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Figure 1: Selected samples generated by the second stage of DoD-XL. By training for only 1
million steps on ImageNet-256× 256 dataset, DoD-XL achieves state-of-the-art image quality.

ABSTRACT

Conventional class-guided diffusion models generally succeed in generating im-
ages with correct semantic content, but often struggle with texture details. This
limitation stems from the usage of class priors, which only provide coarse and
limited conditional information. To address this issue, we propose Diffusion on
Diffusion (DoD), an innovative multi-stage generation framework that first ex-
tracts visual priors from previously generated samples, then provides rich guid-
ance for the diffusion model leveraging visual priors from the early stages of
diffusion sampling. Specifically, we introduce a latent embedding module that
employs a compression-reconstruction approach to discard redundant detail infor-
mation from the conditional samples in each stage, retaining only the semantic
information for guidance. We evaluate DoD on the popular ImageNet-256× 256
dataset, reducing 7× training cost compared to SiT and DiT with even better per-
formance in terms of the FID-50K score. Our largest model DoD-XL achieves an
FID-50K score of 1.83 with only 1 million training steps, which surpasses other
state-of-the-art methods without bells and whistles during inference.

1 INTRODUCTION

Diffusion models have emerged as a paradigm-shifting approach in visual content generation em-
ploying an innovative process of iterative noise-to-data transformation. Trained to reverse a gradual
noising process, these models leverage deep neural networks to generate high-quality new samples
that faithfully represent the training data distribution. Diffusion models have surpassed previous
state-of-the-art generative frameworks, such as GANs (Sauer et al., 2022; Goodfellow et al., 2014;
2020) and VAEs (Kingma & Welling, 2013), offering superior sample quality, improved training
stability, and enhanced scalability. This superiority of diffusion models has led to their widespread
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Figure 2: ImageNet generation with Diffusion on Diffusion (DoD). Left: DoD is parameter-
efficient. The diameter of each circle indicates the model size. Our DoD-S and DoD-B models,
despite being much smaller, are comparable to the XL variants of other diffusion models. Right:
DoD is sampling-efficient. “-G” indicates the application of classifier-free guidance (CFG), and
“-S” denotes the number of sampling steps for each stage of DoD. The starting and ending points of
each blue line represent the two stages of DoD, where we only apply CFG in the second stage. With
the same sampling steps, DoD achieves lower FID-50K score.

adoption across a diverse range of conditional generation tasks, including class-guided image gen-
eration (Lu et al., 2024a; Wang et al., 2024; Ma et al., 2024; Peebles & Xie, 2023), text-to-image
generation (Esser et al., 2024b; Podell et al., 2023), and image editing (Meng et al., 2021).

Conventionally, class-guided diffusion models generate images conditioned on learned class embed-
dings. While this embedding-based approach is widely adopted, such class prior can only provide
coarse-grained conditional information for models, which is only able to distinguish different cate-
gories. The challenge of constructing detailed images from such limited priors has led to exception-
ally long training cycles for current class-guided diffusion models. For example, DiT (Peebles &
Xie, 2023) and SiT (Ma et al., 2024) require up to 7 million training steps to achieve convergence.

In contrast, visual priors contain more geometric visual information. Intuitively, visual priors should
be closer to the target distribution of image generation.The efficacy of visual priors in enhancing
image generation quality has been demonstrated in various domains, including super-resolution
models (Yang et al., 2024; Ren et al., 2024) and SD-Edit (Meng et al., 2021). Inspired by this
well-established methodology, our study seeks to explore the integration of visual priors into class-
guided image generation models. To this end, we propose an innovative multi-stage diffusion sam-
pling framework. The initial stage adheres to the conventional approach, utilizing fixed class em-
beddings as priors. However, the subsequent refinement stages employ the image generated in the
previous stage as a visual prior to guide further image synthesis. Our framework’s distinctive feature
lies in the reuse of the same diffusion model across multiple stages, leading us to term this method
“Diffusion on Diffusion” (DoD).

