
Under review as a conference paper at ICLR 2022

Supplemental Material

A OUT-OF-DISTRIBUTION PROPERTIES OF (MR)CNF

Figure 4: Histogram of log likelihood per dimension of out-
of-distribution datasets (TinyImageNet, SVHN, Constant) under
(MR)CNF models trained on CIFAR10. As with other likelihood-
based generative models such as Glow & PixelCNN, OoD datasets
have higher likelihood under (MR)CNFs.

The derivation of likelihood-based models sug-
gests that the density of an image under the
model is an effective measure of its likeli-
hood of being in distribution. However, re-
cent works Theis et al. (2016); Nalisnick et al.
(2019a); Serrà et al. (2020); Nalisnick et al.
(2019b) have pointed out that it is possible that
images drawn from other distributions have
higher model likelihood. Examples have been
shown where normalizing flow models (such
as Glow) trained on CIFAR10 images assign
higher likelihood to SVHN Netzer et al. (2011)
images. This could have serious implications
on the practical applicability of these models.
Some also note that likelihood-based models
do not generate images with good sample qual-
ity as they avoid assigning small probability
to out-of-distribution (OoD) data points, hence
using model likelihood (-BPD) for detecting OoD data is not effective.

We conduct the same experiments with (MR)CNFs, and find that similar conclusions can be drawn. Figure 4
plots the histogram of log likelihood per dimension (-BPD) of OoD images (SVHN, TinyImageNet) under
MRCNF models trained on CIFAR10. It can be observed that the likelihood of the OoD SVHN is higher
than CIFAR10 for MRCNF, similar to the findings for Glow, PixelCNN, VAE in earlier works Nalisnick et al.
(2019a); Choi et al. (2018); Serrà et al. (2020); Nalisnick et al. (2019b); Kirichenko et al. (2020).

One possible explanation put forward by Nalisnick et al. (2019b) is that “typical” images are less “likely”
than constant images, which is a consequence of the distribution of a Gaussian in high dimensions. Indeed, as
our Figure 4 shows, constant images have the highest likelihood under MRCNFs, while randomly generated
(uniformly distributed) pixels have the least likelihood (not shown in figure due to space constraints).

Choi et al. (2018); Nalisnick et al. (2019b) suggest using “typicality” as a better measure of OoD. However,
Serrà et al. (2020) observe that the complexity of an image plays a significant role in the training of likelihood-
based generative models. They propose a new metric S as an out-of-distribution detector:

S(x) = bpd(x)− L(x) (16)

where L(x) is the complexity of an image x measured as the length of the best compressed version of x (we
use FLIF Sneyers & Wuille (2016) following Serrà et al. (2020)) normalized by the number of dimensions.

Table 4: auROC for OoD detection using -bpd
and S (Serrà et al., 2020), for models trained on
CIFAR10.

CIFAR10 SVHN TIN
(trained) -bpd S -bpd S
Glow 0.08 0.95 0.66 0.72
1-res CNF 0.07 0.16 0.48 0.60
2-res MRCNF 0.06 0.25 0.46 0.66
3-res MRCNF 0.05 0.25 0.46 0.66

We perform a similar analysis as Serrà et al. (2020) to test how
S compares with -bpd for OoD detection. For different MRCNF
models trained on CIFAR10, we compute the area under the
receiver operating characteristic curve (auROC) using -bpd and
S as standard evaluation for the OoD detection task Hendrycks
et al. (2019); Serrà et al. (2020).

Table 4 shows that S does perform better than -bpd in the case
of (MR)CNFs, similar to the findings in Serrà et al. (2020) for

15



Under review as a conference paper at ICLR 2022

Glow and PixelCNN++. It seems that SVHN is easier to detect as OoD for Glow than MRCNFs. However,
OoD detection performance is about the same for TinyImageNet. We also observe that MRCNFs are better at
OoD than CNFs.

Other OoD methods Hendrycks & Gimpel (2017); Liang et al. (2018); Lee et al. (2018); Sabeti & Høst-
Madsen (2019); Høst-Madsen et al. (2019); Hendrycks et al. (2019) are not as suitable in our case, as identified
in Serrà et al. (2020).

A.1 SHUFFLED IN-DISTRIBUTION IMAGES

Kirichenko et al. (2020) conclude that normalizing flows do not represent images based on their semantic
contents, but rather directly encode their visual appearance. We verify this for continuous normalizing flows
by estimating the density of in-distribution test images, but with patches of pixels randomly shuffled. Figure 5
(a) shows an example of images of shuffled patches of varying size, Figure 5 (b) shows the graph of the their
log-likelihoods.

