
c2

L
.

Since Ê > c2, we may write Ê
c2

as 1 + c for a small c > 0.

I Toy models

In this section we describe in depth our simulation experiments.

I.1 Finite lag models

This subsection describes experiments conducted to study in practice the finite lag consistency
results described in Sections E and F, and includes details on the results presented in Section 2
and Figure 2.

60



I.1.1 Setup

To simulate data, we used an AR model with parameters ◊ = (A, B) defined by the function,

fk(A, B) = softmax

Q

a(1 ≠ —
ú)

L
ÿ

l=1

ÿ

bÕœBo

Ab,l,bÕkl,bÕ + —
ú

L
ÿ

l,lÕ=1

ÿ

bÕ,bÕÕœBo

Bb,l,lÕ,bÕ,bÕÕkl,bÕklÕ,bÕÕ

R

b

bœB̃

(57)
where Bo = B fi {ÿ} and kl,b is 1 if kl = b and 0 otherwise. The AR model thus takes the
form of a multi-output logistic regression, with —

ú controlling the contribution of the pairwise
interaction terms. In each independent simulation, rows of the matrix A were sampled
following,

(Ab,l,bÕ)b ”=$ ≥ (5/L)(Categorical), A$,l,bÕ = ≠1.5/L.

for each l, b
Õ, where (Categorical) denotes a one-hot encoded sample from a Categorical

distribution with uniform probabilities. The matrix B was generated similarly,
(Bb,l,lÕ,bÕ,bÕÕ)b ”=$ ≥ (5/L

2)(Categorical), B$,l,lÕ,bÕ,bÕÕ = ≠1.5/L
2
.

for each l, l
Õ
, b

Õ
, b

ÕÕ. Simulations were repeated five times for each —
ú value. We set L = 5.

We then fit AR and BEAR models that lack the pairwise terms. In particular, we optimized
A alone, setting B = 0, i.e. ◊ = (A, 0). For the AR models, we trained ◊ using maximum
likelihood, and for the BEAR models, we trained the h, ◊ hyperparameters using empirical
Bayes. In both cases, we trained without mini-batching, using 1000 steps of the Adam
optimizer with a training rate of 0.05 [37].
To approximate the KL divergence and total variation distance between the models and
the data, 2,000 independent sequences were sampled from the data-generating distribution
p

ú and used to calculate averages of log (pú(X)/p(X)) and 1
2 |1 ≠ p(X)/p

ú(X)| respectively,
where p is either the maximum likelihood estimator (for the AR models) or the posterior
predictive (for the BEAR models, estimated using the maximum a posteriori value). (Note
that the total variation distance is equal to half the L

1 distance since the set of sequences is
countable.)
The parameter A is not identifiable, so to compare between the value of A inferred by the
models and the true data-generating value, we transformed A to a canonical representation.
Define Ãb,l,bÕ = Ab,l,bÕ ≠ A$,l,bÕ and define the canonical representation

A
can
b,l,bÕ = Ãb,l,bÕ ≠ 1

|Bo|

Q

a

ÿ

bÕÕ

Ãb,l,bÕÕ ≠ 1
L

ÿ

lÕ,bÕÕ

Ãb,lÕ,bÕÕ

R

b .

Proposition 36. Two linear AR matrices A, A
Õ define the same linear AR model of lag L

if and only if A
can = A

Õcan.

Proof. Define the vector space

V = {v œ RL◊B
o

| ’i, j,

ÿ

bÕ

vi,bÕ =
ÿ

bÕ

vj,bÕ}.

One hot encodings of sequences of length L are contained in V . As well, it can be seen that
V is spanned by the vectors (ei,b ≠ ei,bÕ)1ÆiÆL,b”=bÕœBo (where ei,b is the indicator of position
i, b) and the vector consisting of ones in each entry. This basis of V is made up of linear
combinations of one hot encodings of sequences of length L and thus the span of one hot
encodings of sequences of length L is V . The orthogonal complement of V is spanned by
(ei ≠ e1)1<iÆL where ei is 1 at position j, b if j = i and 0 otherwise. The transformation

v ‘æ

Q

avi,b ≠ 1
|Bo|

Q

a

ÿ

bÕÕ

vi,bÕÕ ≠ 1
L

ÿ

iÕ,bÕÕ

viÕ,bÕÕ

R

b

R

b

1ÆiÆL,b”=bÕœBo

preserves V and annihilates the orthogonal complement of V and is thus the orthogonal
projection onto V , PV .
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Figure S7: Frobenius norm between the canonical representation (Section I.1) of the AR
model parameters ◊ inferred by fitting an AR model with maximum likelihood and those
inferred by fitting the BEAR model with empirical Bayes, in the well-specified (—ú = 0) case.
Thick lines show the average across five independent simulations (small lines). Note that
the di�erences between the two models are indistinguishable relative to the variation across
datasets and the variation as dataset size increases.

Thanks to the softmax in Equation 57, two linear AR matrices A and A
Õ define the same

linear AR model if there is a constant C such that for all sequences k of length L and b œ B̃,
L

ÿ

l=1

ÿ

bÕœBo

Ab,l,bÕkl,bÕ =
L

ÿ

l=1

ÿ

bÕœBo

A
Õ

b,l,bÕkl,bÕ + C.

This is equivalent to the condition
L

ÿ

l=1

ÿ

bÕœBo

Ãb,l,bÕkl,bÕ =
L

ÿ

l=1

ÿ

bÕœBo

Ã
Õ

b,l,bÕkl,bÕ

for all k, b and thus to the condition
PV Ãb = PV Ã

Õ

b

for all b.