The proposed Diffusion on Diffusion (DoD) framework introduces a recurrent approach, where each
stage comprises a complete diffusion sampling procedure. From the second stage, DoD extracts se-
mantic information from the previous output as additional visual priors. This mechanism provides
rich semantic visual guidance during the early stages of diffusion sampling, facilitating the genera-
tion of higher-quality images. By repeatedly leveraging the generation capabilities of the diffusion
model, DoD not only enhances texture details but also refines the object-level geometric. Although
longer sampling steps in diffusion models typically provide more accurate approximations and po-
tentially boost performance, the final performance is still constrained by the model capacity. In con-
trast, our method, by incorporating visual priors in extended sampling steps, effectively improves
both the sampling efficiency and generation quality. As shown in Figure 2 (Right), the proposed
paradigm yields more efficient sampling compared to simply increasing the sample steps in diffu-
sion models. Moreover, as illustrated in Figure 2 (Left), DoD is also parameter-efficient. Unlike
models such as SDXL (Podell et al., 2023) which employs a separate refiner model, DoD integrates
both image generation and refinement using shared parameters, significantly reducing the model
size and lowering the barrier to real-world applications.
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Directly using the generated latents as conditions results in the model collapsing into a complete
reconstruction of the input samples, thereby losing the desired refinement effect. To overcome this
issue, we introduce a Latent Embedding Module (LEM), a vision transformer, that compresses the
conditional sample into a few low-dimensional vectors, thereby discarding redundant texture details
while retaining the essential information. Our investigation shows that the kept information primar-
ily consists of semantics, which are aligned between the training dataset and the generated samples
for a well-trained generation model. The semantic alignment eliminates the need for collecting spe-
cialized refinement data or implementing complex training strategies, allowing DoD to be trained
end-to-end on generation datasets.

DoD is built upon the state-of-the-art diffusion transformer, FiTv2 (Wang et al., 2024), and follows
the latent diffusion model (LDM) (Rombach et al., 2022) training paradigm. We conduct compre-
hensive experiments and strictly evaluate our proposed method on ImageNet-256× 256 benchmark.
Compared with the DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024) models, our DoD achieves
even better performance in terms of FID, with fewer model parameters and computational complex-
ity, consuming 7× less training cost. Meanwhile, our method outperforms the previous state-of-the-
art methods when no bells and whistles were applied during inference, which achieves an FID-50K
score of 1.83 with only 1 million training steps.

2 RELATED WORK

2.1 DIFFUSIONS AND FLOWS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Saharia et al., 2022; Radford
et al., 2021; Croitoru et al., 2023; Bond-Taylor et al., 2021) and score-based models (Hyvärinen &
Dayan, 2005; Song et al., 2020b) have demonstrated significant advancements in image generation
tasks (Lu et al., 2024b; Ling et al., 2024; Rombach et al., 2022; Saharia et al., 2022; Meng et al.,
2021; Ramesh et al., 2022; Ruiz et al., 2023; Poole et al., 2022). The Denoising Diffusion Implicit
Model (DDIM) (Song et al., 2020a) introduced an accelerated sampling method, while Latent Diffu-
sion Models (LDMs) (Rombach et al., 2022) set a new standard by applying deep generative models
to reverse the noise process in the latent space using Variational Autoencoders (VAEs) (Kingma &
Welling, 2013). Flow models (Liu et al., 2023; Albergo & Vanden-Eijnden, 2022; Lipman et al.,
2022; Albergo et al., 2023) present an alternative approach by learning a neural ordinary differential
equation (ODE) that transports between two distributions. The rectified flow model (Liu et al., 2023)
solves a nonlinear least squares optimization problem to learn mappings along straight paths, which
represent the shortest distance between two points, leading to improved computational efficiency. In
this work, we adopt the rectified flow as the noise scheduler to train our DoD models.

2.2 DIFFUSION TRANSFORMER

The Transformer model (Vaswani et al., 2017) has successfully replaced domain-specific architec-
tures across various fields, including language (Brown et al., 2020; Chowdhery et al., 2023), vision
(Dosovitskiy et al., 2020; Han et al., 2022), and multi-modal learning (Team et al., 2023). In the
realm of visual perception research, numerous studies (Touvron et al., 2019; 2021; Liu et al., 2021;
2022) have focused on accelerating pretraining by utilizing fixed, low-resolution images. Transform-
ers have also been applied in denoising diffusion probabilistic models (Ho et al., 2020) for image
synthesis. DiT (Peebles & Xie, 2023), a pioneering work in this space, employs a vision transformer
as the backbone for latent diffusion models (LDMs), serving as a strong baseline for subsequent
research. MDT (Gao et al., 2023) introduces a masked latent modeling approach, requiring two
forward passes during training and inference. U-ViT (Bao et al., 2023) tokenizes all inputs and inte-
grates U-Net architectures into the ViT backbone of LDMs. SiT (Ma et al., 2024), utilizing the same
architecture as DiT, explores various rectified flow configurations. Large-DiT and Flag-DiT (Gao
et al., 2024) scale up diffusion transformers to achieve improved performance. SD3 (Esser et al.,
2024a) introduces novel noise samplers for rectified flow models and scales these models to billions
of parameters, yielding state-of-the-art text-to-image generation results. FiTv2 (Wang et al., 2024),
based on FiT (Lu et al., 2024a), achieves advanced class-conditional image generation performance
by leveraging a flexible diffusion transformer architecture within a rectified flow framework. In this
work, built upon the FiTv2 architecture, we propose Diffusion on Diffusion (DoD), an innovative
framework which effectively incorporates visual priors into class-guided image generation.
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3 METHOD

