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A DISCUSSIONS

Client-side watermarking VS server-side watermarking. Client-side watermarking such as
FedCIP (Liang & Wang, 2023), and Merkle-Sign (Li et al., 2021a) are used to claim the co-ownership
of the model, yet we argue that client-side watermarking has some limitations, which makes it
not applicable for IP tracking. For client-side watermarking, if one of the clients is the infringer
to illegally distribute the model, the infringer will not reveal their own identity during the model
verification process in order to avoid legal responsibility. Even if the ownership of the model can
be claimed by their co-author, the real infringers cannot be tracked, since they remain anonymous.
Using our server-side watermark, there is no such concern, the server can easily track the malicious
client among all the clients.

Complexity. Clients will not experience additional computations as our DUW is carried out on
the server side. The additional computation for the server is decided by the number of watermark
injection steps T,. We found that WSR could reach 99% just within T, = 10 steps. Injection of
one client-unique watermark takes around 1 second. The server can embed the watermark parallelly
for all the clients. Since the watermarked model for each client is independent and has no sequence
relationship with each other, there is no need to serialize it. Thus, the delay caused by the server is
neglectable.

Future works. This paper makes the FL. model leakage from anonymity to accountability by
injecting client-unique watermarks. We recognize the most significant challenge for accountable FL
is addressing watermark collision for accurate IP tracking (R1). We believe it is important to scale
our method with more clients in the future. One plausible solution is increasing the dimension of
the input of the encoder to allow more one-hot encoding target labels. Another solution is to use a
hash function as the target label for different clients. In this way, the lower-dimensional encoder and
decoder can accommodate more clients. For instance, an encoder with input dimension 10 can allow
at most 1024 different clients. However, adopting hash functions as the target labels can increase the
chance of watermark collision between clients, and more elegant strategies have to be developed to
address this problem. As we focus on the collision, we leave the scalability for future work.

B SUPPLEMENTARY EXPERIMENTS

B.1 COMPARISON WITH TRADITIONAL BACKDOOR-BASED WATERMARKS

We compare our proposed DUW with two traditional backdoor-based watermarks in Fig. 5. Due to
the reason that if all the clients share the same trigger, watermark collision will definitely happen,
we design different triggers for different clients. Specifically, we use traditional backdoor-based
watermarking by adding arbitrary badnet triggers using random noise or 0-1 coding trigger for each
client. To distinguish between different clients, for 0-1 trigger, following Tang et al. (2020), we set 5
pixel values of the pattern into 0 and other 11 pixels into 1, different combinations of the pattern are
randomly chosen for different clients. For random noise triggers, we generate different random noise
triggers for different clients. The trigger size 4 x 4 and the injection is conducted for 4 rounds. The
target label for each client is set as (client_ID % class_number). According to the results, traditional
backdoor-based watermarks can only achieve a tracking accuracy lower than 13% (it will even be
lower with the increase of the communication rounds), which is much lower than the 100% tracking
accuracy we have achieved. Note that, the rate of clients with watermark collisions can be calculated
as 1-TAcc.

To analyze the failure of the traditional backdoor-based watermarking, we give detailed prediction
results for one trial on CIFAR10 for random noise trigger as an example. The client number is 100, so
the client_ID is from 0-99, and the class number is 10. Here we provide a fine-grained analysis of the
concerned 13% TAcc by looking into the last 10 clients. We list the client_ID and their corresponding
predicted client_ID for clients 90-99 in Table 6. From the prediction results, 8 of 10 clients are
tracked wrong. Among these 8 failure cases, 7 of the predicted client_ID (client 90, 91, 93, 94 95, 96,
98) share the same targets, and 1 of them (client 97) have both different triggers and different target
labels. The two kinds of failures correspond to two different reasons respectively as we illustrated in
Section 3.1.
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Figure 5: Validation accuracy, WSR, and TAcc for proposed DUW and other two baselines on
CIFAR-10 for 4 communication rounds.

ground truth client_ID | predicted client_ID
90 0

91 1
92 92

93 3

94 4

95 5
6
49

8
99

96
97
98
99

Table 6: Prediction results for random noise trigger for client 90-99.