I.1.2 Results

We first fixed L at the same value as the simulation data, to study the e�ect of the structured
prior in the BEAR model. Figure 2A shows the convergence in KL of each model as the
dataset size increases, and Figure S8 the convergence in total variation distance. Figure 2B
shows the convergence of the hyperparameter h in the BEAR model. In Figure S7, we
compare the parameter A inferred with the AR model to the true data-generating value
using the Frobenius norm of the canonical representation of each; likewise for the parameter
A inferred with the BEAR model. In this well-specified case, we see that the BEAR model
parameter estimate converges just as quickly as the AR model.
Next we considered inference of L. We simulated data from models with di�erent L values
(L œ {3, 4, 5}) and —

ú = 0. We computed the expected value of L under the posterior with a
uniform prior on lags from 1 to 8. Figure S9 shows that the inferred lag converges to the
true data-generating value.

I.2 Infinite lag models

This subsection describes experiments conducted to study the infinite lag (nonparametric)
consistency results of Section H in practice.
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Well-specified Low misspecification High misspecification

A. Density estimation B. Parameter estimation

Figure S8: As in Figure 2A, except using the total variation distance in place of the KL
norm.

Figure S9: Mean of the BEAR model posterior over lags, as a function of dataset size. Thick
lines show the average across five independent simulations (thin lines).

I.2.1 Setup

To generate from a distribution that was not a finite lag AR model, we chose the first letter
in each sequence X uniformly from the alphabet B, then sampled the rest of the sequence
following,

p(Xi = b|X1, . . . , Xi≠1) Ã
i≠1
ÿ

l=1
l
≠2

ÿ

bÕœBo

Ab,l,bÕXi≠l,bÕ .

In each independent simulation, the parameter A was sampled as Ab,l,bÕ ≥ Bernoulli(0.2) for
each l, b and b

Õ ”= $, and as Ab,l,bÕ ≥ (0.2)(Bernoulli(0.2)) for each l, b and b
Õ = $.

Following Section H.3.3, we set ‹m = 0 and used the prior on lags fi(L) Ã exp(≠4(1+c)L).
We used a Je�reys prior (–k,b = 1/2 for all k, b) and took the maximum a posteriori value of
L and v. We also considered the maximum likelihood estimator of L (i.e. with the prior
dropped). To approximate the KL divergence and the total variation distance, we used
30,000 samples; the training procedure was otherwise the same as in Section I.1.

I.2.2 Results

We examined the convergence of the posterior predictive distribution of the BEAR model for
di�erent values of the prior hyperparameter c. In all cases we see convergence to p

ú in both
total variation and KL (Figure S10AB). Decreasing c produces a longer-tailed prior, making
the maximum a posteriori value of L diverge more quickly with dataset size (Figure S10C).
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A B C

Figure S10: Convergence in total variation (A) and KL (B) between data-generating dis-
tribution and model. Thick lines indicate averages across five individual simulations (thin
lines). (C) Maximum a posteriori estimator of the lag L in an individual example simulation.

In this example, decreasing c yields faster convergence to p
ú. Using the maximum likelihood

value of L (equivalent to an improper uniform prior) yields even faster convergence to p
ú.

As discussed in Section H.3.3, lower c corresponds to larger c2, and so is expected to yield
lower posterior variance but larger bias; in this simulation, the reduction in bias clearly
contributes more to accurate density estimation. This may be because the data-generating
distribution is close enough to a finite-lag Markov model that the asymptotics of the BEAR
model behave similarly to the finite-lag case.

I.3 Hypothesis testing

This subsection describes experiments conducted to study the hypothesis testing consistency
results of Section G in practice.

I.3.1 Setup

We used the same setup as in Section I.1.1, including the same training and divergence
estimation procedures, and sampled datasets from a linear AR model with di�erent values
of —

ú.
In the goodness-of-fit test, we set p̃ (the model we aimed to test) to a linear AR model with
the true, data-generating value of the parameter A but —

ú = 0. We embedded the same
linear model, with the same value of A and —

ú, in the BEAR model to compute a Bayes
factor. Here we set h = 10≠3, and fixed L at the data-generating value, L = 5.
In the two-sample test, instead of comparing to p̃ directly, we compared to samples drawn
from p̃. Here we used a Je�reys prior rather than embed a more complex AR model. We
explored both fixing L = 5 and using a truncated uniform prior fi(L) = 1/8 for L from 1 to
8 (to evaluate both forms of the consistency results in Section G).

I.3.2 Results

We first examined the consistency of the goodness-of-fit test, using the Bayes factor BF =
p((Xn)N

n=1)/p̃((Xn)N
n=1) which compares the probability of the data under the BEAR model

to the probability under the model of interest p̃. Figure S11A shows the Bayes factor diverge
to +Œ when the data does not match the model (—ú

> 0), but diverge to ≠Œ when the
data does match the model (—ú = 0). We also explored the Bayes factor as function of h,
holding the amount of data fixed at N = 2500 (Figure S11B). In the limit h æ 0, the BEAR
model reduces to its embedded AR model p̃, and so the Bayes factor converges to 0. On
the other hand, in the limit h æ Œ, the BEAR model becomes di�use and the Bayes factor
diverges to negative infinity (accepting the null hypothesis). Intermediate values of h in
e�ect “center” the test at the model p̃ we aim to evaluate, increasing its power to detect
di�erences between the data and the model [6].
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Figure S11: (A) Log Bayes factor for the BEAR goodness-of-fit test. (B) Log Bayes factor as
a function of the hyperparameter h, with peaks identified by red points. In both subfigures,
thick lines are averages across five simulations (thin lines).
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Figure S12: (A) Log Bayes factor for the BEAR two-sample test, using fixed L. (B) Log
Bayes factor for the BEAR two-sample test, marginalizing over a truncated prior on L. In
both subfigures, thick lines are averages across five simulations (thin lines). Dataset size is
the size of each individual dataset that the two-sample test compares, not their pooled size.