3.1 PRELIMINARIES

Diffusion and Flow Models. Before introducing our Diffusion on Diffusion (DoD) framework, we
provide a brief review of diffusion and flow models. Given the noise distribution ϵ ∼ N (0, I) and
data distribution x0 ∼ p(x), the models use the time-dependent forward process:

xt = αtx0 + βtϵ, (1)

where αt is a decreasing function of t and βt is an increasing function of t. In this unified perspec-
tive, diffusion models (Ho et al., 2020; Song et al., 2020b; Song & Ermon, 2019; 2020) set αt and
βt based on stochastic differential equation (SDE) formulations, where DDPM (Ho et al., 2020) is
equivalent to variance preserving SDE (VP-SDE) and SMLD (Song & Ermon, 2019; 2020) corre-
sponds to variance exploding SDE (VE-SDE). DDIM (Song et al., 2020a) sets αt and βt through
ordinary differential equations (ODE), which leads to fewer sampling steps but sacrifices the gen-
eration quality. Flow models (Liu et al., 2023; Lipman et al., 2022; Albergo & Vanden-Eijnden,
2022; Albergo et al., 2023) restrict the process 1 on t ∈ [0, 1], and set α0 = β1 = 1, α1 = β0 = 0,
interpolating between the two distributions through ODE formulation.

Rectified flow (Liu et al., 2023) introduces an ODE model and transports between the data dis-
tribution and the noise distribution via a straight line path, which is the theoretically shortest route
between two points. Given empirical observations X0 ∼ p(x), X1 ∼ N (0, I), the forward process 1
is defined as: Xt := tX1 + (1− t)X0, which is the linear interpolation of X0 and X1.

The ODE model learns the drift at time t ∈ [0, 1]:

dXt = v(Xt, t)dt, (2)

which converts data X0 from p(x) to noise X1 from π1, and the drift follows the direction of (X1 −
X0). In practice, a network vθ is utilized to predict this drift, and the optimization target is:

min
v

∫ 1

0

E
[
||(X1 −X0)− v(Xt, t)||2

]
dt (3)

Previous studies (Ma et al., 2024; Esser et al., 2024b; Wang et al., 2024; Gao et al., 2024) have
demonstrated the efficiency and stability of rectified flow models. In this work, we fully adhere to
the form of rectified flow as our noise scheduler and enhance the diffusion model by adding extra
conditions beyond the class label. We adopt the implementation of rectified flow following SiT (Ma
et al., 2024) and use ODE sampler for image synthesis.

FiTv2. DoD utilizes the state-of-the-art diffusion transformer, FiTv2 (Wang et al., 2024), as the
backbone. FiTv2 is an advanced diffusion transformer on class-guided image generation, evolving
from SiT (Ma et al., 2024) and FiT (Lu et al., 2024a). The key modules of FiTv2 include 2-D Rotary
Positional Embedding (2-D RoPE) (Su et al., 2024), Swish-Gated Linear Unit (SwiGLU) (Shazeer,
2020), Query-Key Vector Normalization (QK-Norm), and Adaptive Layer Normalization with Low-
Rank Adaptation (AdaLN-LoRA) (Hu et al., 2022).

Despite these advanced modules, FiTv2 adopts the Logit-Normal sampling (Esser et al., 2024b)
strategy to accelerate the model convergence. This sampling strategy puts more attention on the
middle part of the sampling process, as recent studies (Karras et al., 2022; Chen, 2023) have dis-
closed that the intermediate part is the most challenging part of the diffusion process.

3.2 DIFFUSION ON DIFFUSION WITH VISUAL PRIORS

We introduce the Diffusion on Diffusion (DoD) framework, which enhances diffusion models by
recurrently incorporating previously generated samples as visual priors to guide the subsequent sam-
pling process. There are two core components in DoD: the Multi-Stage Sampling strategy and the
Latent Embedding Module (LEM). The multi-stage sampling enables the use of visual priors, while
the LEM extracts semantic information from the samples generated in the previous stage.

