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A Technical details

A.1 The complete generative process

Section 3 describes the top-down generative model piece by piece. To improve the clarity the
presentation, we provide the complete generative process of the observation given force function
F , which corresponds to the E-step in our method, as a probabilistic program in algorithm 1. In
this probabilistic program, we use the keyword ASSUME and OBSERVE for sampling latent variables
and observations separately, following the notations from Wood et al. (2014). We also provide an
example of the generative process of a three-body problem in a more intuitive manner in figure 10.

A.2 Grammar for Newtonian physical laws: The complete form

The complete grammar following section 3.2 is given in figure 11.
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Algorithm 1 Complete generative process given force laws
. Sample latent variables

1: for i = 1, . . . , N do
2: ASSUME zi from prior for entity i
3: if initial state is not given then ASSUME pi0 from prior for entity i ASSUME vi0 from prior

for entity i
4: end if
5: Set si0 = (pi0,v

i
0)

6: end for
7: for t = 1, . . . , T do
8: for i = 1, . . . , N do . Compute force and acceleration
9: for j = 1, . . . , N do

10: Compute f i,jt = F (zi, sit−1, z
j , sit−1)

11: end for
12: Compute f it =

∑N
j=1 f

i,j
t

13: Compute ait = f it/m
i . Euler’s integration

14: Update vit = vit−1 + at∆t

15: Update pit = pit−1 + vit∆t

16: Set sit = (pit,v
i
t) . Sample observations

17: OBSERVE p̃it from N (pit, σ
2)

18: end for
19: end for

m1,m2,m3 ∼ pm
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Figure 10: The generation of an observed trajectory: a three-body example with unknown mass.
Circles are the learnable force function, rectangles are fixed functions, rounded rectangles are random
variables and others are deterministic variables.

A.3 Algorithmic description for the learning method

We provide a complete description of EM algorithm in algorithm 2.

We provide a complete description of the cross-entropy method with learnable constants in algorithm 3.

A.3.1 Reasoning about unknown properties

Importance sampling In cases where the prior distribution is discrete, the inference is done by
importance sampling (IS) which produces a set of weighted samples. As the number of samples to
accurately estimate the marginal log-likelihood in the M-step can be large and this would induce a
large computational cost in the M-step, IS is followed by a re-sampling step to select only a small set
of k weighted samples in the M-step {(ω1, z1), . . . , (ωk, zk)}, where the weights are re-normalized.

Hamiltonian Monte Carlo Since for a fixed F , the generative model in BSP is end-to-end, piece-
wise differentiable with respect to properties, we can use Hamiltonian Monte Carlo (HMC; Duane
et al., 1987; Neal, 2011) for inference. In order to draw k samples from the posterior robustly in the
E-step, we first run k + k′ independent HMC chains by the no-U-turn sampler (NUTS; Hoffman
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Constant → c1 | c2 | c3
Unitless → µ1 | µ2

| µ1 − µ2 | µ1 + µ2

Kg → mi | mj

| mi −mj | mj +mi

KgSq → mi ×mj | (Kg)2

MeterVec → pi − pj
| pi − c | pj − c

MeterSecVec → vi | vj | vi − vj
Meter → ‖MeterVec‖2 | lj

MeterSq → (Meter)2

MeterSec → ‖MeterSecVec‖2
MeterSecSq → (MeterSec)2

TransInvVec → MeterVec | MeterSecVec

UnitlessVec → normalize(TransInvVec) | MeterVec ÷Meter

| MeterSecVec ÷MeterSec

Meter → project(MeterVec,UnitlessVec)

MeterSec → project(MeterSecVec,UnitlessVec)

BaseCoeff → Unitless | Kg | KgSq | KgSq ÷Kg | Meter

| MeterSq | Meter −Meter | Meter + Meter

| MeterSec | MeterSecSq + MeterSecSq

| MeterSecSq | MeterSecSq −MeterSecSq

Coeff → BaseCoeff | BaseCoeff × BaseCoeff

| BaseCoeff ÷ BaseCoeff

BaseForce → Constant × Coeff ×UnitlessVec

Bool → isOn(pi, si,pj , sj) | doesCollide(pi, si,pj , sj)

