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1 PROOFS IN THE MAIN PAPER

In this section, we provide the detailed proofs for the lemmas and main theorem in the paper.
Assumption 1.1. Assume there exists an optimal θ∗, with ‖θ∗‖ ≤ 1 and x∗t,k such that E[rt,k] =

x∗t,k
>θ∗. Further assume that there is an effective distribution N (µt,k,Σt,k) such that x∗t,k ∼

N (µt,k,Σt,k) where Σt,k = diag(σ2
t,k). Thus, the true underlying context is unavailable, but we

are aided with the knowledge that it is generated with a multivariate normal whose parameters are
known.

Algorithm 1: BaseREN: Basic REN Inference at Step t
1 Input: α, Ψt ⊆ {1, 2, . . . , t− 1}.
2 Obtain item embeddings from REN: µτ,kτ ← fe(eτ,kτ ) for all τ ∈ Ψt.
3 Obtain the current user embedding from REN: θt ← R(Dt).
4 At ← Id +

∑
τ∈Ψt

µ>τ,kτµτ,kτ .
5 Obtain candidate items’ embeddings from REN: µt,k ← fe(et,k), where k ∈ [K].
6 Obtain candidate items’ uncertainty estimates σt,k, where k ∈ [K].
7 for a ∈ [K] do
8 wt,k ← (α+ 1)st,k + (4

√
d+ 2

√
ln TK

δ )‖σt,k‖∞.

9 r̂t,k ← θ>t µt,k.
10 end
11 Recommend item k ← argmaxk r̂t,k + wt,k.

1.1 UPPER CONFIDENCE BOUND FOR UNCERTAIN EMBEDDINGS

For simplicity we follow the notation from Chu et al. (2011) and denote the item embedding (context)
as xt,k, where t indexes the rounds and k indexes the items. We define:

st,k =
√

µ>t,kA
−1
t µt,k ∈ R+, Dt = [µτ,kτ ]τ∈Ψt ∈ R|Ψt|×d,

yt = [rτ,kτ ]τ∈Ψt ∈ R|Ψt|×1, At = Id + D>t Dt,

bt = D>t yt, r̂t,k = µ>t,kθ̂ = µ>t,kA
−1
t bt,

where yt is the collected user feedback. Lemma 1.1 below shows that with λd = 1 + α =

1 +
√

1
2 ln 2TK

δ and λu = 4
√
d+ 2

√
ln TK

δ , the main equation in the paper is the upper confidence
bound with high probability, meaning that it upper bounds the true reward with high probability,
which makes it a reasonable score for recommendations.
Lemma 1.1 (Confidence Bound). With probability at least 1− 2δ/T , we have for all k ∈ [K] that

|r̂t,k − x∗t,k
>θ∗| ≤ (α+ 1)st,k + (4

√
d+ 2

√
ln
TK

δ
)‖σt,k‖∞,

where ‖σt,k‖∞ = maxi |σ(i)
t,k| is the L∞ norm.
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Algorithm 2: SupREN
1 Input: Number of rounds T .
2 S ← lnT and Ψ

(s)
t ← ∅ for all s ∈ [T ].

3 for t = 1, 2, . . . , T do
4 s← 1 and Â1 ← [K].
5 repeat
6 Use BaseREN with Ψ

(s)
t to calculate the width, w(s)

t,k , and the upper confidence bound,

r̂
(s)
t,k + w

(s)
t,k , for all k ∈ Âs.

7 if w(s)
t,k ≤

1√
T

for all k ∈ Âs then

8 Choose kt = argmaxk∈Âs(r̂
(s)
t,k + w

(s)
t,k) and update: Ψ

(s′)
t+1 ← Ψ

(s′)
t for all s′ ∈ [S].

9 else if w(s)
t,k ≤ 2−s for all k ∈ Âs then

10 Âs+1 ← {k ∈ Âs|r̂(s)
t,k + w

(s)
t,k ≥ maxk′∈Âs(r̂

(s)
t,k′ + w

(s)
t,k′)− 21−s}, s← s+ 1.