Multi-Stage Sampling. The sampling process of DoD consists of multiple stages, with each stage
being a complete diffusion sampling process conditioned on different information. As depicted in
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(a) Multi-Stage Sampling.
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(b) Latent Embedding Module.

Figure 3: Illustration of (a) Multi-Stage Sampling and (b) Latent Embedding Module. We only
present the first two stages of DoD, while subsequent stages are derived from the second one.

Figure 3 (a), in the i-th stage, the backbone diffusion model, denoted as F (·), takes Gaussian noise
zi1 ∈ RH×W×dz as input and progressively denoises it to obtain the sample zi0 ∈ RH×W×dz , where
H , W , and dz denote the height, width, and channels of the noised data, respectively. Let c represent
the conditional feature that guides the generation direction via the AdaLN-LoRA block, we have the
sampling formulation as:

ziτt−1
= F (ziτt , c), t = T, T − 1, . . . , 1, (4)

where T represents the total sampling steps, τt is a monotone increasing function of t that satisfies
τt ∈ [0, 1], τ0 = 0, τT = 1. The accurate form of {τt}1:T is determined by the ODE sampler. The
formulation of each stage closely follows that of FiTv2 (Wang et al., 2024).

Typically, for class-conditional generation, the conditional feature c consists only of class and time
information. In DoD, the sample generated in the previous iteration is used as additional condition-
ing information, as follows:

c =

{
ec + et + S if i = 1

ec + et + ei−1
s if i > 1

,

ei−1
s = LEM(zi−1

0 ),

(5)

where ec ∈ R1×d and et ∈ R1×d are the embeddings for the label and time, and ei−1
s ∈ R(H

p ×W
p )×d

represents the embedding extracted by the latent embedding module LEM(·), with p and d denoting
the patch size and hidden size of the backbone, respectively.

To maintain consistency in behavior, in the first stage, we replace es with a trainable sample token
S ∈ R1×d. Note that when i > 1, broadcast is operated on ec and et to align their dimensions with
the sample embedding es. We modify the modulation function in the AdaLN-LoRA block to accept
conditional features with different dimensions accordingly.

Latent Embedding Module (LEM). Since we use previously generated latents as visual priors
to guide the generation process, retaining all the information from these samples would cause the
diffusion model to collapse into an identity mapping, resulting in a complete reconstruction of the
conditional samples. To avoid this, we propose the Latent Embedding Module (LEM) that filters the
conditional information using a compression-reconstruction approach to discard redundant details.

The architecture of LEM is illustrated in Figure 3 (b), comprising an encoder and a decoder, both
of which are standard vision transformers (Dosovitskiy et al., 2020). The encoder first patchifies the
input latent z0 ∈ RH×W×dz through a patch embedding layer into ep ∈ R(H

p ×W
p )×dl , where dl is the

hidden size of the LEM, and the patch size p is consistent with that of the backbone network. Next,
N learnable latent tokens L ∈ RN×dl are concatenated with ep and fed into the vision transformer.
A linear layer then reduces the channel dimension to de. Only the latent tokens are used as the
output of the encoder, formally:

L̂ = Enc((ep + PE)⊕ L), (6)

5
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Table 1: Details of DoD models. The layers of the latent embedding module are presented as
encoder depth + decoder depth. We list the number of parameters for the backbone and the latent
embedding module in different colors.

Model Backbone Latent Embedding Module Params (M)Layers Hidden size Heads Layers Hidden size Heads

DoD-S 12 384 6 8 + 4 384 6 27 + 21 = 48
DoD-B 12 768 12 8 + 4 768 12 105 + 86 = 191
DoD-XL 28 1152 16 8 + 4 768 12 527 + 86 = 613

where ⊕ denotes concatenation, PE is the frozen sine-cosine positional embedding, and Enc(·)
indicates the encoder. L̂ ∈ RN×de represents the output latent tokens, providing a compressed
representation of the input latent z0.

The decoder seeks to map the compressed latent tokens L̂ back to the shape of the patch embedding
ep to enable element-wise conditioning. Specifically, a sequence of mask tokens M ∈ R(H

p ×W
p )×de ,

obtained by repeating a shared mask token, is concatenated with L̂. The combined representation is
then projected back to dl and fed into the vision transformer:

es = Dec((M + PE)⊕ L̂), (7)

where Dec(·) denotes the decoder, which has the same number of heads and hidden size as the
encoder. The output es is the extracted latent condition.

Equipped with the Latent Embedding Module (LEM), DoD realizes image refinement effectively
through latent space reconstruction. The encoder of LEM projects the input latents into a more
compact feature space, which is then restored by the decoder and the diffusion model. We empir-
ically find that the compressed latent tokens L̂ primarily retain semantic information, enabling the
diffusion model to focus on texture details, thereby enhancing image fidelity, as in section 4.2.