We next examined the consistency of the two-sample test, using the Bayes factor bf =
p((Xn)N

n=1)p((X Õ
n)N Õ

n=1)/p((Xn)N
n=1, (X Õ

n)N Õ

n=1), which compares the probability of the two
samples being drawn from separate distributions to the probability of their being drawn from
the same distribution. Both when using the Bayes factor computed with fixed lag L = 5,
and when using the Bayes factor computed by marginalizing over a truncated uniform prior
on L, we find consistency, with the Bayes factor diverging to +Œ when —

ú
> 0 and to ≠Œ

when —
ú = 0 (Figure S12).

J Scalable inference

In this section we describe how BEAR models were trained at large scale on real data.

J.1 Stochastic gradient estimates

Let S be a set of length L kmers k in B̂L chosen uniformly at random (a minibatch). Then,
we can form an unbiased stochastic gradient estimate of the marginal likelihood as

Òh,◊ log p(X1:n|L, h, ◊) ¥ |B̂L|
|S|

ÿ

kœS

Òh,◊ log
5�(

q

b
1
h fkb(◊))

r

b �( 1
h fkb(◊))

r

b �( 1
h fkb(◊) + #(k, b))

�(
q

b
1
h fkb(◊) + #(k, b))

6

.

Note also that it is straightforward to parallelize the training algorithm by sending individual
minibatches to individual processors at each step, then compiling the results.
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Table S1: Dataset sizes In nucleotides (nt). Dataset abbreviations as in Table 1.

Dataset Total nt Max. sequence length (nt)
YSD1 151,691,700 150

A. th. 1 3,238,613,507 100
A. th. 2 2,485,960,312 100
A. th. 3 6,831,756,793 100
PBMC 34,935,800,234 91

HL 24,185,778,348 91
GBM 21,506,001,361 65
HC 2,283,930,547 202
CD 1,052,405,190 202
UC 956,179,237 202

Bact. 1,388,421,381 6,358,077

J.2 Extracting summary statistics

KMC counts kmers in large sequence datasets, outputting a list of kmers k and counts #k

that is typically too large to fit in memory. However, our inference procedure requires full
count vectors #(k, ·). We take advantage of the lexicographical ordering of KMC’s output
to merge kmer counts into count vectors in a (single pass) streaming algorithm. We also
take advantage of the lexicographical ordering to construct count vectors #(k, ·) for all
lags L given just KMC’s output for the largest lag L, thus reducing the number of times
KMC needs to be run; this too is done using a single pass streaming algorithm. In order to
quickly evaluate models by heldout marginal likelihood, it is convenient to store together
the counts #(k, ·) associated with both the training and testing datasets. We accomplish
this by merging the KMC output for di�erent datasets as part of the same single pass
streaming algorithm. This dataset merging is also useful in training the reference-based
models proposed in Section L.1, and we merge reference genome counts with sequencing
dataset counts in the same way.

J.3 Code availability

Code for implementing BEAR models and documentation (including a tutorial for
getting started and reproducing basic results) are available at https://github.com/

debbiemarkslab/BEAR; the code is available under an MIT license. The models are imple-
mented using TensorFlow and TensorFlow Probability, available under an Apache License
[2, 15]. The code also uses NumPy [28], SciPy [77], and BioPython [10] (all BSD 3-Clause
licenses). KMC is available under a GNU GPL 3 license.

K Datasets

Here we briefly describe each data type and dataset used in evaluating BEAR models, along
with some motivation for each. NCBI accession numbers and links for each dataset can be
found in the supplementary table Datasets.xlsx. Dataset sizes are listed in Table S1. All
data is publicly available for research use. Patient data was anonymized by the creators of
each dataset, and further details on ethical oversight and patient consent can be found in
the cited links and papers.

K.1 Whole genome sequencing

Whole genome sequencing is a standard technique for measuring genome sequences. It is
often the starting point for running a genome assembly algorithm or variant caller, which
aims to infer (non-probabilistically) the underlying genome from the read data. Directly
modeling sequencing reads can be interesting, however, since (a) there are typically portions
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of the genome that are di�cult to reliably assemble, such as centromeres and telomeres,
(b) there may not be enough data to reliably detect variants via standard variant callers or
assembly, and (c) although the experiment may be directed towards a particular organism’s
genome other DNA may still be present.

• YSD1 This is a bacteriophage found in the waterways of the United Kingdom
which infects Salmonella. It was chosen as an example of a relatively small genome
sequencing experiment (phage genomes are short). The sequencing experiment was
reported in Dunstan et al. [18].

• A. th. Arabidopsis thaliana is a small flowering plant, used as a model organism
in plant research. Structural variants are extremely complicated in plants, making
traditional variant-calling methods challenging, and kmer-based analysis approaches
are of considerable ongoing interest in the literature (see e.g. Voichek and Weigel
[78]). The datasets are from the 1001 Genomes Consortium, https://1001genomes.

org/ [1].

K.2 Single cell RNA sequencing

Single cell RNA sequencing is an increasingly ubiquitous technique for characterizing the
transcriptional state of cells. It is used to discover new cell types, track development and
disease, as a readout in cellular engineering e�orts, and more. Most analysis techniques
coarse-grain the data by just counting transcripts or isoforms. Statistical modeling of reads
at the nucleotide level may lead to new insight into the joint distribution of sequences and
their expression levels, accounting for such phenomena as somatic variation and RNA editing.
Single cell RNA sequencing is increasingly used as a method for understanding tumors and
their microenvironment; cancer involves both genome mutations as well as transcriptional
changes.

• PBMC Samples of peripheral blood mononuclear cells are easy to collect from
humans, making this a standard type of single cell RNA sequencing dataset. These
cells were taken from a healthy donor. The dataset is from 10x Genomics, using its
v3 technology.