That shuffling pixel patches would render the image semantically meaningless is reflected in the Fréchet
Inception Distance (FID) between CIFAR10-Train and these sets of shuffled images — 1x1: 340.42, 2x2:
299.99, 4x4: 235.22, 8x8: 101.36, 16x16: 33.06, 32x32 (i.e. CIFAR10-Test): 3.15. However, we see that
images with large pixel patches shuffled are quite close in likelihood to the unshuffled images, suggesting
that since their visual content has not changed much they are almost as likely as unshuffled images under
MRCNFs.

(a) (b)
Figure 5: (a) Example of shuffling different-sized patches of a 32×32 image: (left to right, top to bottom) 1×1, 2×2, 4×4,
8×8, 16×16, 32×32 (unshuffled) (b) Bits-per-dim vs Epoch at each resolution for different MRCNF models trained on
CIFAR10.

B FULL TABLE 1

16



Under review as a conference paper at ICLR 2022

CIFAR10 IMAGENET32 IMAGENET64
BPD PARAM TIME BPD PARAM TIME BPD PARAM TIME

Non Flow-based Prior Work
PixelRNN (Oord et al., 2016) 3.00 3.86 3.63
Gated PixelCNN (Van den Oord et al., 2016) 3.03 3.83 60 3.57 60
Parallel Multiscale (Reed et al., 2017) 3.95 3.70
Image Transformer Parmar et al. (2018) 2.90 3.77
PixelSNAIL (Chen et al., 2018b) 2.85 3.80
SPN (Menick & Kalchbrenner, 2019) 3.85 150.0M 3.53 150.0M
Sparse Transformer (Child et al., 2019) 2.80 59.0M 3.44 152.0M 7days
Axial Transformer (Ho et al., 2019b) 3.76 3.44
PixelFlow++ (Nielsen & Winther, 2020) 2.92
NVAE (Vahdat & Kautz, 2020) 2.91 55 3.92 70
Dist-Aug Sparse Transformer (Jun et al., 2020) 2.56 152.0M 3.42 152.0M
Flow-based Prior Work
IAF (Kingma et al., 2016) 3.11
RealNVP (Dinh et al., 2017) 3.49 4.28 46.0M 3.98 96.0M
Glow (Kingma & Dhariwal, 2018) 3.35 44.0M 4.09 66.1M 3.81 111.1M
i-ResNets (Behrmann et al., 2019)
Emerging (Hoogeboom et al., 2019a) 3.34 44.7M 4.09 67.1M 3.81 67.1M
IDF (Hoogeboom et al., 2019b) 3.34 4.18 3.90
S-CONF (Karami et al., 2019) 3.34
MintNet (Song et al., 2019) 3.32 17.9M ≥5days 4.06 17.4M
Residual Flow (Chen et al., 2019) 3.28 4.01 3.76
MaCow (Ma et al., 2019) 3.16 43.5M 3.69 122.5M
Neural Spline Flows (Durkan et al., 2019) 3.38 11.8M 3.82 15.6M
Flow++ (Ho et al., 2019a) 3.08 31.4M 3.86 169.0M 3.69 73.5M
ANF (Huang et al., 2020) 3.05 3.92 3.66
MEF (Xiao & Liu, 2020) 3.32 37.7M 4.05 37.7M 3.73 46.6M
VFlow (Chen et al., 2020) 2.98 3.83
Woodbury NF (Lu & Huang, 2020) 3.47 4.20 3.87
NanoFlow (Lee et al., 2020) 3.25
ConvExp (Hoogeboom et al., 2020) 3.218
Wavelet Flow (Yu et al., 2020) 4.08 64.0M 3.78 96.0M 822
TayNODE (Kelly et al., 2020) 1.039
1-resolution Continuous Normalizing Flow
FFJORD (Grathwohl et al., 2019) 3.40 0.9M ≥5days ‡3.96 ‡2.0M ‡>5days x x
RNODE (Finlay et al., 2020) 3.38 1.4M 31.84 ‡2.36 2.0M ‡30.1 ∗3.83 2.0M ∗256.4

§3.49 §1.6M §40.39
FFJORD + STEER (Ghosh et al., 2020) 3.40 1.4M 86.34 3.84 2.0M >5days
RNODE + STEER (Ghosh et al., 2020) 3.397 1.4M 22.24 2.35 2.0M 24.90

§3.49 §1.6M §30.07

(OURS) Multi-Resolution Continuous Normalizing Flow (MRCNF)
2-resolution MRCNF 3.65 1.3M 19.79 3.77 1.3M 18.18 3.44 2.0M 42.30
2-resolution MRCNF 3.54 3.3M 36.47 3.78 6.7M 17.98 x 6.7M x
3-resolution MRCNF 3.79 1.5M 17.44 3.97 1.5M 13.78 3.55 2.0M 35.39
3-resolution MRCNF 3.60 5.1M 38.27 3.93 10.2M 41.20 x 7.6M x

Table 5: Unconditional image generation metrics (lower is better in all cases): number of parameters in
the model, bits-per-dimension, time (in hours). Most previous models use multiple GPUs for training, all
our models were trained on only one NVIDIA V100 GPU. ‡As reported in Ghosh et al. (2020). ∗FFJORD
RNODE Finlay et al. (2020) used 4 GPUs to train on ImageNet64. ‘x’: Fails to train.