Force → BaseForce | BaseForce × Bool | Force + BaseForce

Figure 11: A grammar of Newtonian physical laws

Algorithm 2 Expectation–maximization for Bayesian-symbolic physics
Input: Dataset D, grammar G, number of EM iterations m, sample size k and extra chains k′ in
E-step, number of repeats in M-step r
Output: A force function F and k samples of latent properties {z1, . . . , zk}

1: Initialize the force function F0 as constantly zero
2: for i = 1, . . . ,m do
3: Get k weighted posterior samples {(ω1, z1), . . . , (ωk, zk)} by IS or HMC . E-step
4: Define current loss function Li(e, c) =

∑k
i=1 ωiL(e, c; zi,D) . M-step starts

5: Get candidates C = {(t∗1, c∗1), . . . , (t∗r , c
∗
r)} by algorithm 3 with Li for r repetitions

6: Find (t∗, c∗) from C with the best loss and set Fi = getF(t∗, c∗,G) . Update force
7: end forreturn F = Fm and {z1, . . . , zk} ∼ p(z | D;Fm)

& Gelman, 2014) for a reasonably large number of iterations, where k′ is a hyper-parameter. After
this, we remove k′ chains with the smallest effective sample size (ESS). This reduces the chance of
using samples from chains that mixed poorly or got stuck in bad region due to random initialization.
Finally, we pick the last sample from each chain as the samples returned by the E-step {z1, . . . , zk}.
To be consistent with the samples from IS, we also assign equal weights ωi = 1/k to all samples.

A.4 Identifiability in reasoning and learning tasks

It is worth mentioning the fact that reasoning and learning tasks which BSP targets are not necessarily
identifiable, especially when data is very limited or when force laws and object properties are jointly
learned. When the data is limited, a certain level of diversity of attribute values in the data has to
be provided so that their impact on the force law will be observed. For example, consider a dataset
with multiple scenes of a 2-body simulation with the same 2 entities and random initialization of
position and velocities. In this setup, no matter how many scenes are given, the actual gravitational
force is not identifiable because the product of mass is a constant for all scenes. This can be resolved
by introducing more entities in the same scene, or more scenes with entities that have different
attributes. In the case of joint reasoning and learning, the interplay between attribute units and
learnable constants in the force law could potentially create ambiguity. For example, if a force law
acts on an attribute linearly, the learning algorithm is free to scale up the constant in the force law
and scale down the attribute value accordingly to reach the same results. This can actually be seen
by the fact that constants in force laws have their own units, e.g. the gravitational constant G has a
unit of m3kg−1s−2. Scaling the constant and the attribute accordingly can be seen as a unit change.
Such ambiguity between properties and force laws is also the reason why one might not want to be
Bayesian on force law, because there would be a mode switching problem in posterior sampling.
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Algorithm 3 Cross-entropy method with learnable constants
Input: Grammar G with learnable constants c, loss function L, total population number n, selected
population number k, number of iterations m and maximum tree depth d
Output: An expression tree e∗ with optimized constants c∗

1: initialize a PCFG P0 for G uniformaly
2: for i = 1, . . . ,m do
3: Initialize an empty candidate set C
4: for j = 1, . . . , n do
5: Sample an expression ej ∼ Pi−1, ei−1 with a maximum depth of d
6: Solve c∗j = arg minc L(ej , c) by L-BFGS . Lower-level optimization
7: Compute the loss of the sampled tree `j = L(ej , c

∗
j ) and add (ej , `j) to C

8: end for
9: if i < m then

10: Fit a PCFG Pi on trees from C with the top-k fitness via maximum-likelihood
11: end if
12: end forreturn the best expression tree e∗ from C and the corresponding constant as c∗

B Reproducibility

Source code as well as training and testing data can be accessed at https://bsp.xuk.ai/.

C Experimental Details for Section 4

All experiments are performed on CPUs using two servers. One has Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz and the other has Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. The two servers
has 24 + 32 = 56 cores in total to help run experiments in parallel.