• HL These cells come from a human dissociated lymph node tumor, from a 19-year-
old male Hodgkin’s lymphoma patient. The dataset is from 10x Genomics, using its
v3 technology.

• GBM These cells were taken from a patient with glioblastoma, the most common
primary brain cancer in adults, and include both tumor and peripheral cells. The
dataset was reported in [13] and uses a distinct technology from 10x Genomics
methods.

K.3 Metagenomics

Metagenomics is an increasingly ubiquitous technique for characterizing microbiomes, in-
cluding human and environmental microbiomes. Analysis often proceeds by local assembly,
annotation of genes or taxa, etc. Statistical modeling of reads at the nucleotide level avoids
this coarse graining and can enable detection and analysis of changes in the microbiome
outside known genomic elements.
All three of the metagenomics datasets analyzed in the prediction experiments are from [44],
a study of inflammatory bowel disease (IBD) as part of the Integrative Human Microbiome
Project, and were taken from stool samples. IBD a�ects more than 3.5 million people
worldwide.

• HC This dataset was collected from a control patient without IBD.
• CD This dataset was collected from a patient with Crohn’s disease, a form of IBD

involving relapsing and remitting inflammation of the gastrointestinal tract.
• UC This dataset was collected from a patient with ulcerative colitis, a form of IBD

involving relapsing and remitting inflammation of the colon.
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We also examined metagenomics datasets from a study of kidney transplants [64]. Viral
transmission from donor to recipient has been associated with complications and increases the
risk of allograft failure. Schreiber et al. [64] performed metagenomic sequencing on patient
urine samples before and after transplant to assess viral transmission. Further description of
this dataset can be found in Section O.

K.4 Full assembled genomes

Comparisons between distant species are challenging due to complex and large scale genomic
changes over evolutionary time. However, generative probabilistic models of protein sequences
separated by billions of years of evolution has yielded direct insight into their functional
constraints, as well as improved understanding of the large scale evolution of life on earth [31,
60]. As a first step towards extending these ideas to whole genomes, we analyzed diverse
bacterial genomes from across the tree of life.

• Bact. We examined reference bacterial genomes available in RefSeq [52]. Genomes
were selected to be taxonomically diverse, representing di�erent genera and families
from across the kingdom of Bacteria; the NCBI accessions are listed in Datasets.xlsx.

L Prediction experiments details

Here we provide details on the results reported in the Predicting sequences and Mea-
suring misspecification subsections of the results (Section 6).

L.1 Model architectures

• Linear The linear model is the same as that used in the toy experiments,

fk(A) = softmax
A

L
ÿ

l=1

ÿ

bÕœBo

Ab,l,bÕkl,bÕ

B

bœB̃

. (58)

• CNN We use a four layer convolutional neural network with the architecture:
input ‘æ convolution ‘æ elu ‘æ elu ‘æ softmax ‘æ output, where the convolution
is one-dimensional and the elu layers are exponential linear units. Layer normal-
ization was used before each of the elu nonlinearities [4]. Exact details on the
model architecture can be found in the supplementary code (Section J.3, function
make_ar_func_cnn in ar_funcs.py).

• Reference-based Biologists often make use of a reference genome – a canonical
example sequence that is intended to be representative of a species – in analyz-
ing genome sequencing data; reference transcriptomes are used similarly in RNA
sequencing analysis, etc.. Reads are aligned to the reference in order to infer the
portion of the underlying genome or transcriptome that the read originated from.
We built on this basic idea to design an AR model that uses a reference sequence to
make predictions. In particular, let #ref(k, b) denote the number of times the length
L + 1 kmer (k, b) occurs in the reference sequence(s). One way to form a prediction
is by normalizing these counts for each lag, i.e. fk,b = #ref(k, b)/

q

bÕ #ref(k, b
Õ). We

go a step further by (1) accounting for possible mutational or sequencing noise using
a Jukes-Cantor mutation model, and (2) accounting for short reads by learning the
stop symbol probability. Our complete model is

fk,b(‹, ·) = (1 ≠ ‹)
C

e
≠· #ref(k, b)

q

bÕ ”=$ #ref(k, bÕ) + (1 ≠ e
≠· ) 1

|B|

D

+ ‹I(b = $) (59)

where · œ [0, Œ) is the (scalar) Jukes-Cantor time parameter, ‹ œ [0, 1], and I(·) is
the indicator function that takes value 1 when the expression is true and 0 otherwise.
The reference sequences for each dataset are listed in the supplementary table
Datasets.xlsx. In analyzing human single cell RNAseq data we pooled multiple
reference transcriptomes. We included the reverse complement of each sequence as
well as the original sequence when constructing the reference kmer transition counts.
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Table S2: Training parameters Train-test splits and Adam optimization parameters.
Dataset abbreviations as in Table 1. Accum. steps stands for accumulation steps, the number
of steps gradients were accumulated over. Paired end reads were treated as separate and
split into train and test sets independently.