11 else
12 Choose kt ∈ Âs such that w(s)

t,kt
> 2−s and update: Ψ

(s)
t+1 ← Ψ

(s)
t ∪ {t},

Ψ
(s′)
t+1 ← Ψ

(s′)
t for s′ 6= s.

13 end
14 until an item kt is found;
15 Update the REN model R(·) and fe(·) using collected user feedbacks.
16 end

Proof. Using the notation defined above, we have

|r̂t,k − x∗t,k
>θ∗|

= |µ>t,kA−1
t bt − x∗t,k

>A−1
t (Id + D>t Dt)θ

∗|

= |µ>t,kA−1
t D>t yt − x∗t,k

>A−1
t (θ∗ + D>t Dtθ

∗)|

= |µ>t,kA−1
t D>t yt − x∗t,k

>A−1
t D>t Dtθ

∗ − x∗t,k
>A−1

t θ∗|

= |(µ>t,kA−1
t D>t yt − µ>t,kA−1

t D>t Dtθ
∗) + µ>t,kA−1

t D>t Dtθ
∗ − x∗t,k

>A−1
t D>t Dtθ

∗ − x∗t,k
>A−1

t θ∗|

= |µ>t,kA−1
t D>t (yt −Dtθ

∗) + (µt,k − x∗t,k)
>A−1

t D>t Dtθ
∗ − x∗t,k

>A−1
t θ∗|

= |µ>t,kA−1
t D>t (yt −Dtθ

∗)− (Σ
1/2
t,k ε)>A−1

t D>t Dtθ
∗ − (µt,k + Σ

1/2
t,k ε)>A−1

t θ∗|

= |µ>t,kA−1
t D>t (yt −Dtθ

∗)− (Σ
1/2
t,k ε)>θ∗ − (µt,k)

>A−1
t θ∗| (1)

≤ |µ>t,kA−1
t D>t (yt −Dtθ

∗)|+ ‖Σ1/2
t,k ε‖+ st,k. (2)

To see Eqn. 1 is true, note that A−1
t D>t D>t + A−1

t = A−1
t (D>t D>t + Id) = Id. To see Eqn. 2 is

true, note that since ‖θ∗‖ ≤ 1, we have |(Σ1/2
t,k ε)>θ∗| ≤ ‖Σ1/2

t,k ε‖. Similarly for the last term in
Eqn. 2, observe that

‖A−1
t µt,k‖

=
√

µ>t,kA
−1
t IdA

−1
t µt,k

≤
√

µ>t,kA
−1
t (Id + D>t Dt)A

−1
t µt,k

=
√

µ>t,kA
−1
t µt,k

=st,k. (3)
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For the first term in Eqn. 2, since E[yt − Dtθ
∗] = 0, and µ>t,kA

−1
t D>t yt is a random variable

bounded by ‖DtA
−1
t µt,k‖, by Azuma-Hoeffding inequality, we have

Pr(|µ>t,kA−1
t D>t (yt −Dtθ

∗)| > αst,k)

≤2 exp

(
−

2α2s2
t,k

‖DtA
−1
t µt,k‖2

)
≤2 exp(−2α2) (4)

=
δ

TK
, (5)

where Eqn. 4 is due to

s2
t,k = µ>t,kA

−1
t µt,k

= µ>t,kA
−1(Id + D>t Dt)A

−1µt,k

≥ µ>t,kA
−1D>t DtA

−1µt,k

= ‖DtA
−1
t µt,k‖2.

For the second term of Eqn. 2, ‖ε>Σ
1/2
t,k ‖, since ε>Σ

1/2
t,k ∼ N (0,Σt,k), we can guarantee that with

probability at most δ
TK ,

‖ε>Σ
1/2
t,k ‖ > 2

√
λmax(Σt,k)(2

√
d+

√
ln
TK

δ
), (6)

where λmax(Σt,k) = ‖Σt,k‖op is the operator norm of the matrix Σt,k corresponding to the L2

vector norm.