B.2 EXTENDED QUALITATIVE STUDY

Visualization of unique trigger sets. We show the visualization example for the original image,
encoded image (image in trigger set), and residual image based on different OoD datasets in Fig. 6.
We observe that for all four different OoD datasets, the original image and encoded image with our
client keys are indistinguishable from the human eye. The difference between these two images can
be observed in the residual image. Note that although the OoD datasets are different, the encoder
that we used to generate the trigger sets is the same. According to Fig. 6, the encoder will generate
sample-wise triggers for different images.

To investigate the difference between different clients’ trigger sets based on the same OoD dataset,
we show one example in the trigger set generated by the jigsaw image for two randomly picked
clients in Fig. 7. The trigger sets are generated based on the same jigsaw dataset and differ by their
embedded keys. According to Fig. 7, although the samples from different trigger sets do not look
distinguishable according to the human inspection, the difference between keys decoded from the
trigger sets can be distinguished by our model.

Effects of the different numbers of samples in trigger sets. We investigate how the size of the
trigger set will affect our watermark injection and standard FL training in Fig. 8 by varying the
number of samples in the trigger set from 50 to 500 for Digits training (USPS is used to generate
the trigger set). Note that for all cases, TAcc always remains to be 100%. We observe that with
only 50 samples in one trigger set, we can achieve an accuracy degradation around 2%, and with a
WSR over 98%. When the number of samples increases to 300, WSR is over 99%. In general, the
change in the number of samples in the trigger set has almost no effect on both standard accuracy
and WSR. A small trigger set (such as 50) can achieve comparable results with a large trigger set.
The advantages of a smaller trigger set include quicker trigger set generation, quicker watermark
injection, quicker ownership verification, and quicker IP tracking. Besides, less effort can be made
for OoD data synthesizing or collecting.

Effects of different watermark injection rounds. We conduct an ablation study to show the effect of
the injection round of the watermark in Table 7. The results verify that injecting in earlier rounds will
not affect standard accuracy, WSR, and TAcc. In our paper, we do not start our watermark injection
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(a) Digits: original. (b) GTSRB: original.

4

(e) Digits: encoded. (f) GTSRB: encoded.

(i) Digits: residual. (j) GTSRB: residual. (k) Noise: residual. (1) Jigsaw: residual.

Figure 6: Visualization of unique trigger set based on different OoD datasets.

(a) Original image (b) Encoded image (c) Encoded image (d) Residual image (¢) Residual image
example. for client 0. for client 1. for client 0. for client 1.

Figure 7: Visualization of the unique trigger sets for two different clients. The difference between
trigger sets cannot be observed according to human inspection, but after decoding, the difference
between keys can be distinguished by our model.
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Figure 8: Effects of the different number of samples in trigger sets. 50 samples in one trigger set can
achieve over 98% WSR.
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at the very beginning of training since early-stage protection usually means more computational
resources, so it is more valuable to focus on high-quality models rather than low-quality models.

Inject round Acc AAcc  WSR  WSR Gap TAcc

5 0.8838  0.0251  0.9951 0.9948 1.0000
10 0.8811 0.0278  0.9946 0.9938 1.0000
20 0.8855 0.0234  0.9909 0.9895 1.0000

Table 7: Ablation study: results for watermark injection in different rounds on digits.

Effects for different number of clients We conduct an ablation study to show the effect of the
number of clients in Table 8. According to the results, even with 600 clients, the WSR is still over
73% and the TAcc remains 100%. With more clients participating in FL, we can still track the
malicious client correctly with high confidence.

Number of clients Acc AAcc WSR  WSR Gap TAcc

40 0.8855  0.0234  0.9909 0.9895 1.0000
400 0.8597 -0.0332 0.9521 0.9267 1.0000
600 0.8276  -0.0035 0.7337 0.6383 1.0000

Table 8: Ablation study: results for different numbers of clients on digits.