Dataset Train/test split Epochs Learning rate Accum. steps
YSD1 3:1 on reads 500 0.01 10

A. th. 1 3:1 on reads 15 0.02 100
A. th. 2 3:1 on reads 15 0.02 100
A. th. 3 3:1 on reads 3 0.02 100
PBMC 3:1 on reads 3 0.02 100

HL 3:1 on reads 5 0.02 100
GBM 55:23 on cells 4 0.02 100
HC 3:1 on reads 10 0.02 100
CD 3:1 on reads 10 0.02 100
UC 3:1 on reads 10 0.02 100

Bact. 500:166 on genomes 2000 0.01 1

L.2 Training

The maximum marginal likelihood lag L was chosen for the vanilla BEAR model (with prior
concentration parameter –k,b = 0.5 for all k, b). We found in general that the posterior
under a uniform prior on lags was strongly peaked at a particular lag (Figure S15). All other
models (both BEAR and AR) were run with this same lag (that is, we did not integrate
over all lags in the BEAR model). Using a fixed lag L as a comparison point provides a
controlled study of the e�ects of switching from an AR model of transition probabilities to
the BEAR model’s AR-structured prior, and choosing L based on the vanilla BEAR model
ensures that the comparison to the vanilla BEAR model is conservative.
The kmer count summary statistics were shu�ed once before training (in chunks, due to the
large size dataset size), and visited in the same order across epochs. Training was initialized
only once; preliminary experiments suggested that training was robust to changes in the
random seed. Gradient updates were computed in parallel across two GPUs, at double
precision. The minibatch size was 250,000. Gradients were accumulated across minibatches
to reduce variance (that is, the gradients from multiple minibatches were added together),
and optimization was performed using Adam [37]. Models were trained to convergence.
Detailed training hyperparameters are displayed in Table S2. The CNN models used 30
filters of width 8, except in the case of YSD1 where the filter width was reduced to 5 (for
both BEAR and AR models); other neural network architecture hyperparameters are given
in the supplementary code (function make_ar_func_cnn in ar_funcs.py). Experiments
were run on an internal cluster (Tesla K80, Tesla M40 and Tesla V100 GPUs).

L.3 Evaluation

Accuracy was evaluated based on the maximum likelihood prediction (in the case of AR
models) and the maximum a posteriori prediction (in the case of BEAR models). Ties in
prediction probabilities were resolved uniformly at random.
The perplexity was calculated based on the heldout test dataset as

exp
C

≠ log p((Xn)Ntest
n=1 )

qNtest
n=1 |Xn|

D

(60)

where p((Xn)Ntest
n=1 ) is the probability of the heldout data conditional on the maximum

likelihood parameter value (in the case of AR models) or the marginal probability of the
heldout data under the posterior predictive distribution (in the case of BEAR models).
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Table S3: Predictive accuracy. Whole genome sequencing data YSD1: A Salmonella
phage. A. th.: Arabidopsis thaliana, a plant (datasets represent di�erent individuals). Single
cell RNA sequencing data PBMC: peripheral blood mononuclear cells, taken from a healthy
donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic
sequencing data HC: healthy (non-CD and non-UC) controls. CD: Crohn’s disease. UC:
ulcerative colitis. Full assembled genomes Bact.: Bacteria. Models Van: Vanilla (constant).
Lin: Linear. CNN: convolutional neural network. Ref: reference genome/transcriptome
model (only applicable to datasets with a reference).

Dataset AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.
YSD1 33.73% 35.86% 90.8% 94.69% 94.75% 94.75% 94.71%

A. th. 1 35.47% 35.59% 53.81% 86.03% 86.32% 86.34% 86.50%
A. th. 2 35.32% 35.61% 70.41% 85.36% 85.71% 85.77% 85.66%
A. th. 3 34.94% 35.41% 60.94% 76.46% 78.51% 78.52% 77.13%
PBMC 34.36% 34.76% 67.39% 87.83% 88.16% 88.16% 87.99%

HL 34.67% 35.59% 67.17% 87.68% 87.96% 87.96% 87.82%
GBM 30.71% 30.9% 61.3% 78.99% 80.44% 80.42% 81.43%
HC 32.98% 33.54% – 83.86% 85.03% 85.06% –
CD 32.13% 32.32% – 81.72% 83.30% 83.32% –
UC 32.27% 32.23% – 82.71% 84.26% 84.27% –

Bact. 33.89% 34.78% - 35.27% 35.28% 35.28% -

L.4 Further performance results

The maximum marginal likelihood lag L (under the vanilla BEAR model) for each dataset is
reported in S4. Interestingly, the optimal lags are intermediate between the large kmer lengths
(e.g. more than 30) often used for non-probabilistic assembly algorithms (e.g. [68]) and the
small kmer lengths (e.g. less than 10) often used as features in clustering or classification
algorithms (e.g. [3]). The marginal likelihood was in general strongly peaked at a particular
value (Figure S15). Increasing the lag generally led to slightly better performance in terms
of both perplexity and accuracy for the non-vanilla BEAR models and the AR models, but
(unsurprisingly) worse performance for the vanilla BEAR model; the increases in AR model
performance were far from enough to make up the di�erence with BEAR models (Table S5).
Plots of training loss versus wall clock time for an AR model and the corresponding BEAR
model (with the same fixed lag L) are shown in Figure S13; the loss for each is normalized
by the minimum and maximum values to be comparable (the BEAR model substantially
outperforms the AR model). The BEAR model converges at least as fast as the AR model.
To evaluate performance as a function of dataset size, we subsampled reads uniformly at
random without replacement from the YSD1 dataset, and retrained the models on the smaller
datasets (Figure S14). The original dataset had ≥ 1000◊ coverage of the bacteriophage
genome, meaning that on average 1000 reads were observed overlapping each position in the
genome. Note that the vanilla BEAR model performance falls o� substantially relative to
the BEAR model below ≥ 3◊ coverage (in the case of the reference model) (Figure S14BD)

M Generation details

Here we provide details on the results reported in the Generating samples subsection of
the results (Section 6).
The CNN BEAR model was trained on the full (combined train/test data) Arabidopsis
thaliana 1 dataset, with L = 17, using identical training parameters as in the performance
experiments (Table S2). 50 bases were generated on the end of reads using the maximum
a posteriori value of v, and conditional on a stop symbol not occurring, i.e. following the

70



Table S4: Maximum marginal likelihood lag L. Maximum marginal likelihood lag L

for the vanilla BEAR model. Dataset abbreviations as in Table 1.