Combining Eqn. 2, Eqn. 5, and Eqn. 6, with a union bound, we have that with probability at least
1− 2δ

T , for all actions a ∈ [K],

|r̂t,k − x∗t,k
>θ∗| ≤ (α+ 1)st,k + (4

√
d+ 2

√
ln
TK

δ
)
√
λmax(Σt,k),

= (α+ 1)st,k + (4
√
d+ 2

√
ln
TK

δ
)‖σt,k‖∞,

1.2 REGRET BOUND

Lemma 1.1 above provides a reasonable estimate of the reward’s upper bound at time t. Based on
this estimate, one natural next step is to analyze the regret after all T rounds. Formally, we define the
regret of the algorithm after T rounds as

B(T ) =

T∑
t=1

rt,k∗t −
T∑
t=1

rt,kt , (7)

where k∗t is the optimal item (action) k at round t that maximizes E[rt,k] = xTt,kθ
∗, and kt is the

action chose by the algorithm at round t. In a similar fashion as in Chu et al. (2011), SupREN calls
BaseREN as a sub-routine. In this subsection, we derive the regret bound for SupREN with uncertain
item embeddings.
Lemma 1.2 (Azuma–Hoeffding Inequality). Let X1, . . . , Xm be random variables with |Xτ | ≤ aτ
for some a1, . . . , am > 0. Then we have

Pr(|
m∑
τ=1

Xτ −
m∑
τ=1

E[Xτ |X1, . . . , Xτ−1]| ≥ B) ≤ 2 exp

(
− B2

2
∑m
τ=1 a

2
τ

)
.

Lemma 1.3. With probability 1− 2δS, for any t ∈ [T ] and any s ∈ [S]:
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1. |r̂t,k −E[rt,k]| ≤ wt,k for any k ∈ [K],

2. k∗t ∈ Âs, and

3. E[rt,k∗t ]−E[rt,k] ≤ 2(3−s) for any k ∈ Âs.

Proof. The proof is a simple modification of that in Auer (2002) (Lemma 15) to accommodate
modification in Lemma 1.1.

Lemma 1.4. In BaseREN, we have

(1 + α)
∑

t∈ΨT+1

st,kt ≤ 5 · (1 + α2)
√
d|ΨT+1|.

Proof. This is a direct result of Lemma 3 and Lemma 6 in Chu et al. (2011) as well as Lemma 16 in
Auer (2002).

Lemma 1.5. Assuming ‖σ1,k‖∞ = 1 and ‖σt,k‖∞ ≤ 1√
t

for any k and t, then for any k,∑
t∈ΨT+1

‖σt,k‖∞ ≤
√
|ΨT+1|

Proof. Since the function f(t) = 1√
t

is convex when t > 0, we have

|ΨT+1|∑
t=1

1√
t
≤
∫ |ΨT+1|

0

1√
t

=
√
t
∣∣∣|ΨT+1|

0
=
√
|ΨT+1|

Lemma 1.6. For all s ∈ [S],

|Ψ(s)
T+1| ≤ 2s ·

(
5(1 + α2)

√
d|Ψ(s)

T+1|+ 4
√
dT + 2

√
T ln

TK

δ

)
.