3.3 CONFIGURATIONS

Training. DoD is trained within the latent space of a pre-trained Variational Autoencoder (VAE)
from Stable Diffusion (Rombach et al., 2022). The VAE encoder maps RGB images of shape 256×
256× 3 to latents of shape 32× 32× 4. The new latents sampled by DoD are then decoded back to
pixel space by the VAE decoder.

As mentioned above, the Latent Embedding Module (LEM) extracts semantic information from
samples through compression and reconstruction to serve as visual priors. We reasonably assume
that the high-level semantic information extracted from generated images is similar to that obtained
from real images. This assumption allows us to use the latents of ground truth images as inputs
to LDM during training, simplifying the training strategy. Such simplification allows end-to-end
training of DoD on image latents and joint optimization of the backbone model and LEM. Similar
to training with classifier-free guidance, we randomly replace the output of the latent embedding
module with a trainable sample token S at a probability of ps, which is set to 0.5 by default.

Sampling. Classifier-free guidance (CFG) (Ho & Salimans, 2021) is well-known for enhancing
generation quality and improving the alignment between conditions and generated images. For
visual priors, we employ a large CFG scale to ensure the consistency of the generated samples,
while we do not use CFG in the first stage of DoD. Additionally, DoD employs the adaptive-step
ODE sampler (i.e.., dopri5) same as SiT (Ma et al., 2024) for sample synthesis in each stage.

Models. We use three different model configurations with varying sizes, DoD-{S, B, XL}, as de-
tailed in Table 1. For the backbone network, i.e., FiTv2, we closely follow the configurations out-
lined in their paper but reduce the model depth to match those of DiT (Peebles & Xie, 2023) and
SiT (Ma et al., 2024). For the latent embedding module, we use an 8-layer encoder and a 4-layer
decoder by default. Our largest model, DoD-XL, uses the same size latent embedding module as
DoD-B to reduce the number of parameters. The patch size for both the backbone network and the
latent embedding module is set to 2, and the channel dimension de of the latent tokens in the latent
embedding module is set to 16.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Left: rFID score with different CFG scales. A large CFG scale is required in DoD to
effectively leverage visual priors. Right: FID score comparison across different stages. Visual
priors are not available in Stage 1, while both stages 2 & 3 utilize the samples from the previous
stage as visual priors.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We conduct experiments on ImageNet (Deng et al., 2009), using a res-
olution of 256 × 256. All models share the same training strategy. We use the AdamW (Kingma,
2014; Loshchilov & Hutter, 2017) optimizer with a constant learning rate of 1 × 10−4 and without
weight decay. Models are trained with a batch size of 256. Following SiT and FiTv2, we also apply
an exponential moving average (EMA) with a decay factor of 0.999 to the model weights during
training, and we report the performance of the EMA checkpoints.

Evaluation Metrics. We use Fréchet Inception Distance (FID) (Heusel et al., 2017) as the primary
evaluation metric. Inception Score (IS) (Salimans et al., 2016), sFID (Nash et al., 2021), improved
Precision and Recall (Kynkäänniemi et al., 2019) are also included to holistically evaluate the gen-
eration quality. Moreover, the inference of DoD involves two processes – sampling with class priors
and sampling with visual priors. Since the latter process is formally similar to image reconstruc-
tion, we also adopt reconstruction-FID (rFID), PSNR, and SSIM to assess the reconstruction quality,
providing a more comprehensive evaluation of our method.

4.2 PRELIMINARY EXPERIMENTS

Visual Prior Drastically Improves Performance. We first verify how effectively visual priors can
guide image generation.

We use the latents of ground truth images as inputs for the latent embedding module and report
the reconstruction-FID (rFID) of the generated images. This experiment is conducted with a DoD-
B model trained with 400K steps. As shown in Figure 4 (Left), classifier-free guidance (CFG) is
critical for DoD, with a high CFG scale leading to significant improvements. The higher the CFG
scale is, the more the model relies on the input condition, which contains the visual prior. When
the CFG scale is set to 5.5, the model performs best, achieving an rFID score of 3.6, which is much
better than the score without CFG (10.8 rFID). This encouraging result demonstrates the potential
of conditioning on visual priors. In this work, unless otherwise stated, we default to using a CFG
scale of 5.5 when employing image priors as conditions for DoD.