Effects of different FL algorithms In Fig. 9, we show the standard accuracy, WSR and TAcc for our
proposed DUW in two different FL settings: fedavg and fedprox (Li et al., 2020). According to the
results, fedprox can achieve comparable WSR as fedavg and higher standard accuracy. TAcc for both
FL algorithms remains to be 100%. Our proposed method is not sensitive to the FL framework, in
which it is implanted.
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Figure 9: Validation accuracy, WSR, and TAcc for fedavg and fedprox on digits.

B.3 EXTENDED ROBUSTNESS STUDY

Robustness against detection attack. We take Neural Cleanse (Wang et al., 2019) as an example of
the detection attack, which synthesizes the possible trigger to convert all benign images to all possible
target classes in the classification task space. Then anomaly detection is conducted to detect if any
trigger candidate is significantly smaller than other candidates. We follow the original setting in Wang
et al. (2019), if the anomaly index is larger than 2, the model is watermarked. The smaller the value
of the anomaly index, the harder the watermark to be washed out by Neural Cleanse. Local samples
are used as benign images during detection. We compare the anomaly index for the non-watermarked
model and watermarked model in Fig. 10. We observe that for all datasets, the anomaly index for the
watermarked model is close to that of the non-watermarked model, and both of them are smaller than
the threshold 2. The observation implies that our watermarked model cannot be detected using neural
cleanse. One possible reason is that Neural Cleanse relies on the assumption that the backdoor-based
watermark shares the same task space with the original classification task, but due to the effectiveness
of our decoder, our target label space of the watermark is different from the original classification task
space. Therefore, by searching all possible target classes in the original task space, Neural Cleanse
will not find the real target label of the trigger set introduced by our proposed DUW.
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Figure 10: Anomaly index of watermarked model and non-watermarked model. If the anomaly index
exceeds 2, the model will be detected as backdoor-based watermarked.

We further show the reversed trigger pattern generated by Neural Cleanse for non-watermarked
(non-wm) and watermarked (wm) models in Fig. 11. The reversed trigger of our watermarked model
shares a similar pattern as non-watermarked ones for all three benchmarks, and it does not look
similar to our real trigger patterns (real ones can be referred to Fig. 6 residual). The trigger patterns
for our trigger sets are sample-specific. Thus, it is hard to reverse engineer triggers when Neural
Cleanse assumes a general trigger pattern for the entire trigger set. In summary, our proposed DUW
is secured against this trigger-detection algorithm.
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Figure 11: Reversed trigger patterns generated by Neural Cleanse for non-watermarked (non-wm)
and watermarked (wm) models on three benchmarks.

B.4 HYBRID WATERMARK

If the server wants to verify the model ownership quickly in a black-box way before tracking the
infringers, our DUW can also be combined with existing global unified watermarks. We design a
simple hybrid watermark in this section as an example. We pick one of the trigger sets we generated
for the clients as the trigger set for the unified watermark injection, and the target label is assigned
as 0 which belongs to the original label set of the training data. We use this trigger set to fine-tune
the entire global model for 10 steps before injecting our proposed DUW. Note that no decoder is
used for the unified watermark, and the unified watermarks can also be replaced with other existing
works. The results on Digits are shown in Table 9. For this table, we can observe that the unified
watermark is injected successfully in the presence of our DUW, with a 98.82% WSR. Besides, the
effectiveness of our DUW is also not affected, since the WSR of DUW only decreases by 0.72%, and
TAcc remains 100%. The model utility is also not affected, since the standard accuracy remains high.

Method Acc AAcc  WSR  WSR_Gap TAcc  Unified WSR
w/o unified watermark  0.8855 0.0234  0.9909 0.9895 1.0000 /
w/ unified watermark ~ 0.8886  0.0203  0.9837 0.9701 1.0000 0.9882

Table 9: Results for hybrid watermark.
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