Proof. This is true by combining Lemma 1.4, Lemma 1.5, and Lemma 1.1 with a similar proving
strategy as in Lemma 16 of Auer (2002).∑

t∈Ψ
(s)
T+1

w
(s)
t,k = (1 + α)

∑
t∈ΨT+1

st,kt + (4
√
d+ 2

√
ln
TK

δ
)
∑

t∈ΨT+1

‖σt,k‖∞ (8)

≤ 5 · (1 + α2)
√
d|ΨT+1|+ (4

√
d+ 2

√
ln
TK

δ
)
√
|ΨT+1| (9)

≤ 5 · (1 + α2)
√
d|ΨT+1|+ 4

√
dT + 2

√
T ln

TK

δ
, (10)

where Eqn. 9 is due to Lemma 1.4 and Lemma 1.5. By Line 12 of Algorithm 2, we have∑
t∈Ψ

(s)
T+1

w
(s)
t,k ≥ 2−s|Ψ(s)

T+1|. (11)

Combine Eqn. 10 and Eqn. 11 yields this lemma.

Theorem 1.1. If SupREN is run with α =
√

1
2 ln 2TK

δ , with probability at least 1− δ, the regret of
the algorithm is

O

(√
Td ln3

(
KT ln(T )

δ

))
. (12)
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Proof. The proof is an extension of Theorem 6 in Auer (2002) to handle the uncertainty in item
embeddings. We denote as Ψ0 the set of trials for which an alternative is chosen in Line 8 of
Algorithm 2. Note that 2−S ≤ 1√

T
; therefore {1, . . . , T} = Ψ0 ∪

⋃
s Ψ

(s)
T+1. We have

E[B(T )] =

T∑
t=1

[E[rt,k∗t ]− E[rt,kt ]

=
∑
t∈Ψ0

[E[rt,k∗t ]− E[rt,kt ] +

S∑
s=1

∑
t∈Ψ

(s)
T+1

[E[rt,k∗t ]− E[rt,kt ]

≤ 2√
T
|Ψ0|+

S∑
s=1

8 · 2−s · |Ψ(s)
T+1| (13)

≤ 2√
T
|Ψ0|+

S∑
s=1

8 ·

(
5(1 + α2)

√
d|Ψ(s)

T+1|+ 4
√
dT + 2

√
T ln

TK

δ

)
(14)

≤ 2
√
T + 40(1 + ln

2TK

δ
)
√
STd+ 32S

√
dT + 16S

√
T ln

TK

δ
, (15)

with probability 1 − 2δS. Eqn. 13 is by Lemma 1.3, and Eqn. 14 is by Lemma 1.6. By the

Azuma-–Hoeffding inequality (Lemma 1.2) with B = 2
√

2T
√

ln 2
δ and aτ = 2, we have

B(T ) ≤ 2
√
T + 44 · (1 + ln

2TK

δ
)
√
STd+ 32S

√
dT + 16S

√
T ln

TK

δ
, (16)

with probability at least 1− 2δ(S + 1). To see this, note that 1− 2δ(S + 1) < 1− 2δS − δ and that

2
√

2T

√
ln

2

δ
≤ 4
√
T

√
ln

2TK

δ
≤ 4 · (1 + ln

2TK

δ
)
√
STd.

Replacing δ by δ
2S+2 and S by lnT in Eqn. 16 along with simplification gives us

B(T ) ≤ 2
√
T + 44 · (1 + ln

2TK(2S + 2)

δ
)
√
T lnT

√
d+ 32S

√
dT + 16S

√
T ln

TK(2S + 2)

δ

≤ 2
√
T + 44 · (1 + ln

2TK(2S + 2)

δ
)(1 + lnT )

1
2

√
Td+ 32S

√
dT + 16 lnT

√
ln
TK(2S + 2)

δ

√
T

≤ 2
√
T + 44 · (1 + ln

2TK(2 lnT + 2)

δ
)
3
2

√
Td

+ 32 · (1 + ln
2TK(2 lnT + 2)

δ
)
√
dT + 16 · (1 + ln

2TK(2 lnT + 2)

δ
)
3
2

√
Td

≤ 2
√
T + 92 · (1 + ln

2TK(2 lnT + 2)

δ
)
3
2

√
Td,

with probability 1− δ. Therefore we have

B(T ) ≤ 2
√
T + 92 · (1 + ln

2TK(2 lnT + 2)

δ
)

3
2

√
Td = O(

√
Td ln3(

KT ln(T )

δ
),

with probability 1− δ.