17



Under review as a conference paper at ICLR 2022

C QUALITATIVE SAMPLES

(a) Generated samples at 16×16 (b) Corresponding generated samples at 32×32
Figure 6: Generated samples from MNIST.

(a) Generated samples at 8×8 (b) Generated samples at 16×16 (c) Generated samples at 32×32
Figure 7: Generated samples from CIFAR10.

D SIMPLE EXAMPLE OF DENSITY ESTIMATION

For example, if we use Euler method as our ODE solver, for density estimation Equation 2 reduces to:

v(t1) = v(t0) + (t1 − t0)fs(v(t0), t0 | c) (17)

18



Under review as a conference paper at ICLR 2022

where fs is a neural network, t0 represents the "time" at which the state is image x, and t1 is when the state is
noise z. We start at scale S with an image sample xS , and assume t0 and t1 are 0 and 1 respectively:

zS = xS + fS(xS , t0 | xS−1)

zS−1 = xS−1 + fS−1(xS−1, t0 | xS−2)
...
z1 = x1 + f1(x1, t0 | x0)

z0 = x0 + f0(x0, t0)

(18)

E SIMPLE EXAMPLE OF GENERATION

For example, if we use Euler method as our ODE solver, for generation Equation 2 reduces to:

v(t0) = v(t1) + (t0 − t1)fs(v(t1), t1 | c) (19)

i.e. the state is integrated backwards from t1 (i.e. zs) to t0 (i.e. xs). We start at scale 0 with a noise sample
z0, and assume t0 and t1 are 0 and 1 respectively:

x0 = z0 − f0(z0, t1)

x1 = z1 − f1(z1, t1 | x0)
...
xS−1 = zS−1 − fS−1(zS−1, t1 | xS−2)

xS = zS − fS(zS , t1 | xS−1)

(20)

F MODELS

We used the same neural network architecture as in RNODE Finlay et al. (2020). The CNF at each resolution
consists of a stack of bl blocks of a 4-layer deep convolutional network comprised of 3x3 kernels and softplus
activation functions, with 64 hidden dimensions, and time t concatenated to the spatial input. In addition,
except at the coarsest resolution, the immediate coarser image is also concatenated with the state. The
integration time of each piece is [0, 1]. The number of blocks bl and the corresponding total number of
parameters are given in Table 6.

Table 6: Number of parameters for different models with different total number of resolutions (res), and the
number of channels (ch) and number of blocks (bl) per resolution.

MRCNF
resolutions ch bl Param

1
64 2 0.16M
64 4 0.32M
64 14 1.10M

2
64 8 1.33M
64 20 3.34M
64 40 6.68M

3
64 6 1.53M
64 8 2.04M
64 20 5.10M

19



Under review as a conference paper at ICLR 2022

G GRADIENT NORM

In order to avoid exploding gradients, We clipped the norm of the gradients Pascanu et al. (2013) by a
maximum value of 100.0. In case of using adversarial loss, we first clip the gradients provided by the
adversarial loss by 50.0, sum up the gradients provided by the log-likelihood loss, and then clip the summed
gradients by 100.0.

H 8-BIT TO UNIFORM

The change-of-variables formula gives the change in probability due to the transformation of u to v:

log p(u) = log p(v) + log

∣∣∣∣det
dv

du

∣∣∣∣
Specifically, the change of variables from an 8-bit image to an image with pixel values in range [0, 1] is:

b
(p)
S =

a
(p)
S

256

=⇒ log p(aS) = log p(bS) + log

∣∣∣∣det
db

da

∣∣∣∣
=⇒ log p(aS) = log p(bS) + log

(
1

256

)DS

=⇒ log p(aS) = log p(bS)−DS log 256

=⇒ bpd(aS) =
− log p(aS)

DS log 2

=
−(log p(bS)−DS log 256)

DS log 2

=
− log p(bS)

DS log 2
+

log 256

log 2

= bpd(x) + 8

where bpd(x) is given from Equation 13.

I FID V/S TEMPERATURE

Table 7 lists the FID values of generated images from MRCNF models trained on CIFAR10, with different
temperature settings on the Gaussian.

20



Under review as a conference paper at ICLR 2022

Temperature
1.0 0.9 0.8 0.7 0.6 0.5

1-resolution CNF 138.82 147.62 175.93 284.75 405.34 466.16
2-resolution MRCNF 89.55 106.21 171.53 261.64 370.38 435.17
3-resolution MRCNF 88.51 104.39 152.82 232.53 301.89 329.12
4-resolution MRCNF 92.19 104.35 135.58 186.71 250.39 313.39

Table 7: FID v/s temperature for MRCNF models trained on CIFAR10.

21