C.1 Ground truth forces

The symbolic trees of ground truth forces that are used to generate the datasets that are used in
section 4 are given in figure 12.

C.2 Neural baselines

We now describe the neural baselines. Notation-wise, we use din to denote the total dimension
of properties and state (position and velocity) for each entity, and use dout for the dimension of
position/velocity/force dimension (2 in our case). The corresponding implementation can be found in
src/network.jl in our source code, and the hyper-parameters (network sizes and training) can be
found in scripts/runexp.jl, which we also summarise below.

OGN For the OGN baseline, we use a MLP of din → 100→ 50 as the node model and a MLP of
(50 + 50) → 100 → 100 → 100 → dout as the edge model; the activation function is the rectified
linear unit (ReLU) for both models. For training, we use the ADAM optimizer (Kingma & Ba, 2014)
with a learning rate of 2e−3 for 2,000 epochs.

In addition, for OGN, we found that we need provide additional prior knowledge on how forces
are related to the mass and acceleration by parameterzing them as Fe(·) = maθ(·), where θ is NN
parameters, otherwise they fail to learn. This parameterization is fact consistent with (Sanchez-
Gonzalez et al., 2019) in which NNs output partial derivatives of the Hamiltonian system.

IN The node model for IN is same as that of OGN. The edge model for IN is same as that of
OGN except the output dimension of the last layer is 50. There is an extra network for transition, a
MLP of shape N × 50→ 100→ 100→ 100→ 2×N × dout (with ReLU activations), that takes
the concatenation of embeddings for N entities and outputs the change of next state (position and
velocity) of the whole system. The training uses the ADAM optimizer with a learning rate of 1e−3
for 400 epochs.
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MLP force The MLP (force) baselines has a neural network that inputs the states of a pair of
entities and outputs the force from one of them applies to the other. The network is a MLP of shape
2 × din → 100 → 100 → 100 → dout (with ReLU activations). The training uses the ADAM
optimizer with a learning rate of 1e−3 for 2,000 epochs.

MLP position The MLP (force) baselines has a neural network that inputs the state and properties
of the whole system (as the concatenation of N entities) and outputs the change of next state (position
and velocity) of the whole system. The network is a MLP of shape N ×din → 100→ 100→ 100→
2×N × dout (with ReLU activations). The training uses the ADAM optimizer with a learning rate of
1e−3 for 400 epochs.

C.3 A close look at the approximated bounce law

C.3.1 The learned bounce law

As mentioned in section 4 and discussed in section C.3.2, the only case in which BSP fails to infer
the true law (within 10 scenes) is of special interest and requires further inspection. A typical
approximate law learned in section 4 is shown in figure 13; see section C.3.2 for discussion on
how this law differs from the true one. To highlight, there are basically two mismatches between
the true law and the learned law. First, there is no projection operation that correctly calculates
the effect of speed. Second, the mass-based coefficient is missing. To assist inspection, we also
provide some visualizations in figure 14 using initial conditions from the training set for inspection.
The corresponding animations can be found in the supplementary material (the suppl/bounce_
inspection folder in our repository).

C.3.2 Generalization in new scenes

It is worth checking how the laws learned in section 4 generalize to new scenes beyond the training
data. In cases where the true law is successfully recovered, the expression will generalize to novel
scenes undoubtedly. Therefore, it is more interesting to inspect the generalization ability of an
approximate law, that is a law which is not completely equivalent to the true law but is close. The
emerged law for the BOUNCE dataset is such an example as mentioned earlier. It has an expression
of F † = c ‖vi − vj‖2 pi−c

‖pi−c‖2 doesCollide(pi, si,pj , sj); see figure 13 in appendix C.3.1 for
the actual tree. Although it is not identical to the true law, it is still a good approximation: it
takes into accounts the velocity difference into consideration and finds the correct force direction.
We now consider applying this law to a completely new scene: a vertical-view world where the
gravity is pointing in downward direction. Figure 15 shows the predicted trajectory with true and
the approximate law with two different initial conditions. As it can be seen, the approximate law
successfully generalize this novel world. For the first condition, the projection is very close to the
true one, while for the second condition, the concept of bounce is also correctly transferred. The
corresponding animations for these plots can also be found in the supplementary material for further
inspections (the suppl/generalization folder in our repository).