We also present the generation results of DoD models trained for 400K steps in Figure 4 (Right).
The visual prior is significantly effective in improving the FID-50K score, since the performance of
Stage 2 (w/ visual prior) is obviously better than the performance of Stage 1 (w/o visual prior).

Extracting Visual Priors Through Compression. In Table 2, we evaluate the effectiveness of the
compression-reconstruction approach used by DoD to extract visual prior information from three
perspectives: generation, reconstruction, and linear probing. DoD controls the compression rate
through the number of latent tokens N in the latent embedding module, where using 256 tokens

7
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Table 2: Effects of the number of latent tokens N in LEM. We provide a comprehensive eval-
uation that includes: generation in Stage 1 (S1) and Stage 2 (S2), image reconstruction, and linear
probing. The results are based on DoD-B, trained for 400K steps.

N
Generation Reconstruction Linear Probe

FIDS1↓ ISS1↑ FIDS2↓ ISS2↑ rFID↓ PSNR↑ SSIM↑ Top-1↑
16 28.87 47.93 4.95 207.62 4.52 15.88 0.46 56.6
32 28.65 47.98 4.93 187.14 3.63 16.17 0.48 53.2
64 31.36 43.61 9.66 121.13 2.20 17.69 0.56 52.4

256 33.05 41.97 33.12 42.02 0.63 24.99 0.80 51.3

Table 3: Effects of the joint training strategy in DoD. We report the results based on DoD-B
trained for 400K steps.

ps
Generation Reconstruction

FIDS1↓ ISS1↑ FIDS2↓ ISS2↑ rFID↓ PSNR↑ SSIM↑
0.25 31.06 43.38 5.48 169.91 3.47 16.28 0.49
0.50 28.65 47.98 4.93 187.14 3.63 16.17 0.48
0.75 26.60 52.77 4.31 222.84 4.22 15.94 0.48

means no compression is applied. Thanks to the generative capabilities of the diffusion model, we
can reconstruct images using only 16 latent tokens. We draw the following conclusions:

• A lower compression rate (i.e., using more tokens) results in better reconstruction per-
formance. This is intuitive, as a lower compression rate means that more information is
retained for image restoration.

• More semantically rich representations can be learned with fewer tokens. Drawing from
self-supervised learning, we measure the quality of the representations using linear probing
accuracy. The best performance is achieved with 16 tokens, demonstrating that the latent
embedding module in DoD effectively extracts global semantic information as visual priors
through compression.

Interestingly, DoD with 32 tokens performs best in generation during both the first and second
stages, suggesting a trade-off between reconstruction capability and semantic richness. By default,
we utilize 32 latent tokens across all DoD variants.

Joint Training in DoD. In DoD, we implement a joint training strategy that optimizes both the
backbone diffusion model and the latent embedding module concurrently. The training process is
controlled by a hyperparameter ps, which dictates the probability that the ground truth image priors
are not utilized. The results of generation and reconstruction are detailed in Table 3. A higher
value of ps leads to improved generation performance, while a lower value is more beneficial for
reconstruction. As this work aims to validate the importance of visual priors rather than pursuing
state-of-the-art performance, we simply set ps = 0.5 as the default value.

Additionally, the joint training of DoD is based on the assumption that images of varying fidelity can
provide similar visual priors through compression. We validate this assumption in Figure 4 (Right),
where the output from stage 1 is used as a visual prior in stage 2, yielding more realistic images.
However, stage 3, which relies on stage 2, does not show further improvements, indicating that
the poor outputs from stage 1 and the good outputs from stage 2 provide similar prior information.
Therefore, in our experiments, we report the performance of DoD from stage 2.

Visual Prior Leads to Efficient Sampling in DoD. One potential drawback of DoD is that it in-
volves a multi-stage sampling process, which may result in a substantial computational overhead.
Therefore, in Table 4, we demonstrate that DoD outperforms the baseline model (i.e., FiTv2) even
with fewer inference GFLOPs. We employ the Euler sampler and fixed the number of sampling
steps. The total GFLOPs is calculated as GFLOPs multiplied by the number of sampling steps.
For methods utilizing classifier-free guidance (CFG), the total GFLOPs are doubled. For DoD, we
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Table 4: Comparison between DoD and FiTv2. Both of the models are trained with 1.5M steps.
We report the performance of DoD in Stage 1 (S1) and Stage 2 (S2) separately. With the same
sampling steps and less computation, our DoD demonstrates better FID performance.