Dataset L

YSD1 13
A. th. 1 17
A. th. 2 17
A. th. 3 18
PBMC 18

HL 17
GBM 17
HC 16
CD 16
UC 16

Bact. 9

Table S5: Performance with increasing lag L. The symbol † indicates the maximum
marginal likelihood lag L for the vanilla BEAR model. Dataset abbreviations as in Table 1.

Perplexity
Dataset Lag AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.
YSD1 13† 3.953 3.873 1.266 1.165 1.144 1.144 1.145
YSD1 20 3.937 3.855 1.352 1.177 1.138 1.138 1.138
Bact. 9† 3.831 3.794 - 3.774 3.774 3.774 -
Bact. 12 3.807 3.772 - 3.776 3.741 3.738 -

Accuracy
Dataset Lag AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.
YSD1 13† 33.73% 35.86% 90.8% 94.69% 94.75% 94.75% 94.71%
YSD1 20 34.19% 36.3% 87.21% 94.88% 94.97% 94.98% 94.91%
Bact. 9† 33.89% 34.78% - 35.27% 35.28% 35.28% –
Bact. 12 34.42% 35.13% – 35.54% 35.86% 35.93% –

Figure S13: Relative loss (normalized to be between 0 and 1 based on minimum and maximum
values) as a function of wall time for a CNN AR model versus the corresponding BEAR
model on the YSD1 dataset (L = 20).
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Figure S14: Perplexity (AB) and accuracy (CD) of AR and BEAR models as a function of
total dataset size, measured in terms of coverage (coverage is the expected number of reads
from each position in the genome; it is linearly proportional to the total number of reads).
Subfigures A and C show results for the the linear AR model (and its BEAR embedding),
and B and D for the reference-based AR model (and its BEAR embedding). The lag was
held fixed in all cases.

distribution

pextr(Xi = b|k = (Xi≠L, ..., Xi≠1)) = fk,b(◊)/h + #(k, b)
q

bÕ ”=$ fk,bÕ(◊)/h + #(k, bÕ) (61)

for b ”= $ and p(Xi = $|k) = 0, where recall #(k, b) is the number of times b is seen succeeding
k in the data, and ◊ and h are the learned hyperparameters. The values of #(k, b) are
retrieved from the dataset e�ciently using the Jellyfish kmer indexing package [46]. 50
extrapolations each of length 50 were sampled without replacement using the stochastic
beam search method proposed by Kool et al. [40].
We performed local assembly using SPAdes, starting from the last 17 bases of the read, and
recorded the portion of each sca�old returned by SPAdes that extended in the direction of
extrapolation. We used the ––careful flag in SPAdes, following Voichek and Weigel [78].
The colors in Figure 3A correspond to unique paths through the 17-mer de Bruijn graph.
Figure 3B plots the per nucleotide perplexity of the sampled extrapolations, i.e.

exp
A

≠
ÿ

b

pextr(b|k = (Xn,i≠L, ..., Xn,i≠1)) log pextr(b|k = (Xn,i≠L, ..., Xn,i≠1))
B

where n indexes the sampled extrapolation and i the position in the sample.
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C D

Figure S15: Marginal log likelihood under the vanilla BEAR model as a function of lag L

for the bacteriophage YSD1 (A), glioblastoma GBM (B), control metagenomic HC (C) and
bacteria Bact. (D) datasets. Note the large scale (upper left) of each plot.

N Visualization details

Here we provide details on the results reported in the Visualizing data subsection of the
results (Section 6).

N.1 Latent representation model

As a local latent representation model, we used a categorical probabilistic principal component
analysis (pPCA) model, with automatic relevance determination [41, 71]. We trained on
kmers (kt, bt) of length L + 1 = 18 and used D = 20 latent dimensions. The complete model
was,

Ÿd ≥ Exponential for d œ {1, . . . , D}
Wd ≥ Normal(0L+1,|B|, 1/Ÿd) for d œ {1, . . . , D}
W0 ≥ Normal(0L+1,|B|, 1)

zt ≥ Normal(0D, 1)
(kt, bt) ≥ Categorical (softmax(W · zt + W0))

(62)

where t œ {1, . . . , T} runs over all length L+1 kmers in the dataset, 0L+1,|B| is an L+1◊ |B|
matrix of zeros, and 0D is a length D vector of zeros. Here the local variable zt provides a
representation associated with the kmer (kt, bt), the global parameter W controls the factors
of variation, and Ÿ determines the relevance of each factor through the variance of the prior
on W . We trained this latent representation model, and embedded it into a BEAR model,
in three stages.
Stage 1 First, we performed stochastic variational inference to learn the parameters of
the model [38, 41, 59]. In particular, we used normally distributed mean field posterior
approximations q(W ), q(z|k, b), and a deterministic approximation to Ÿ, and optimized the
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evidence lower bound (ELBO)

EW ≥q(W )

C

ÿ

k,b

#(k, b)
!

Ez≥q(z|k,b) log p (k, b|W, z) ≠ kl(q(z|k, b)||p(z))
"

+ log p (W |Ÿ) ≠ kl(q(W )||p(W ))
D

+ log p(Ÿ)

(63)

where #(k, b) denotes the number of kmers (k, b) seen in the data and the sum runs over
all k œ Bo

L, b œ B̃. For the local latent variable z, we use a guide (recognition network)
q(z|k, b) = Normal(µ(k, b), ‡(k, b)) where µ(k, b) and ‡(k, b) are each small CNNs. Gradients
with respect to the variational approximation parameters were taken using automatic
di�erentiation and the reparameterization trick (elliptical standardization), with one sample
for the Monte Carlo approximation at each step.
Stage 2 Once the pPCA model was trained, we approximated its conditional distribution.
In particular, we obtained a variational approximation to p(z|k, (kt, bt)T

t=1), namely q(z|k),
by optimizing the evidence lower bound

EW ≥q(W )

C

ÿ

k

#k
!