C.4 Figure 4 with all methods displayed

Figure 4 omits some poor results for better visualization. The corresponding plots with all methods
displayed are shown in figure 16.

D Experimental details for Section 5

D.1 SYNTH

Hyper-parameters We refer readers to scripts/runexp.jl of our source code for hyper-
parameters used in the quantitative experiments (table 1). For the rest, in the E-step, we use k = 3
and k′ = 2 and the hyper-parameters for NUTS are: 150 adaptation steps, 150 HMC iterations, a
maximum tree depth of 4 and a target acceptance ratio of 0.75. In the M-step, we repeat r = 2
runs and the hyper-parameters for the cross-entropy method are: 800 total populations, 400 selected
populations, 4 iterations and a maximum depth of 10. The weighting parameter for the PCFG prior
are 1 for the NBODY and BOUNCE datasets and 1e−4 for the MAT dataset.
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D.1.1 An extra demonstration of EM on MAT

As another example, we use five scenes from the (noisy) MAT dataset. We assume that the only un-
known is the friction coefficient of the mat with a truncated Gaussian prior T runcated(N (µ0, 2

2), 0, 5)
(truncated between 0 and 5), where µ0 is the true coefficient, Note that the variance 22 is large enough
to be uncertain, justifying a fair choice of the prior. Similarly, we use the EM algorithm to fit the
same generative model that simulates the data using BSP. figure 17 shows the posterior distribution
over mass and the force function at initialization (17a), middle (17b) and convergence (17c) of the
algorithm. Compared the expression at convergence with the true law, the algorithm learns vi − vj
instead of vi as the mat velocity is zero, i.e. vj = 0, in all scenes,

D.2 PHYS101

Pre-processing of videos We use an open-source implementation of standard tracking algorithms
from OpenCV to track the entities. The code is available at https://github.com/bikz05/
object-tracker/. To use the tracker, we manually select a bounding box of the entity of interest
and run the tracking algorithm. For FALL, it is done for the falling object; for SPRING, this is done
for both the hanging object and the spring joint. For FALL, we found that the tracking algorithms
can fail if the object is too fast. In such cases, there are only limited frames (< 10) to track thus we
manually annotate these frames to get the trajectory of the falling object. The processed data can be
found in data/phys101/processed/ of the supplementary material.

Qualitative evaluation To qualitatively see how well this learned force from SPRING performs at
prediction, we also show that how the vertical coordination of the object position changes over time
in figure 18. As it can be seen, the learned force produces prediction that matches the periodicity
quite well with some small deviation from the amplitude.

D.3 ULLMAN

Pre-processing of visual stimulus We preprocess the videos from ULLMAN by derendering the
objects to symbolic forms, i.e. position trajectories of all entities. This is done by template matching
of the discs and mats. We manually crop the video frames to obtain templates for discs with three
different colors and mats with three different colors, and match the location of each of them for each
frame. The code for this preprocessing step can be found in scripts/preprocess-ullman.py
of the source code and the processed data can be found in data/ullman/processed/ of the
supplementary material.

On reverse-engineering the collision and friction forces from stimulus As the ULLMAN data
is generated by an unknown simulator, the ground truth forces are not directly accessible. Therefore,
we need to "reverse engineer" these forces so that we can provide them to BSP aprior, which is
consistent with the setup of human study in Ullman et al. (2018). We assume the ground truth forces
for friction and collision have their pre-defined expressions, similar to those used for the simulator
for SYNTH. However, each of these expressions also contains a constant that is unknown for the
actual simulation of the ULLMAN data. To this end, we use World 1 from the ULLMAN data to fit
these constants because World 1 contains only friction and collision. For the rest of experiments of
BSP, we assume these "reverse engineered" forces are given and BSP only needs to learn the residual,
as detailed next. Note that this reverse engineering step may introduce systematic bias to the rest of
learning as well if there is a mismatch between the actual ground truth. In some of our exploratory
analysis on the mass inference results from BSP, we unexpectedly found that BSP can confuse heavy
objects with light objects. This is different from the pattern of confusion that the human subjects
display. We hypothesize this is due to the potential mismatch between the ground truth collision and
friction forces and the reverse-engineered forces that we provide to BSP.