Theorem 1.1 shows that even with the uncertainty in the item embeddings, our proposed REN can
achieve the same rate-optimal sublinear regret bound as in Chu et al. (2011).

2 MORE DETAILS ON DATASETS

2.1 MovieLens-1M

We use MovieLens-1M (Harper & Konstan, 2016) containing 3,900 movies and 6,040 users. Specifi-
cally, we randomly select 1,000 users from MovieLens-1M, where each user has 120 interactions,
and follow the joint learning and exploration procedure described in the main paper to evaluate all
methods.
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Figure 1: Hyperparameter sensitivity for λd in SYN-S, SYN-M, and SYN-L.
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Figure 2: Rewards over time on Netflix. One time step represents 100 recommendations to a user.

2.2 Trivago

Trivago is a hotel recommendation dataset with 730,803 users, 926,457 items, and 910,683 inter-
actions. We use a subset with 57,778 users, 387,348 items, and 108,713 interactions and slice the
data into M = 48 one-hour time intervals for the online experiment. Different from MovieLens-1M,
Triavago has impression data available. Specifically, at each time step, besides which item is clicked
by the user, we also know which 25 items are being shown to the user. Essentially the RecSys
Challenge is a reranking problem with candidate sets of size 25.

2.3 Netflix

Our main conclusion with Netflix experiments is that REN-inference-only procedure collects more
diverse data points about a user, which allows us to build a more generalizable user model, which
leads to better long-term rewards. The main paper demonstrates better generalizability by comparing
precision@100 reward on a holdout item set, where the items are inaccessible to the user - i.e., we
never collect feedback on these holdout items in our simulations. Instead, recommendations are made
by comparing the users’ learned embeddings and the pretrained embeddings of the holdout items.
Fig. 2(left) shows similar trends with recall@100 as the reward on the same holdout item set. This
shows that the collected set contributes to building better user embedding models.

Fig. 2(middle) shows that the additional exploration power comes without significant harms to
the user’s immediate rewards on the exploration set, where the recommendations are served. In
fact, we used a relatively large exploration coefficient, λd = λu = 0.005, which starts to affect
recommendation results on the sixth position. By additional hyperparameter tuning, we realized
that to achieve better rewards on the exploration set, we may choose smaller λd = 0.0007 and
λu = 0.0008. Fig. 2(right) shows significantly higher recalls close to the oracle performance,
where all of the users’ histories are known and used as inputs to predict the top-100 personalized
recommendations.1 Note that, for fair presentation of the tuned results, we switched the exploration
set and the holdout set and used a different test user group, consisting of 1543 users. We believe
that the tuned results are generalizable with new users and items, but we also realize that the Netflix
dataset still has a significant popularity bias and therefore we recommend using larger exploration
coefficients with real online systems. The inference cost is 175 milliseconds to pick top-100 items

1The gap between oracle and 100% recall lies in the model approximation errors.
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from 8000 evaluation items. It includes 100 sequential linear function solutions with 50 embedding
dimensions, which is further improvable by selecting multiple items at a time in slate generation.

3 HYPERPARAMETERS AND NEURAL NETWORK ARCHITECTURES

For the base models GRU4Rec, TCN, and HRNN, we use identical network architectures and
hyperparemeters whenever possible following (Hidasi et al., 2016; Bai et al., 2018; Ma et al., 2020).
Each RNN consists of an encoding layer, a core RNN layer, and a decoding layer. We set the
number of hidden neurons to 32 for all models including REN variants. Fig. 1 shows the REN-G’s
performance for different λd (note that we fix λu =

√
10λd) in SYN-S, SYN-M, and SYN-L. We can

observe stable REN performance across a wide range of λd. As expected, REN-G’s performance is
closer to GRU4Rec when λd is small.
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