Ez≥q(z|k) log p (k|W, z) ≠ kl(q(z|k)||p(z))
"

D

. (64)

Note that q(W ) was held fixed, at the value learned in stage 1. q(z|k) was parameterized
analogously to q(z|k, b). Now we can approximate the conditional distribution of the pPCA
model as

p(b|k) ¥ EW ≥q(W )Ez≥q(z|k)p(b|W, z).
This defines an AR model.
Stage 3 Finally, we embedded the conditional pPCA AR model into a BEAR model and
optimized h via empirical Bayes (note that here we are not using empirical Bayes to train the
BEAR model’s embedded AR parameters ◊, but instead embedding a pretrained AR model).
Since the variational distribution q(W ) was highly concentrated at a single point, we used a
computationally convenient approximation to the marginal likelihood of the BEAR model,
moving the expectation over the global parameters outside the log marginal likelihood:

EW ≥q(W )

C

ÿ

k

log DirichletCategorical
3

#(k, ·)| 1
h
Ez≥q(z|k)p(b|W, z)

4

D

where DirichletCategorical (#(k, ·)|–k) denotes the probability of the count vector #(k, ·)
under a Dirichlet-Categorical distribution with concentration vector –k.
Training protocol and hyperparameters The entire variational inference and embedding
procedure was implemented using the Edward2 [72] probabilistic programming language
with a TensorFlow [2] back-end. We applied the method to the Hodgkin’s lymphoma single
cell RNAseq described in section K, using the same train/test split as for the performance
results in Section L. Optimization was performed with Adam with a batch size of 125, 000.
Gradients were accumulated over 200 steps. The three stages of training described above
were repeated iteratively four times until each converged. In each iteration, the first two
stages were trained for 5 epochs, and we used a decaying learning rate across iterations
{0.02, 0.02, 0.01, 0.005}; the third stage was trained for 100 batches with a constant learning
rate of 0.1 across all iterations.
Inference results At the end of training, the conditional pPCA AR model had a perplexity
of 4.28 on heldout data, while the BEAR model had a perplexity of 1.39.

N.2 Visualization and annotation

We next sought to understand in greater depth what the BEAR model had learned in the
lymphoma dataset.
Reference model We first aimed to understand how the model’s predictions di�ered from
predictions based on the reference transcriptome. On the full dataset (combined train/test)
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Figure S16: tSNE visualization of a cluster of single cell RNAseq reads colored by (A)
latent embedding distance to the mitochondrial reference genome and (B) latent embedding
distance from the sequencing adapter.

we compared the log probability of each read under the pPCA BEAR model to the log
probability of each read under a vanilla BEAR model trained on the reference transcriptome
(Figure 3C; see Datasets.xlsx for details on the reference transcriptome). We found a
substantial disparity between the two model’s predictions, with a number of reads having
high probability under the BEAR model but low probability according to the reference
model.
Alignments Single cell RNAseq analysis often begins by aligning reads to the reference
transcriptome; reads that do not align are typically discarded from further analysis. We
performed alignments on the read dataset with hisat2 [36] using parameters –reorder –no-hd

–n-ceil L,0,0.001 –no-sq -k 1 -p 4 and with the default hisat2 Homo sapiens GRCh38
genome index with transcripts and SNPs, available at https://genome-idx.s3.amazonaws.

com/hisat/grch38_snptran.tar.gz. Whether or not each read was successfully aligned
is indicated in Figure 3C. We observe that many of the reads with low probability under
both the pPCA BEAR model and the reference model are unaligned. We also observed
a cluster with a large number of unaligned reads, with high probability under the pPCA
BEAR model and relatively low probability under the reference model. We focused on a
subset of this cluster with particularly high probabilities under the pPCA BEAR model for
follow-up visualization (black box in Figure 3C).
Visualization The pPCA model provides a latent embedding of kmers in a D = 20
dimensional continuous space. We sought to visualize the representation of each sequence’s
kmers in a low dimensional space. To compare two sequences X, X

Õ, we defined a measure
of dissimilarity,

inf
i,iÕ

kl(q(z|Xi≠L:i)||q(z|X Õ

iÕ≠L:iÕ)) + kl(q(z|X Õ

iÕ≠L:iÕ)||q(z|Xi≠L:i)).

where i > L and i
Õ
> L index positions in X and X

Õ respectively. This dissimilarity measure
was used to define a distance matrix over reads in the Hodgkin’s lymphoma dataset, which
was passed to tSNE [74] to obtain a low-dimensional visualization (Figure 3D).
Annotation Observing the clusters in Figure 3D, we sought to determine where the reads
in each cluster likely originated from, and, by implication, what the reference transcriptome
model had trouble explaining in the data. We started by using NCBI’s BLAST tool [8] to
search for likely sources, and found hits against the mitochondrial genome and the transcript
of the gene JUND, part of the AP-1 early response transcription factor. We found that the
mitochondrial reads are from a nonreference haplotype, which explains why the reference
model gave them low probability. The low likelihood of the JUND reads under the reference
was due to a TG repeat region in the 3’ UTR; similar repeats are present in many variations
in di�erent transcripts, thus the particular kmer-base transitions in this case become less
likely. We also observed that many reads were chimeric, consisting of fusions of sequences
from various parts of the transcriptome with some portion of the sequence CTGTCTCTTAT-
ACACATCTCTGAACGGGCTGGCAAGGCAGACCG. The prefix CTGTCTCTTATACA-
CATCT is a standard Illumina Nextera adapter sequence https://support-docs.illumina.
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com/SHARE/AdapterSeq/illumina-adapter-sequences.pdf, and the remainder of the se-
quence is presumably part of the primer. The adapter is an experimental artifact (presumably
left in the read data due to inaccurate read trimming and quality control), and so is not
part of the reference human transcriptome.
We used the same dissimilarity measure as above to compare reads to the mitochondria refer-
ence genome (Datasets.xlsx) and to the adapter sequence CTGTCTCTTATACACATCTCT-
GAACGGGCTGGCAAGGCAGACCG (Figure S16). (The distance to each of these se-
quences was taken to be the minimum of the distance to the forward and reverse complements.)
Figure S16, along with the BLAST results for JUND, were the basis for the annotations in
Figure 3D.