Details for the learning task As there are three discs and three mats, the number of properties to
infer is nine in total. The residual force to learn has the form: C1

f(q1,q2)
‖p1−p2‖22

u + C2uC , where C1 and
C2 are constants, f itself is an expression of how the sign of the pairwise force depends on qi and qj ,
u is the direction of the pairwise force and uC is the direction of the global force (up, down, left or
right).

19

https://github.com/bikz05/object-tracker/
https://github.com/bikz05/object-tracker/
data/phys101/processed/
scripts/preprocess-ullman.py
data/ullman/processed/


Questions and options presented to participants Participants are asked for a set of questions that
would not reveal personally identifiable information.

1. Mass related questions (3)

• How massive are [red] objects?
• How massive are [yellow] objects?
• How massive are [blue] objects?

Options are “Light”, “Medium” and “Heavy”.

2. Friction coefficient related questions (3)

• How rough are [green] patches?
• How rough are [purple] patches?
• How rough are [brown] patches?

Options are “As smooth as the table-top”, “A little rough” and “Very rough”.

3. Pairwise force related questions (6)

• How do [red] and [red] objects interact?
• How do [red] and [yellow] objects interact?
• How do [red] and [blue] objects interact?
• How do [yellow] and [yellow] objects interact?
• How do [yellow] and [blue] objects interact?
• How do [blue] and [blue] objects interact?

Options are “Attract”, “Repel” and “None”.

4. Global force related questions (1)

• Is a global force pulling the objects, and if so in what direction is it pulling?

Options are “Yes, it pulls North”, “Yes, it pulls South”, “Yes, it pulls East”, “Yes, it pulls West” and
“No global force”.

20



Force

BaseForce

Constant

c1

Coeff

BaseCoeff ÷ BaseCoeff

KgSq

m1 ×m2

MeterSq

Meter2

‖MeterVec‖2

pi − pj

UnitlessVec

normalize(TransInvVec)

MeterVec

pi − pj

(a) Gravitational force (depth 7); c1 = 8.17e3
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(b) Collision force (depth 8); c2 = 2/ε = 100 where ε = 2e−2 is the step size of the integrator
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(c) Friction force (depth 5); c3 = 9.8

Figure 12: Expression trees (under G) of true force laws that generates the datasets used in section 4.
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Figure 13: Approximate bounce law learned by BSP under our grammar; c = 130.22

(a) Scene 1 (true) (b) Scene 1 (learned) (c) Scene 2 (true) (d) Scene 2 (learned)

(e) Scene 3 (true) (f) Scene 3 (learned) (g) Scene 4 (true) (h) Scene 4 (learned)

Figure 14: Predicated trajectories of the true bounce law and the learned bounce law.

(a) Condition 1 (true) (b) Condition 1 (learned) (c) Condition 2 (true) (d) Condition 2 (learned)

Figure 15: Generalization of the approximate bounce law in a vertical world with downward gravity.
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Figure 16: Comparison of neural baselines and BSP, using predictive error on held out scenes given
varying number of training scenes. Some baselines are not displayed due to very poor performance;
see the appendix for version with all methods displayed.
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(c) i = 4: F4 ≈ F ∗
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(d) Expression tree for F4

Figure 17: Results of the EM algorithm on MAT. figure 17a to figure 17c shows the posterior
of friction coefficient in Scene 2 with the corresponding force function during EM. In figure 17b,
the force function F † = −22.99 µjmi

vi

‖vi‖2 isOn(pi, si,pj , sj). The constant in figure 17d is
c = −8.605.

Figure 18: Prediction of the vertical position
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