Model Steps FID↓ sFID↓ IS↑ Prec.↑ Rec.↑ Sampling Compute GFLOPs↓
FiTv2-B 60 19.67 6.45 73.34 0.61 0.66 1638(=27.3×60)

FiTv2-B-G (cfg=1.5) 60 5.35 4.82 163.65 0.77 0.56 3276(=27.3×2×60)

DoD-B (S1) 30 23.43 7.36 65.85 0.59 0.65 795(=26.5×30)

DoD-B-G (S2, cfg=5.5) 60=(30+30) 3.35 4.87 262.61 0.84 0.51 2409.6(=795+24.6+26.5×2×30)

FiTv2-B 240 18.66 6.15 73.96 0.61 0.66 6552(=27.3×240)

FiTv2-B-G (cfg=1.5) 240 5.03 4.91 165.41 0.77 0.57 13104(=27.3×2×240)

DoD-B (S1) 120 20.81 6.39 67.67 0.60 0.67 3180(=26.5×120)

DoD-B-G (S2, cfg=5.5) 240=(120+120) 3.13 5.44 254.34 0.82 0.53 9564.6(=3180+24.6+26.5×2×120)

Table 5: Benchmarking class-conditional image generation on ImageNet 256× 256. “-G” indi-
cates results with classifier-free guidance, “S2” denotes results from the second stage of DoD.

Model Images Params FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
BigGAN-deep - - 6.95 7.36 171.40 0.87 0.28
StyleGAN-XL - - 2.30 4.02 265.12 0.78 0.53
MaskGIT 355M - 6.18 - 182.10 0.80 0.51
CDM - - 4.88 - 158.71 - -
ADM-G,U 507M 673M 3.94 6.14 215.84 0.83 0.53
LDM-4-G (cfg=1.5) 214M 395M 3.60 5.12 247.67 0.87 0.48
U-ViT-H-G (cfg=1.4) 512M 501M 2.35 5.68 265.02 0.82 0.57
Efficient-DiT-G (cfg=1.5) - 675M 2.01 4.49 271.04 0.82 0.60
Flag-DiT-G 256M 4.23B 1.96 4.43 284.80 0.82 0.61
DiT-XL-G (cfg=1.5) 1792M 675M 2.27 4.60 278.24 0.83 0.57
SiT-XL-G (cfg=1.5) 1792M 675M 2.15 4.50 258.09 0.81 0.60
FiT-XL-G (cfg=1.5) 512M 824M 4.21 10.01 254.87 0.84 0.51
FiTv2-XL-G (cfg=1.5) 512M 671M 2.26 4.53 260.95 0.81 0.59
FiTv2-3B-G (cfg=1.5) 256M 3B 2.15 4.49 276.32 0.82 0.59

DoD-S-G (S2, cfg=5.5) 102.4M 48M 19.70 8.08 74.94 0.67 0.48
256M 48M 11.97 6.23 108.95 0.74 0.48
384M 48M 9.71 6.16 123.63 0.75 0.49

DoD-B-G (S2, cfg=5.5) 102.4M 191M 4.93 5.61 187.14 0.81 0.48
256M 191M 3.42 5.65 236.59 0.82 0.52
384M 191M 3.15 5.74 248.48 0.82 0.54

DoD-XL-G (S2, cfg=3.5) 102.4M 613M 2.34 5.00 228.42 0.78 0.61
256M 613M 1.83 5.00 263.69 0.77 0.65

separately present the performance of two sampling stages, where the total GFLOPs for stage 2 are
added to those of stage 1. Our observations are as follows:

• Increasing the sampling steps from 60 to 240 reduces the FID score across all cases.

• Due to the use of a shallower backbone, DoD at Stage 1 performs worse than FiTv2. How-
ever, in Stage 2, with the same number of sampling steps and fewer GFLOPs, DoD fully
surpasses the baseline FiTv2. This further demonstrates the efficacy of the visual prior.

This experiment highlights the efficiency of DoD and the effectiveness of leveraging visual priors.

4.3 MAIN EXPERIMENTS

The comparison against state-of-the-art class-conditional generation methods is shown in Table 5.
To ensure fair comparisons, we use the total number of training images (denoted as “Images” in
the table) as a measure of the training cost. The total number of training images is calculated as
training steps × batch size.

DoD achieves better FID scores with lower training costs and much fewer parameters. Specif-
ically, using only 191M parameters, DoD-B achieves an FID score of 3.15, surpassing both ADM

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Figure 5: Qualitative Results. We present images generated by DoD-XL with 1M training steps.
Across all stages, semantic information is preserved, and image quality improves progressively.

(3.94 FID with 673M parameters) and LDM-4 (3.60 FID with 395M parameters). When scaling up
the model, DoD-XL further improves performance to a FID of 1.83, using only 613M parameters
and 1M training steps, outperforming all previous diffusion models. Qualitative results are shown
in Figure 1 and Figure 5.