O Hypothesis tests details

Here we provide details on the results reported in the Testing hypotheses subsection of
the results (Section 6).

O.1 Kidney transplant metagenomics

The Schreiber et al. [64] data is available for public download, as detailed in Datasets.xlsx.
The read data was pre-sorted into viral and non-viral reads, but we pooled each of these
to reconstruct the full sequencing experiment. We compared the day zero timepoint, i.e.
before transplant, to the 4-6 week timepoint, i.e. after transplant, for each patient for which
samples from both were available (note this did not include all patients in the study). We
used the BEAR two-sample test, with the Je�reys prior on v, and a truncated uniform prior
over lags 1 Æ L Æ 20. We cross referenced our two-sample test results with whether Schreiber
et al. [64] determined there to be likely JC polyomavirus (JCPyV) transmission.
The results are shown in Table S6, and suggest that JCPyV transmission is associated
with an overall shift in the patient microbiome at the sequence level. Patients indicated
with an asterisk were diagnosed as having JCPyV before receiving the transplant, and thus
the determination of whether the transplant transmitted JCPyV is less certain; for patient
wdk036, phylogenetic analysis suggested that the transplant did transmit JCPyV, while
for jns976 phylogenetic analysis suggested that it did not. Although the two-sample test
results show close correlation with whether or not there was transmission, we caveat them
by noting that for very small lags the Bayes factor rejects the null hypothesis for all patients;
the question of the most "biologically relevant" prior on the lag L is an open question.

O.2 A. thaliana hypothesis tests

Goodness-of-fit test We trained reference-based AR models (described in Section L.1) via
maximum likelihood on each A. thaliana sequencing dataset (the full dataset, with train/test
subsets combined). We used L = 17 in the AR model for all three datasets (corresponding
the vanilla BEAR maximum marginal likelihood lag for two datasets, see Table S4). We
embedded each trained AR model into a BEAR model to construct a goodness-of-fit test
(i.e. we used the learned f(◊)). We fixed L = 17 in the BEAR model (i.e. a deterministic
prior over L) to determine if there was misspecification at the same resolution as the AR
model. Figure 3E plots the Bayes factor as a function of h.
Two-sample tests We simulated sequencing reads based on the A. thaliana refer-
ence genome (Datasets.xlsx) using the ART Illumina [32] simulator with parameters
-ss HS20 -p -l 100 -m 200 -s 10 -f 30. We simulated roughly the same number
of reads as was in each real dataset. We examined the Bayes factor BF(L) =
p((Xn)N

n=1|L)p((X Õ
n)N Õ

n=1|L)/p((Xn)N
n=1, (X Õ

n)N Õ

n=1|L), computed using vanilla BEAR mod-
els for each term (Figure 3F). As control experiments, we cut each dataset (and the simulated
data) in half, and compared each of these halves to each other using the same two-sample
test; as shown by the dotted lines in Figure 3F, the two-sample test correctly accepts the
null hypothesis in these cases.
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Table S6: BEAR two-sample test results, performed on patient metagenome samples from
before and after kidney transplant. Bayes factors that reject the null hypothesis are colored
red, for easy comparison with whether or not JC polyomavirus (JCPyV) transmission was
detected. Asterisks * indicate patients that were already infected with JCPyV before the
transplant occurred.

Patient id JCPyV transmission log Bayes factor
ume111 True 110407
vpi912 False 234361
iwv346 False -955252
pqg516 False -504784
tvy653 True 70223
bgk952 False -357457

wdk036* True 3152401
jns976* False -199006
aag951 True 242877
qfv506 False -155391
qnx429 True 369129
poo581 False -290382
xph346 False -254856
mek642 False -348120

Individual log likelihood ratio To understand in detail the di�erences between the real
and simulated data, we computed the conditional individual Bayes factor log p(Xn|(Xn)N

n=1)≠
log p(Xn|(X Õ

n)N Õ

n=1) where (Xn)N
n=1 is the real data and (X Õ

n)N Õ

n=1 the simulated data. We
approximated the log likelihood using the maximum a posteriori value of the transition
parameter v under the vanilla BEAR model, and fixed L = 17. Computing this likelihood
e�ciently for each read requires retrieving counts #(k, ·) for each kmer k in the read, which
we accomplished using the Jellyfish kmer indexing package [46]. Histograms of the log
likelihood ratio of each read Xn in two of the A. thaliana datasets are shown in Figure 3G
(gray).
Annotation Observing the distinct peaks in Figure 3G, we sought to determine where the
reads in each originated from. We discovered that many reads in the outlier peak from
A. thaliana 1 matched Bacillus cereus, using NCBI’s BLAST tool [8]. To annotate the
clusters further, we aligned the reads to reference sequences for centromeres, chloroplasts,
and B. cereus, as well as (if the read did not align to one of these) the reference A. thaliana
genome (reference sequences are listed in Datasets.xlsx). Alignments were performed using
hisat2 on paired end read data using parameters –reorder –no-hd –n-ceil L,0,0.001

–no-sq -k 1 -p 4 to facilitate subsequent analysis and remove reads with ambiguous bases.
The alignment to the centromere included the parameter –mp 1,1 to allow lower quality
alignments. Histograms of the set of reads that align to each reference are shown (stacked
on top of one another, not overlayed) in Figure 3G.
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