5 CONCLUSION

In this work, we propose using visual priors to further enhance diffusion models. To achieve this, we
introduce Diffusion on Diffusion (DoD), a novel multi-stage generation framework that provides rich
guidance for the diffusion model by leveraging visual priors from previously generated samples. The
latent embedding module in DoD effectively extracts semantic information from generated samples
through a compression-reconstruction approach. DoD demonstrates remarkable training and sam-
pling efficiency while being easy to reproduce. We conduct extensive experiments to validate the
potential of injecting visual priors and explore the design space of the model. We hope our work
will inspire the community to further investigate the use of visual priors in image generation.
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A APPENDIX

A.1 TECHNOLOGIES ADOPTED BY FITV2

FiTv2 Wang et al. (2024) is an advanced diffusion transformer on class-guided image generation,
evolving from SiT (Ma et al., 2024) and FiT (Lu et al., 2024a). The key modules of FiTv2 in-
clude 2-D Rotary Positional Embedding (2-D RoPE) (Su et al., 2024), Swish-Gated Linear Unit
(SwiGLU) (Shazeer, 2020), Query-Key Vector Normalization (QK-Norm), and Adaptive Layer Nor-
malization with Low-Rank Adaptation (AdaLN-LoRA) (Hu et al., 2022).

2-D RoPE. FiTv2 follows FiT and adopts 2-D RoPE as its positional embedding. RoPE applys a
rotary transformation to the embedding, incorporating both absolute and relative positional informa-
tion into the query and key vectors. Benefiting from such property, RoPE and its high-dimensional
variants have been widely adopted in current vision diffusion transformer models (Lu et al., 2024a;
Gao et al., 2024; Esser et al., 2024b).

SwiGLU. SwiGLU is widely used in advanced language models like LLaMA (Touvron et al.,
2023a;b; Dubey et al., 2024). FiTv2 utilizes SwiGLU module as its Feed-forward Neural Network
(FFN), rather than normal Multi-layer Perception (MLP). The SwiGLU is defined as:

SwiGLU(x,W, V ) = SiLU(xW )⊗ (xV )

FFN(x) = SwiGLU(x,W1,W2)W3
(8)

QK-Norm. FiTv2 applies LayerNorm (LN) to the Query (Q) and Key (K) vectors before the at-
tention calculation. This technique effectively stabilizes the training process, particularly during the
mixed-precision setting, as well as slightly improves the performance. Formally, the attention is
calculated as:

Softmax(
1

dk
LN(Qi)LN(Ki)

T ). (9)

AdaLN-LoRA. FiTv2 utilizes AdaLN-LoRa to reduce the too many parameters occupied by the
original AdaLN module in each transformer block. Besides, a global AdaLN module is employed
to extract overlapping condition information and reduce the information redundancy in each block.
Let Si = [βi

1, β
i
2, γ

i
1, γ

i
2, α

i
1, α

i
2] ∈ R6×d denote the tuple of all output scale and shift parameters,

c ∈ Rd and t ∈ Rd represent the embedding for class and time step respectively. In FiTv2 blocks,
Si is calculated as:

Si = AdaLNglobal(c+ t) + AdaLNLoRA(c+ t)

= W g(c+ t) +W i
2W

i
1(c+ t),

(10)

where W g ∈ R(6×d)×d,W i
2 ∈ R(6×d)×r,W i

1 ∈ Rr×d, and the bias parameters are omitted for
simplicity.

Logit-Normal Sampling. Despite these advanced modules, FiTv2 adopts the Logit-Normal sam-
pling (Esser et al., 2024b) strategy to accelerate the model convergence. Normally, rectified flow
models sample times uniformly from the [0, 1] interval, which means each part of the noise sched-
uler is trained equally. FiTv2 samples timesepts from a logit-normal distribution (Atchison & Shen,
1980), which is formulated as:

u ∼ N (0,1), t = log(
u

1− u
) (11)

where N (0,1) denotes the standard normal distribution. This sampling strategy puts more attention
on the middle part of the sampling process, as recent studies (Karras et al., 2022; Chen, 2023) have
disclosed that the intermediate part is the most challenging part in diffusion process.

A.2 MORE QUALITATIVE RESULTS

We present additional qualitative results generated by DoD-B and DoD-XL, displayed in Figure 6
and Figure 7, respectively.
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Figure 6: Images generated by DoD-B.
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Figure 7: Images generated by DoD-XL.
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